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Abstract: Pannexins belong to a family of ATP-release channels expressed in almost all cell 

types. An increasing body of literature on pannexins suggests that these channels play dual and 

sometimes contradictory roles, contributing to normal cell function, as well as to the pathological 

progression of disease. In this review, we summarize our understanding of pannexin “protec-

tive” and “harmful” functions in inflammation, regeneration and mechanical signaling. We also 

suggest a possible basis for pannexin’s dual roles, related to extracellular ATP and K+ levels 

and the activation of various types of P2 receptors that are associated with pannexin. Finally, 

we speculate upon therapeutic strategies related to pannexin using eyes, lacrimal glands, and 

peripheral nerves as examples of interesting therapeutic targets.
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Introduction
Cell–cell and cell–matrix interactions are fundamental properties of multicellular organ-

isms. Gap junctions, formed by connexins and innexins in vertebrate and invertebrate 

animals, respectively, allow direct passage of ions and small molecules (<2,000 Da) 

from cell to cell (Figure 1A).1–3 In addition to gap-junction channels, connexins may 

form hemichannels (HCs), termed “connexons” (Figure 1B),4,5 which are hexamers 

of connexin monomers (Figure 1A), each containing four transmembrane domains, 

two extracellular loops, and cytoplasmic N and C termini (Figure 1C).6 The vertebrate 

homologues of innexins, called “pannexins”, form mostly HCs, or pannexons (Figure 

1B), due to the high level of glycosylation in their extracellular domains (Figure 1D).7–12 

Similar to connexins (Figure 1C), pannexins have a cytosolic N-terminal domain, 

four transmembrane domains with two extracellular loops, and a cytosolic C-terminal 

domain (Figure 1D).13 However, pannexins have no homology to the vertebrate con-

nexin gap-junction protein,8 and unlike connexins, which have multiple cysteine 

residues in both extracellular loops, pannexins have only two cysteine residues per 

loop (Figure 1C and D, black ovals).13

The pannexin family consists of three proteins, Panx1, Panx2, and Panx3, all of 

which have been shown to form a single-membrane channel.14,15 Panx1 is ubiquitously 

expressed in almost all cell types, including those in the nervous and immune systems, 

eye, muscle, olfactory epithelium, blood vessels, exocrine glands (eg, lacrimal and 

salivary glands), thyroid, prostate, kidney, and liver (Table 1).16–20 Panx2 transcripts are 

highly expressed in the central nervous system (CNS).21 Lower levels of Panx2 tran-

scripts have been detected in nonneural tissues, including the testis, kidney, retina, and 
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gastrointestinal tract, while Panx3 mainly localizes in the skin, 

osteoblasts, and chondrocytes (Table 1).15,20–24 Panx3 has also 

been found in skeletal muscle,25 lactating mammary glands, 

sebaceous glands, and the small intestine.15 Interestingly, 

Panx2 protein appears to be more ubiquitously expressed than 

initially predicted by mRNA expression21 (Table 1).

Endogenous Panx1 and Panx3 proteins are localized 

primarily at the plasma membrane,13,26 while Panx2 is highly 

Table 1 Expression and localization of pannexin mRNA and protein

Panx1 Panx2 Panx3

mRNA-expression pattern 
and levels of expression

Ubiquitously expressed in 
mammalian211 and chicken tissues212

Cerebral cortex, cerebellum: 
neurons and immature astrocytes,21 
hippocampus (high);22 kidney tubular 
cells (low), seminiferous duct cells 
in the testis (moderate), salivary 
glands (excretory), and striated ducts 
(weak)21

In humans, Panx3 mRNA found in the 
testis, stomach, spleen, salivary gland, 
lung, heart, duodenum, and adrenal 
tissue;213 in mice, Panx3 mRNA found in 
developing skeletal structures214

Protein expression Ubiquitously expressed in many 
mammalian tissues,211,215 with lower 
levels in the lung, kidney, and heart 
ventricles13

