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Abstract: Early identification of people at risk of developing COPD is crucial for implementing 

preventive strategies. We aimed to systematically review and assess the performance of all pub-

lished models that predicted development of COPD. A search was conducted to identify studies 

that developed a prediction model for COPD development. The Checklist for Critical Appraisal 

and Data Extraction for Systematic Reviews of Prediction Modelling Studies was followed when 

extracting data and appraising the selected studies. Of the 4,481 records identified, 30 articles were 

selected for full-text review, and only four of these were eligible to be included in the review. 

The only consistent predictor across all four models was a measure of smoking. Sex and age 

were used in most models; however, other factors varied widely. Two of the models had good 

ability to discriminate between people who were correctly or incorrectly classified as at risk of 

developing COPD. Overall none of the models were particularly useful in accurately predicting 

future risk of COPD, nor were they good at ruling out future risk of COPD. Further studies are 

needed to develop new prediction models and robustly validate them in external cohorts.

Keywords: COPD, early detection, predictors and risk prediction models

Introduction
COPD is a progressive debilitating lung condition with major impact on both morbidity 

and early mortality. Of global concern, COPD is projected to rank seventh in worldwide 

disease burden and as the third leading cause of death by 2030.1 The burden of COPD 

is projected to rise in Africa and Asia due to the rising prevalence of smoking in these 

regions and high levels of air pollution.2

COPD carries a very poor prognosis with ~30% of those hospitalized for an exac-

erbation dying within 2 years3 and an in-hospital case fatality rate of ~15%.4 These 

high fatality rates may be directly related to under-diagnosis of early-stage COPD in 

the community, as those presenting to tertiary care generally have advanced disease.5,6 

There is an urgent need to implement strategies to better identify those at increased 

risk of COPD or those who have early disease.

There are several well-known risk factors for COPD including tobacco smoking;7 

occupational exposures to gases, dusts, and fumes;8 and genetic factors, such as 

alpha-1-antitrypsin deficiency.9 Smoking is strongly associated with COPD, however 

there is known individual variation in smoking effects on the lung with up to 30% of 

smokers never developing COPD.10 There is increasing evidence that early life factors 

are related to reduced growth and early decline in lung function, both of which are 

associated with a greater risk of developing COPD at an earlier age.11

Current clinical practice guidelines in the US, UK, and Australia do not recom-

mend screening asymptomatic adults for COPD using spirometry.12 From the primary 
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prevention perspective, predicting those at increased risk of 

developing COPD can allow for implementation of interven-

tions which may not only prevent COPD developing, but may 

also help preserve lung function and quality of life in those 

who do go on to develop COPD. Risk prediction tools that 

incorporate the best available evidence in order to stratify 

patients based on their individual risk profiles could facilitate 

early targeted interventions and management. These tools 

would also facilitate early detection, accurate diagnosis, and 

determination of prognosis.

There have been several reviews of predictive models 

for determining COPD prognosis12,13 but no systematic 

reviews have investigated the potential of models for predic-

tion of development of COPD. We aimed to systematically 

synthesize the evidence from studies that have investigated 

prediction models for subsequent development of COPD in 

those without a prior diagnosis.

Methods
Search strategy and selection criteria
EMBASE and Medline (PubMed) databases were system-

atically searched from inception to November 30, 2016 

(Supplementary material). Reference lists of articles selected 

for full-text reading (30 articles) were manually searched 

for additional eligible articles. This review is reported in 

accordance with the recommendations set forth by the 

Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) statement14 and was prospec-

tively registered in PROSPERO systematic review registry 

(registration number 42017064447). Details of inclusion and 

exclusion criteria are given in Supplementary material.