Protein is expressed in many tissue 
types, including gastrointestinal tract 
glandular and epithelial cells, parietal 
cells, columnar epithelial cells of the 
human colon216 (strong), and mouse 
retina, lung, and skin

Extensive expression throughout the 
developing skeleton during chondrocyte 
and osteoblast differentiation,214 
skeletal muscle,25 lactating mammary 
tissue, sebaceous glands, and the small 
intestine15

Localization within the cell Mostly membrane,13,26,217 but may 
form permeable channels in the 
endoplasmic reticulum27

Membrane,24,26 predominantly 
cytoplasmic21

Membrane, may form channels in the 
endoplasmic reticulum and gap junctions 
after overexpression,218,219 diffuse 
cytoplasmic in the epidermis220

Subunits 6 6–8221 6
Key domains (conserved 
in all isoforms)

Transmembrane domains (×4), extracellular loops (×2), intracellular N-terminus, C-terminus, and intracellular loop

Glycosylation site Second extracellular loop First extracellular loop First extracellular loop

Figure 1 Connexins and pannexins.
Notes: (A, B) Connexin and pannexin share a similar structure, despite the absence of sequence homology. Connexin and pannexin form functional connexon and pannexon 
hemichannels, respectively. (C, D) Connexins and pannexins are transmembrane proteins with four transmembrane domains, two extracellular loops, one cytoplasmic 
loop, and cytoplasmic N- and C-terminal domains. Connexin channels can assemble into a gap junction (A) that mediates intercellular communication, while pannexin’s 
extracellular loop has a high level of glycosylation in mammalian cells (D), which prevent the formation of gap junctions.
Abbreviation: Glyc, glycosylation.
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expressed in the cytoplasmic compartment,21 suggesting a 

unique intracellular function for Panx2. However, several 

studies have reported the cytoplasmic localization of Panx1 

and Panx3 proteins when these proteins were overexpressed 

in cells.21,27 For example, Abeele et al27 demonstrated 

cytoplasmic localization of Panx1 transiently expressed in 

LNCaP cells, where it formed Ca2+-permeable channels in 

the endoplasmic reticulum (Table 1). It is quite possible that 

high levels of pannexin protein expression could lead to both 

membrane and endoplasmic reticulum-channel formation, 

thus contributing to sustained increases in intracellular Ca2+.

Pannexins are ATP-release channels that can be activated 

by caspase cleavage of their pore-associated C-terminal tail, 

the autoregulatory region controlling channel permeability. 

The regulated ATP (nucleotide) release through pannexin 

HCs is implicated in a number of normal physiological func-

tions and in response to stressors or pathological states in cells 

and tissue.25,28,29 Well-characterized functions of pannexins 

include regulation of cell differentiation and migration, tis-

sue development and regeneration, inflammation, wound 

 healing and cell death.28 However, mechanistic explanations 

of how these proteins perform sometimes contradictory roles 

remain unclear.

In this review, we attempt to clarify existing controversies 

in the literature on the “protective” and “harmful” roles of pan-

nexin HCs by addressing a question: How do pannexins acquire 

these different and often opposing roles? We seek to obtain 

deeper understanding of pannexin signaling, participants in 

which represent a potential source of novel and promising 

therapeutic targets in a variety of pathologies. Our focus is 

entirely on pannexins, with a full understanding that pannexin 

and connexin HCs have both distinct and complementary but 

often overlapping functions, particularly in ATP release and 

inflammation; therefore, we refer the reader to several excellent 

reviews comparing the roles of these channels.30–33

Pannexins, inflammation, and 
inflammasome activation
The involvement of pannexins in the induction of inflammation 