Data extraction and critical appraisal
Two independent reviewers (GB and CS) ran the same search 

strategy in PubMed and EMBASE, independently screened 

titles and abstracts, assessed full-texts of eligible articles, and 

extracted data following the Checklist for Critical Appraisal 

and Data Extraction for Systematic Reviews of Prediction 

Modelling Studies (CHARMS).15,16 Development of the 

research questions for the systematic review was based on 

the CHARMS checklist (Table 1). For the selected studies, 

data were extracted for study design, derivation cohort, 

predictors, outcomes, and performance of prediction models 

in the model derivation and validation cohorts. Methods 

of risk of bias and applicability assessments are given in 

Supplementary material.

Results
Overview of the studies included 
in the review
Our search identified 4,481 non-duplicate records, from 

which 30 were selected for full-text review (Figure 1). Only 

four of these were selected for inclusion, data extraction, 

and synthesis. The four models developed by these studies 

differed on many characteristics including the derivation 

cohort (age, nationality, at-risk), predictors used, statistical 

methods, and COPD definitions17–20 (Table 2).

Study type and population
All the model development studies included in this review 

concerned the development of original prediction models with 

the objective of developing a risk prediction tool for the devel-

opment of COPD (Table 2). Of the four studies, one was from 

a general population cohort,18 two were from electronic medi-

cal records databases (one from primary care data20 and one 

from hospital record data of asthma patients),19 and one was 

a hospital-based case–control study with participants selected 

from the respiratory medicine department.17 One study did 

not report any specific method for the selection of the initial 

model predictors,18 two studies used predictors previously 

Table 1 Systematic review questions developed using the 
CHARMS checklist

Item Systematic review characteristics

1. Type of prediction 
model

Prognostic model to predict development of 
COPD

2. Intended scope of 
the review

To identify adults (.18 years) who will or 
will not develop COPD in later adult life, to 
help in early detection, closer monitoring, and 
therapeutic decision making

3. Type of prediction 
modeling studies

Studies of prediction models developed with and 
without external validation in independent data. 
Prediction models developed for predicting risk 
of development of COPD and studies updating 
and validating previous risk prediction models 

4. Target population Adults in the general population, adults with 
high risk of development of COPD (smokers, 
asthmatics)

5. Outcome to be 
predicted

COPD diagnosis using spirometry by Fev1/FvC 
,70% or by symptoms or by Fev1/FvC , LLN

6. Time span Predictors measured in adults and subsequent 
outcomes

7. Intended moment 
of using the model

Model to be used in early detection of COPD 
in general population or populations at risk. 
By primary care practitioners and respiratory 
physicians

Abbreviations: CHARMS, Checklist for Critical Appraisal and Data extraction for 
Systematic Reviews of Prediction Modelling Studies; Fev1, forced expiratory volume 
in one second; FvC, forced vital capacity; LLN, lower limit of normal. 
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Figure 1 PRISMA flow diagram.
Abbreviations: CRP, C-reactive protein; TNFα, tumor necrosis factor α; GOLD, Global Initiative for Chronic Obstructive Lung Disease.

α  

reported in the literature,17,20 and the remaining study used a 

Bayesian network approach to identify predictors.19

Predictors included in all models
All four studies included smoking as a predictor (Table 3).17–20 

The studies by Guo et al,17 Kotz et al,20 and Himes et al19 

all defined smoking as a binary variable; either ever or never 

smoker. Higgins et al18 reported smoking in three ways: 

1) any cigarette smoking (non-smoker, current smoker, 

ex-smoker), 2) cigarettes per day (categories of none; 1–19; 

20+), and 3) change in cigarette smoking between the base-

line and follow-up study.
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Predictors included in some models
One model included asthma as a predictor20 and one study 

developed its model using a group of asthma patients.19 

Three studies included age as a predictor.18–20 One used 

lung function (% predicted FEV
1
)18 and two studies used 

comorbidities (ie, “acute bronchitis and bronchiolitis”, 

“pneumonia, organism unspecified”, “shortness of 

breath”, “respiratory distress or insufficiency”, “diabetes 

mellitus”, “acute upper respiratory infection”, “viral and 

chlamydial infections”, and “heart failure”) or having 

respiratory infections as predictors (respiratory infec-

tions in childhood).17,19 Included in the final model of 

Guo et al17 were five single nucleotide polymorphisms 

(SNPs) (rs2070600, rs10947233, rs1800629, rs2241712, 

and rs1205) chosen out of a possible 76 identified in a 

preliminary genome wide association study (GWAS). 