has been reported in multiple publications.28,34–36 Inflammation 

is the major protective function maintained by the evolution-

arily conserved innate immune system in response to harmful 

stimuli, such as pathogens, stress, injury, or cell death. Acute 

(short-term) inflammation stimulates a regenerative response, 

while persistent (chronic) inflammation can cause systemic 

inflammatory diseases.37 Activation of inflammasomes, facili-

tating the release of interleukin-1β (IL1β) and IL18 in response 

to pathogens and tissue injury, is a key function of the innate 

immune system. The inflammasomes, first characterized in 

monocytes in 200238 and in neural cells in 2008,39 are multi-

protein complexes mediating proteolytic maturation of Casp1, 

Casp11, IL1β, and IL18. Proteolytic cleavage of IL1β and IL18 

precursors is executed by active Casp1 (Figure 2);40,41 and the 

release of the mature cytokines occurs via megapores, formed 

by N-terminal domains of the Casp1/11-processed recently 

identified pore forming protein gasdermin D.42–46 A large body 

of experimental evidence identifies Panx1 and its associated 

P2X receptors as essential upstream regulators of inflamma-

somes and proteolytic activation of Casp1 and Casp11.47–51 

Panx1 has been reported to activate inflammasomes in many 

cell types, including macrophages,52,53 microglia,54 neurons, 

and astrocytes;49 however, the data on particular cell and 

inflammasome types remain controversial.55,56 Currently, the 

bulk of published data support a pivotal role for Panx1 in CNS/

retinal inflammasome regulation.55–58 As such, strong suppres-

sion of its major components, including Casp1, Casp11, IL1β, 

and apoptosis-associate speck-like protein containing a caspase 

recruitment domain (ASC), is observed in both Panx1–/– mice 

and wild-type retinas after Panx1 blockade by probenecid.16,54,59

There are two major regulatory arms for inflammasome 

activation (Figure 2): signal 1 pathways sense environmental 

signals via surface TNF, Toll-like, and IL1 receptors and 

facilitate inflammasome “priming”, ie, transcriptional activa-

tion via MyD88–NFκB-mediated pathways;60,61 and signal 2 

pathways regulate inflammasome assembly and processing of 

Casp1/11, IL1β, and IL18 precursors. This arm is regulated 

via the Panx1–P2X signalosome to facilitate ATP and K+ 

release, as well as uptake of extracellular Ca2+ and danger/

pathogen-signaling patterns.62,63

Though a role for Panx1 in the inflammasome regulatory 

cascade appears to be generally conserved across cell types, 

Qu et al55 suggested that pannexin is “dispensable” for inflam-

masome formation. In particular, LPS-primed bone marrow-

derived macrophages were successfully able to activate Casp1 

and secrete its associated inflammatory cytokines (IL1β and 

IL18) in response to a number of stimuli in the absence of Panx1. 

Moreover, the authors also concluded that P2X
7
 and Panx1 can 

function independently and may be involved in distinct signaling 

pathways.55 These controversial views on Panx1 function could 

be explained by cell-type-specific differences and potential 

variation in culture conditions, and need to be resolved.

Mechanisms of pannexin-channel 
activation
Several diverse mechanisms regulating pannexin-channel 

function have been proposed to date. Pannexin channels 
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have been posited to be activated by caspase-mediated chan-