Two studies developed models separately for men 

and women.18,20

Outcome definitions
The outcome definition of COPD varied between the dif-

ferent studies (Supplementary material). Two studies used 

spirometry to define COPD: one used the Global Initiative 

for Chronic Obstructive Lung Disease (GOLD) criterion of 

post-bronchodilator FEV
1
/FVC ratio ,0.70 as a cut-off17 

and one defined COPD as an FEV
1
 ,65% of the predicted 

value in combination with an FEV
1
/FVC ratio ,80%.18 Two 

studies used disease classifications given in the electronic 

database systems which were based on clinical diagnosis 

with no further details provided.19,20

Table 2 Study characteristics of the selected prediction models

Reference Guo et al, 201517 Kotz et al, 201420 Himes et al, 200919 Higgins et al, 198218 
Study location China UK USA USA
Predictive model 
derivation cohort

Source population Pulmonary medicine 
department of a hospital

General population Asthma patients from 
general population

General population

Study design Case–control study Primary care 
electronic database

electronic hospital medical 
records database

Longitudinal cohort study

Recruitment period January 2012–December 
2013

1998–2008 1988–1998 1962–1965
re-examined 1978–1979

Age at inclusion $40 years 35–74 $18 years 16–64 years

No participants in 
model development

682 (331 COPD cases 
and 351 controls)

480,903 N=9,349 patients 
(843 cases, 8,506 controls)

2,995

Methods to select 
predictors

Not specified Literature A Bayesian network Not specified 

Predictive model 
validation cohort

Type of validation Internal/external Internal Internal external validation

validation cohort N=30 COPD patients, 
n=20 healthy controls

247,755 N=992 patients (46 cases, 
946 controls)

N=20 patients with OAD, 
asthma, CB, or none

Abbreviations: OAD, obstructive airway disease; CB, chronic bronchitis.

Table 3 Potential risk factors for COPD considered for inclusion 
in the COPD risk prediction models

Reference Guo 
et al, 
201517 

Kotz 
et al, 
201420 

Himes 
et al, 
200919 

Higgins 
et al, 
198218 

Demographic and clinical characteristics
Age – 6  

Sex    

Race 1 –  –

SeS status – 7 – 

Height, weight, 
or BMI

 –  

Lung function  – – 10

Personal or FHx 
lung diseases

 8 9 11

Lifestyle factors

Smoking history    

Alcohol 

early life factors

History of RI in 
childhood

2

Low birth weight 3

Other

environmental 
pollution 

4

Biomarkers 5 12

Notes: 1: All Chinese; 2: history of respiratory infections in childhood (yes/no); 
3: low birth weight ,2,500 g; 4: their place of residence and work environment; 
5: SNPs genotyped rs2070600, rs10947233, rs1800629, rs2241712, rs1205; 6: age 
was categorized into 35–39, 40–44, 45–49, 50–54, 55–59, 60–64, and 65+ years; 
7: Carstairs Index of Deprivation (coded 1= least deprived to 5= most deprived); 
8: asthma; 9: all had a diagnosis of asthma; and 104 comorbidities were included 
in initial model development; 10: vmax50%, Fev1, Fev1/FvC%; 11: frequent colds, 
chronic bronchitis, wheeze × cough × asthma × familial chronic bronchitis; 12: ABO 
blood group, Kell blood group. 
Abbreviations: SeS, socio economic status; BMI, body mass index; FHx, family 
history; RI, respiratory infections; SNPs, single nucleotide polymorphisms.
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Critical appraisal
Risk of bias and applicability concerns in the selected 

studies were assessed using the CHARMS checklist 

(Table 4 and the details of CHARMS checklist [Supplementary 

material]).15

Of the four model development studies, three used long-

term follow-up or long-term data collected in electronic 

databases, while one used cross-sectionally collected data. 

Although this latter study rated good quality based on reporting 

model development and validation, it lacked the ability to 

predict the risk of COPD in a temporal fashion.17 Three of 

the four model development studies had a low risk of bias 

in the selection of participants and one had moderate risk 

of bias due to the use of a case–control study design, which 

generally leads to incorrect estimates of the model intercept 

or baseline hazard. For the selection of predictors, two studies 

had low risk and two had moderate risk of bias. One study 

rated moderate risk because 109 variables were considered 

leading to an event-per-variable ratio of ,10,19 potentially 

leading to model over-fitting. The other moderate risk study 

defined all variables as binary, potentially leading to the 

selection of spurious predictors and over-fitting. This study 

also did not provide detail on measurement and collection 

of predictor data.17

Outcome assessment in three of four studies had low risk 

of bias18–20 as the outcomes were measured after predictor 

measurement. One had moderate risk of bias due to the syn-

chronous measurement of outcome and predictors.17 Risk of 

attrition was high in three studies that used a cohort design or 

electronic databases.18–20 Two of the studies did not describe 

attrition and one study had more than 20% attrition. In the 

latter study, when baseline characteristics were compared 

between those followed-up and those who were not, lower 

smoking rates and better lung function were found in those 

followed-up.18 All the studies had moderate risk of bias in 

relation to the analysis. No study accounted for over-fitting 

(ie, data for the model is well described but not applicable 

for new individuals) and optimism (ie, caused by over-fitting 

and leading to an over-estimate of the model’s ability to 

predict the outcome in new individuals) by shrinkage or 

other methods; one study did not report on handling of 

missing data,18 and only one study assessed calibration and 

discrimination.20

Development and presentation of the 
prediction model
At the model development stage, two studies selected predic-

tors based on evidence from the literature and availability of 

predictors.17,20 Another study a priori selected anthropometric 

predictors and smoking, and included all predictors of comor-

bidities recorded by the electronic database.19 One study did 

not report on the criteria used to select predictors included 

in model development (Tables 3, 5, and Supplementary 

material).18 In model building, two studies used stepwise 

multiple regression models,17,18 one used Cox regression,20 

and another used Bayesian networks.19

Two of the studies that used electronic databases inter-

nally validated their models.19,20 The case–control study 

model was externally validated.17 The long-term cohort 

study validated the model using a small sample of hospital 

clinic patients (Table 3).18 Three studies used complete 

case analysis, whereas the handling of missing data was 

not reported by the fourth.17–20 To use COPD risk prediction 

tools in clinical practice, thresholds are needed to either rule 

Table 4 Assessment of the risk of bias and applicability concerns based on the CHARMS checklist for the selected COPD risk 
prediction model studies

Measure Reference Guo et al, 
201517 

Kotz et al, 
201420 

Himes et al, 
200919 

Higgins et al, 
198218 

Risk of bias Participant selection M L L L
Predictor assessment M L M L
Outcome assessment M L L L
Attrition N/A H H H
Analysis M M M M

Applicability concern Participant selection M L M M
Outcome L L L M
Predictors M L L L
Analysis H M H H
Results L L M L
Interpretation L L L L

Abbreviations: L, low risk of bias or applicability concern; M, moderate risk of bias or applicability concern; H, high risk of bias or applicability concern; CHARMS, Checklist 
for Critical Appraisal and Data extraction for Systematic Reviews of Prediction Modelling Studies; N/A, not available.
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Table 5 Risk factors included in the final COPD risk prediction 
models