nel cleavage in apoptotic immune cells, G-protein-coupled 

receptors in vascular smooth muscle,64,65 low oxygen tension 

in erythrocytes and neurons,66 high extracellular K+ in various 

cell types,49,67 and mechanical stretch.68,69 Progressive Panx1-

channel opening is directly linked to ion- and large-molecule 

transport, and occurs during both irreversible (caspase-

mediated cleavage)70 and reversible G-protein-coupled recep-

tor (including α
1
-adrenoceptor-mediated) forms of channel 

activation.71 Panx1 activation by caspase-mediated cleavage 

enables the release of ATP as a “find me” signal that recruits 

phagocytizing macrophages to apoptotic T lymphocytes.65,70 

This mechanism is critical for the fast clearance of apoptotic 

and dead cells during acute inflammation.28,55,65,72 Cleavage 

activation of Panx1 is also involved in pyroptotic cell death 

(Figure 2).73 A recent study employing electron microscopy 

and single-channel recordings of full-length and caspase-

cleaved pannexin concatemers with defined numbers (0–6) of 

intact and truncated C termini revealed that Panx1 activation 

was increased in a sequential manner by stepwise removal of 

the autoinhibitory C termini. This also resulted in a graded 

increase in current and ATP/dye permeation.71 On the other 

hand, the reversible G-protein-coupled receptor-mediated 

mechanism is independent of caspase-mediated pannexin 

cleavage.74 Comparison of α
1
-adrenoceptor-activated 

with cleavage-activated Panx1 channels indicated that 

α
1
-adrenoceptor-activated Panx1 channels had a shorter mean 

open time, but progressively increasing conductance, sug-

gesting that despite differences in gating kinetics, activation 

of Panx1 channels by both signaling mechanisms involves 

cumulative changes in open-channel properties.71

Pannexin signaling via ATP release
Panx1 channels can release ATP under physiological condi-

tions and play critical roles in many pathological processes. 

ATP is a prominent extracellular signaling molecule in both 

physiological and pathological conditions. For example, 

ATP release is important for muscle differentiation and 

 function,75–78 and ATP-receptor activation plays a role in 

regulation of cell proliferation, DNA synthesis, cell dif-

ferentiation, and cell survival during the course of CNS 

development.79,80 At the same time, ATP may also serve as a 

major danger signal for cells,50 despite it having a very short 

half-life due to rapid degradation by surface ecto-ATPases.81 

Figure 2 The two signaling arms of the inflammasome-activation cascade.
Notes: Signal 1 pathways sense environmental signals via surface Tumor necrosis factor (TNF), Toll-like (TLR) and IL-1 receptors and facilitates transcriptional priming of 
inflammasome components via the NFκB pathway and upregulates the expression of precursor proteins of IL1β, caspases 1/11(also known as caspase 4), and pro-Nod-like 
receptors (NLR). Signal 2 facilitates activation of the complex via proteolytic processing and assembly. This arm responds to mechanical stress, activation of a ligand-sensing 
system within the cytosol or extracellular ATP sensing via Panx1–P2X receptor signalosomes. Upon activation, protease activity of caspases regulates the maturation and release 
of IL1β and IL18. Recent studies showed that Gasdermin D (GSDMD) is a novel membrane pore-forming protein. Cleaved by inflammatory caspases Casp1 or Casp11(4), 
GSDMD binds to phosphoinositides in the plasma membrane and oligomerizes to generate membrane pores of ~10–14 nm in diameter.222 This pore size can allow the passage 
of mature IL1β, IL18, and caspase 1. The formation of the GSDMD pores also disrupts osmotic potential, resulting in an inflammatory form of cell death known as pyroptosis.
Abbreviation: ASC, apoptosis-associate speck-like protein containing a caspase recruitment domain.
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ATP is released from apoptotic, injured, and viable cells that 

are challenged by assorted cytokines, as well as mechanical 

or ischemic stress in the presence of elevated K+.82

ATP-mediated activation of Panx1, the ATP-release chan-

nel, typically ramps up in a vicious cycle only to a certain 

level, due to a retrograde feedback mechanism regulating 

activity of Panx1 HCs via a low-affinity ATP binding site.83 

Therefore, the permeant (ATP) can inhibit the permeat-

ing channel when high extracellular ATP concentration is 

reached. Importantly, however, this inhibition is abrogated 

by an increased extracellular concentration of potassium 

ions (K+),82 suggesting a mechanism of toxicity of extra-

cellular ATP in Panx1-expressing cells. In agreement with 

this mechanism are the findings that massive activation by 

Casp3/7 cleavage or expression of constitutively active Panx1 

HCs results in cell death.65,84 Therefore, the balance between 

physiological and pathological activities of Panx1 depends 

on the open-state probability of the channel, which in turn 

is influenced by the increase in intracellular Ca2+ and extra-

cellular ATP and K+. An additional level of Panx1-channel  

regulation is achieved via interactions with purinergic P2 

(eg, P2X and P2Y) receptors, which are activated by binding 

extracellular ATP at the plasma membrane.85 Several salient 

aspects of Panx–P2 interactions, including the mechanisms 

and significance of such interactions, as well as their sensi-

tivity and specificity, are detailed in the following sections.

Functional interactions of Panx 
HCs with purinergic P2X and P2Y 
receptors
There are two major families of purinergic P2 receptors: 

ionotropic P2X and metabotropic P2Y receptors. Reciprocal 

interactions, whereby P2 receptors directly activate Panx1 

channels,86,87 suggest that these proteins can form a signaling 

complex at the cell surface34,88 that mediates both paracrine 

and autocrine purinergic communication.

The P2X-receptor family contains 7 isoforms (P2X
1–7

), 

and P2X receptors are classified as ligand-gated channels 

whose activation regulates cellular membrane potential and 

intracellular Ca2+ levels.89,90 More precisely, though, P2X 

family members are ATP-gated cation channels, selective for 

Na+, K+, and Ca2+ ions.91 In the nervous system, P2X receptors 

are pivotal transducers of ATP-mediated paracrine signals 

and have been implicated in physiological functions, such 

as chemotactic cell migration, intercellular calcium-wave 

propagation, as well as in nervous system dysfunction, lead-

ing to neuropathic pain or cell death.92 Five isoforms – P2X
1
, 

P2X
2
, P2X

3
, P2X

4
, and P2X

7
 – have been shown to interact 

with Panx1,93,94 among which P2X
4
 and P2X

7
 are the most 

common interaction partners in different cell types.51,95,96 Both 

P2X
4
 and P2X

7
 isoforms are calcium channels known to dilate 

into larger pores upon activation.97,98 P2X
7
-receptor activation 

results in the appearance of HC-like currents, reflecting the 

channel permeability for molecules up to 1 kDa and identified 

as Panx1 HC.52 Under pathological conditions, overactivation 

of the Panx1–P2X
7
 signalosome complex has been implicated 

in inflammation, cell death, and neuropathic pain.34,96,99,100

The P2Y-receptor family contains eight isoforms 

(P2Y
1,2,4,6,11–14

). P2Y receptors are metabotropic G-protein-

coupled receptors that couple to G
q
, G

s
, or G

i
 in an isoform-

specific manner, and their activation modulates intracellular 

inositol triphosphate, Ca2+, and cAMP levels.101,102 Different 

isoforms of purinergic P2Y receptors are activated by ATP 

and its degradation products ADP and UTP, and couple to 

distinct G proteins to induce cAMP production, activation 

of phospholipase C, or intracellular Ca2+ via inositol triphos-

phate second-messenger systems.103,104 Recent publications 

have implicated P2Y receptors and Panx1 signaling in the 

regulation of endothelial cell activation in vascular inflamma-

tion105 and cell-volume regulation.106 ATP release via Panx1 

channels activates P2Y
2
 receptors to amplify signaling in 

sensing chemotactic gradients in neutrophils.107,108 Polariza-

tion of surface expression by translocation of Panx1, P2Y
2
, 

adenosine A
3
 receptors, and ENTPD1 ectonucleotidase to 

the leading cell edge allows neutrophils to polarize within 

the gradients.

Sensitivity and specificity of Panx1–
P2X signaling during normal tissue 
function and chronic inflammation
The activity and downstream consequences of several P2X- 

and P2Y-receptor isoforms are dependent on ATP binding, 

with varying sensitivity. P2X
7
, expressed by microglia, 

astrocytes, and neurons, is the most studied isoform, and is 

implicated in cyto- and neurotoxicity via direct interaction 

with Panx1 channels.34,87,88 Due to its relatively low affinity 

to ATP (EC
50

 936 µM), it can only be activated by nonphysi-

ological (≥1 mM) increases in extracellular ATP, which is 

locally achievable only at sites of injury or proximal to acti-

vated Panx1/Cx43 HCs. Conversely, the activation at low to 

medium (<900 µM) extracellular ATP levels can be mediated 

via an interaction between the high-affinity P2X
4
 receptor 

(P2X
4
; EC

50
 2.3 µM)109 and Panx149,110 (Figure 3A and B). This 

synergistic interaction was shown to coactivate P2X
7
, result-

ing in massive local efflux of ATP via the Panx1 channel, a 

 forward-feeding autocrine amplification loop (Figure 3C).111,112 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Inflammation Research 2018:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