Reference Guo 
et al, 
201517 

Kotz 
et al, 
201420 

Himes 
et al, 
200919 

Higgins 
et al, 
198218 

Demographic and clinical characteristics
Age 6  

Sex 1 *  10
Race  –

SeS status 7 – –

Height, weight 
or BMI

– –

Lung function – 

Personal or FHx 
lung diseases

8 9 –

Lifestyle factors
Smoking history    

early life factors
History of RI in 
childhood

2

Low birth weight 3
Other

environmental 
pollution 

4 –

Biomarkers 5

Notes: 1: All Chinese; 2: history of respiratory infections in childhood (yes/no); 
3: low birth weight ,2,500 g; 4: their place of residence and work environment; 
5: SNPs genotyped rs2070600, rs10947233, rs1800629, rs2241712, rs1205; 6: age 
was categorized into 35–39, 40–44, 45–49, 50–54, 55–59, 60–64, and 65+ years; 
7: Carstairs Index of Deprivation (coded 1= least deprived to 5= most deprived); 
8: asthma; 9: asthma not included as a predictor, derivation and validation cohorts 
include patients diagnosed with asthma, but included eight comorbidities (“acute 
bronchitis and bronchiolitis”, “pneumonia, organism unspecified”, “shortness of 
breath”, “respiratory distress or insufficiency”, “diabetes mellitus”, “acute upper 
respiratory infection”, “viral and chlamydial infections”, and “heart failure”); 10: 
males % vmax50 and females % Fev1. *Models derived for males and females 
separately.

in or rule out COPD. However, only one17 study reported 

clear cut-off points for determining COPD in their models 

(Supplementary material). One study provided a score chart 

with regression coefficients,20 and one reported a predic-

tive network based on Bayesian statistics (Supplementary 

material).19

Performance of the prediction model
The performance of the models was reported in several dif-

ferent ways including a narrative description,18 graphical 

depictions,19,20 and quantitative performance estimates.17,19,20 

Two studies reported calibration using the Hosmer–Lemeshow 

test; one did not report the p-value18 and the other reported 

p=0.86, that is, no significant deviation between the observed 

and predicted events of COPD.17 Two studies reported area 

under the receiver operating characteristic curve (ROC AUC); 

the discriminatory ability of the test to correctly classify those 

with and without COPD. One study reported an overall ROC 

AUC of 0.8319 and another study reported the ROC AUC for 

females as 0.85 and for males ROC AUC as 0.83.20

Of the four studies only one reported sensitivity, speci-

ficity, false positive, and false negative rates for a selected 

cut-off.17 This model reported good sensitivity (83%) and 

specificity (85%). For two studies, we were able to calculate 

the sensitivity and specificity.19 No study reported positive 

or negative predictive values. We calculated positive and 

negative likelihood ratios using the calculated or provided 

sensitivity and specificity for three studies.17,19,20 The posi-

tive likelihood ratio ranged from 1.85 to 5.53 and negative 

likelihood ratio ranged from 0.04 to 0.22 (Table 6 and 

Supplementary material).

Applicability
Three of the four studies had a moderate risk of applicability 

issues related to selection of participants.17–19 Two were in 

specific population groups which limited their models’ wider 

applicability; one in a Chinese population including SNPs 

which were likely to be specific for Asian populations17 

and, another in asthmatics.19 The third study was performed 

30 years ago and so has lower applicability to current COPD 

risk.18 One study had applicability issues related to selec-

tion of predictors. The classification of predictors as binary 

variables can lead to the selection of spurious predictors in 

the model and reduce applicability to new patients.17

All the studies had high or moderate applicability concerns 

in relation to the analysis. No study used methods to address 

the possibility of model overfitting. This may limit their appli-

cability to be used in new patients.17–20 Only one study assessed 

both calibration and discrimination.20 Two studies reported 

calibration via a Hosmer–Lemeshow test17,18 but neither of 

these studies reported any assessment of discrimination.