278

Makarenkova et al

Functional synergy between P2X
4
 and cytotoxic P2X

7
110,113–115 

is known to be pivotal for Panx1-dependent extracellular 

ATP-induced cell death,116 which can be suppressed by a 

blockade of either component in the Panx1–P2X
4/7

 complex 

or by extracellular ATP removal with apyrase.51,96 Similarly, in 

the retina, genetic ablation or pharmacological inhibition of 

Panx1,117 P2X
7
, or P2X

4
118–120 has protected retinal ganglion 

cells (RGCs) in both acute and chronic ocular hypertension 

(OHT)-injury models. In other studies, a similar blockade was 

shown to protect neurons and other cell types from death via 

a rise in ionized Ca2+ and the induction of the inflammasome 

in various injury paradigms.34,121,122

In contrast to P2X
7
, interactions between P2X

4
 receptor 

and Panx1 and their link to RGC loss and inflammasome in 

the retina still require exploration. However, strong evidence 

of a key cellular role of P2X
4
 in response to sublethal levels of 

ATP has been suggested in experiments on channel blockade 

with the 5-BDBD antagonist in macrophages,116 as well as 

on inflammasome activation in various tissue types.51,123 In 

contrast to P2X
7
, P2X

4
 blockade has been shown selectively 

to suppress IL1β but not IL18 cytokine levels,110 which was 

reported as potentially neuroprotective.124–126

More recently, an interesting phenomenon in acute-

wound healing following the use of intracellular ATP 

delivery was described. In this study, ATP application was 

accompanied by a massive increase in macrophage traf-

ficking, in situ proliferation, and direct collagen production 

within the wound.127 Although the signaling mechanism of 

this phenomenon has not been determined, other research128 

has demonstrated that the recognition and clearance of 

dying cells and debris from focal points of inflammation 

is critical in both the induction and resolution of inflam-

mation.28 Moreover, Panx1-mediated vesicular nucleotide 

transporters (responsible for ATP accumulation in secretory 

vesicles)-mediated ATP release have been shown to recruit 

neutrophils/macrophages to injury sites.129–131 It is quite 

possible that in some types of acute injury, an increase in or 

acceleration of postinjury inflammation may lead to more 

rapid resolution of inflammation through ADP or other 

signaling mechanisms.

Figure 3 Differential ATP and ion movement depending on Panx1, P2X4, and P2X7 activity.
Notes: (A) Basal levels of EC ATP and normal concentration gradients of ATP and ions. (B) Panx1 opening with low levels of EC ATP results in P2X4 activation, but no 
P2X7 activity. (C) Higher levels of EC ATP, such as those resulting from bacterial lysis or chronic inflammation, result in opening of P2X4 and P2X7 channels and substantial 
movement of ATP and ions along their concentration gradients.
Abbreviations: EC, extracellular; IC, intracellular.
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Other mediators of Panx signaling 
and inflammation
In addition to Panx HCs, significant amounts of ATP can 