Discussion
From a systematic search of the existing literature, we identified 

only four models that aimed to predict an individual’s future risk 

of COPD. The models differed significantly in predictors used, 

outcome definitions, and populations from which they were 

developed. Overall the models performed well using a limited 

number of predictors; age, sex, smoking, and lung function. 

However, few were validated in external populations and only 

one included novel risk factors such as genetic markers.

Three models were developed in Western countries and 

the fourth in China. China now consumes over a third of the 

world’s tobacco21 and Chinese men have a rapidly increasing 

death rate from tobacco-related causes.22 This huge burden 
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Table 6 Performance of the COPD risk prediction tools based on derivation cohort

Reference Guo et al, 
201517 

Kotz et al, 201420^ Himes et al, 
200919,^^

Higgins et al, 
198218 Females Males

Calibration (p-value) 0.86 – – **
Discrimination
(ROC AUC and 95% CI)

– 0.845 (0.840–0.850) 0.832 (0.827–0.837) 0.83 –

Sensitivity (%) 0.83 0.85 0.85 0.98 –
Specificity (%) 0.85 0.71 0.68 0.47 –
False positive (%) 0.15 – – – –
False negative (%) 0.16 – – – –
Positive likelihood ratio 5.53 2.93 2.66 1.85 –
Negative likelihood ratio 0.2 0.21 0.22 0.04 –

Notes: ^Calculated using Youden index (= Sensitivity + Specificity - 1) for the best cut-off. ^^Measures of model performance calculated from ROC curve. **p-value for 
measure of calibration not reported. 

of smoking-related disease is likely to also impact COPD 

prevalence in China and with similar smoking trends in 

other Asian countries is a burgeoning epidemic. Regional 

variance in smoking legislation between Asian and Western 

countries will also affect generalizability of COPD risk 

prediction models.

All studies included sex in their final models and two studies 

derived separate models for females and males.18,20 One model 

identified that smoking in women led to a greater increase in risk 

of COPD than it did for men.20 Evidence suggests that women 

are more susceptible to the risks of smoking and occupational 

exposures.23,24 They receive a greater dose of toxin for the same 

amount of inhaled smoke because of their smaller airway size.25 

Another possible explanation is the role of hormonal factors 

during the transitional and postmenopausal periods which are 

associated with a more rapid decline in lung function and may 

increase the risk of COPD in older women.

Surprisingly only one model included lung function 

parameters. There is mounting evidence that low lung func-

tion predicts subsequent risk of COPD. We have shown that 

childhood lung function predicts COPD by middle age.26 

A study of three longitudinal cohorts found that, of those 

with COPD at the end of the follow-up period, 50% already 

had a low FEV
1
 at the age of 40 years.27 A study of lung 

function trajectories from the Tuscon cohort28 found that 

those with the persistently low trajectory reached a maximal 

level of lung function that was 10% lower than those in the 

normal trajectory.28 These data provide strong support for the 

use of lung function measures in prediction of subsequent 

COPD risk and also provide support for the examination of 

other early life factors as important potentially modifiable 

determinants of COPD risk.29,30

Smoking is an important risk factor for COPD and was 

included in all models. Smoking is known to increase the 

risk of COPD and in clinical guidelines is a defining criterion 

for the diagnosis of COPD.31 However, up to 45% of people 

with COPD are non-smokers and only 30% of smokers will 

develop the disease.10 Most studies included smoking as a 

binary measure of ever or never smoking. However, Higgins 

et al18 included a measure of change in smoking status, a 

useful predictor for clinical practice as it gives clinicians 

estimates based on the patient’s current smoking status but 

also an estimate of risk associated with making changes to 

those characteristics. Apart from the likely increased precision 

of a model nuanced for smoking amount and duration, the 

inclusion of such predictors can enable clinicians to more real-

istically tailor risk management advice to the individual.

The inclusion of a measure of socioeconomic status that 

is transferable between different populations is difficult. 

Measures of socioeconomic status reflect a combination 

of factors including lifestyle, occupational, environmental, 

and demographic characteristics. Only one model included 

a measure of socioeconomic status, defined by a regional 

specific measure of deprivation. Alternative options include 

measures of educational level, income level, or number of 

people living in the home.

The model from the Chinese population considered air 

pollution exposure as a potential predictor, although this was 

not included in the final model. There is strong evidence that 

air pollution is associated with increased risk of COPD.32,33 

Other environmental factors such as occupational exposure,32 

were not considered by any study. Given the strong evidence 

supporting the role of exposure to dusts, gases, and fumes 

in the risk of COPD,8 this is a risk factor that should be 

considered.

Beyond smoking, few models considered other lifestyle 

factors. One considered alcohol consumption, but it was 

not included in the final model. Only one model considered 
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childhood factors including childhood respiratory infections 

and low birth weight. Early life factors have important poten-

tial as future risk predictors. There is increasing evidence that 

low birth weight has an impact on asthma risk in middle life34 

and other early life factors and derived indices30 have been 

shown to impact on risk of COPD into adulthood.

Basic models, including only a few selected predictors, 

may be easier to introduce into clinical practice, but they 

do not make the best use of all relevant clinical knowledge 

to predict COPD. However, the use of an extended model 

with a large number of clinical tests may be burdensome 

for patients, clinicians, and health resources, so a balance 

between the two is needed.

The main sources of bias related to the statistical analyses 

performed and how they were presented in the manuscripts. 

There was often insufficient information to fully assess 

the development and validation of the models. Objective 

measures of bias and performance did not rate well in any 

of the studies. We could not assess the performance of the 

prediction models quantitatively, because the characteristics 

of the derivation cohorts, the prediction models themselves, 

and reporting of model performance varied widely between 

the studies. Two models had good ability to discriminate 

between people who were correctly or incorrectly classified 

as having COPD (concordance statistic 0.830–0.845).19,20

The clinical usefulness of a model requires the determi-

nation of positive and negative likelihood ratios in order to 

determine the ability to rule in COPD versus ruling it out. The 

positive and negative likelihood ratios were presented in one 

study and calculable in two. The models had a small to mod-

erately increased ability to detect future COPD risk (positive 

likelihood ratios ranged between 1.85 and 5.53), and a small to 

moderate chance of failing to identify someone at risk of future 

COPD (negative likelihood ratios ranged from 0.04 to 0.22). 

Overall these results suggest the models developed to date have 

poor discriminatory ability to predict future COPD risk.

The weak predictive ability of the models in this study 

highlights the need for future research and the development of 

more comprehensive models. The inclusion of early life and 

childhood factors could improve the discriminatory ability 

of the models. Model development strategies, including the 

comprehensive validation of all existing models and any 

newly developed models in a single external study popula-

tion, are needed. This would allow for direct model com-

parison of predictors across all cohorts. Future COPD risk 

prediction models could incorporate new and better predic-

tors including genetic risk prediction scores. Risk prediction 

model studies in cancer have shown that the addition of 

susceptibility SNPs can improve the discriminatory power 

of established risk prediction models by more than 20%.33 

One study in this review used selected SNPs identified from a 

GWAS study of COPD, however the authors did not compare 

the discriminatory ability of the model with and without the 

inclusion of the SNPs and so it was not possible to determine 

how they improved its overall performamce.

In conclusion, our review identified only four models for 

the prediction of future COPD risk. The models included 

the most important known predictors of smoking, sex, and 

age, but pre-existing lung function measurements and other 

important predictors were not routinely included. Overall 

none of the models were particularly accurate at predicting 

future risk of COPD, nor were they good at ruling out future 

COPD risk. With the emergence of new evidence that low 

lung function can start in early life and that early life asthma 

can predict not only low lung function levels into adulthood, 

but also an increased risk of COPD, future COPD risk predic-

tion models will need to incorporate some of these important 

early life risk factors.
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