be released by bacteria, which trigger Panx1/P2X activity 

(Figure 3C).132 Bacterial ATP may affect different types of 

cells and lead to the production of proinflammatory cytokines 

and growth factors. A recent study showed that commensal 

bacteria-derived ATP activates CD70highCD11clow cells in the 

intestinal lamina propria, induce IL6 and IL23 production, as 

well as TGF-β pathway activation. This then led to local dif-

ferentiation of IL17-producing CD4+ T lymphocytes (T-helper 

T
H
-17, cells involved in host defense and several immune 

disorders).133 Moreover, systemic or rectal administration of 

ATP into germ-free mice resulted in a marked increase in the 

number of lamina propria T
H
17 cells. The specific effect of 

ATP on T
H
17 differentiation was mediated by P2X and P2Y 

receptors, and ATP-induced T
H
17 differentiation was inhib-

ited by P2X- and P2Y-receptor blockade. Interestingly, this 

mechanism commonly operates during the differentiation of 

both “naturally occurring” and “pathogenic” T
H
17 cells.127,133

Although ATP-gated unselective cation P2X channels are 

induced mainly by ATP, some studies report that they also 

may be activated by other molecules.134 β-Toxin produced by 

Clostridium perfringens is a key virulence factor in fatal hem-

orrhagic enterocolitis and enterotoxemia. This toxin belongs 

to a family of β-pore-forming toxins. The results of a recent 

study suggested that Panx1 opening is achieved through the 

interaction of β-toxin with the P2X
7
 receptor. Then, ATP 

released by Panx1-channel opening promotes oligomer for-

mation of the toxin, leading to cell death.134 These studies 

suggest that Panx1 HC is an important contributor to P2X
7
-

receptor signaling and provides a mechanistic link among 

bacterial stimuli, P2X
7
–Panx1 signaling, and inflammation.

Pannexins, mechanical signaling, and 
the cytoskeleton
A mechanosensitive role for connexin HCs in the propaga-

tion of intracellular calcium, initiated by the extracellular 

binding of ATP, was first noted in 1990.135 Numerous reports 

since then have demonstrated the sensitivity of connexin HCs 

to extracellular Ca2+, which are believed to keep connexin 

HCs in a closed state at physiological Ca2+ levels.136–138 In 

contrast, Panx HCs are not gated by external Ca2+,139 and 

the mechanical sensitivity of pannexin HCs was not noted 

until 2004, when single-channel currents were elicited by 

changes in pressure imposed pneumatically upon membrane 

patches of Xenopus oocytes expressing Panx1.140 Since then, 

mechanosensitive purinergic signaling pathways, including 

pannexin-mediated ATP release, have been demonstrated 

in many cell types in response to mechanical stimuli. For 

example, inhibition of pannexin function suppressed hyper-

tonic stress-induced ATP release and reduced downstream 

transcriptional activation induced by hypertonicity,95,141 

and inhibition of Panx1 and several P2X receptors reduced 

downstream transcriptional activation induced by hyperto-

nicity. Similarly, pannexin- and/or P2-receptor-dependent 

ATP release has been observed in RGCs,69 lens epithelial 

cells,142 fibrosarcoma cells,143 urothelial cells,144 and astro-

cytes130 that were subjected to hypoosmotic conditions. In 

addition to altered tonicity, shear stress has been shown to 

activate mechanosensitive pannexin channels. Indeed, bone 

cells and red blood cells have demonstrated robust pannexin-

mediated ATP release in response to oscillatory fluid shear 

stress.145,146 Consistent with this function, it was recently sug-

gested that pannexin activity induced by transient fluid shear 

during media changes and manipulation of tissue-culture 

containers could confound the interpretation of cell-culture 

experiments.147

In contrast to the bulk of the literature, only one study in 

HEK293 cells subjected to hypotonic media has suggested 

that pannexin HCs are not directly mechanosensitive.148 It is 

likely that this controversial observation may have reflected a 

unique feature of the examined cell type and/or methodologi-

cal differences. The authors’ choice to use ethidium bromide 

internalization as an indicator of pannexin HC activity may 

have led to different outcomes compared with more conven-

tional and commonly used indicators of pannexin activity, 

such as dye uptake or ATP release.

While mechanical activation of pannexin HCs has been 

studied primarily in a general context, there is increasing 

evidence that mechanical signaling can facilitate pathological 

states, such as edema that stretches the plasma membrane. 

Mechanical strain was recently reported to trigger a robust 

inflammatory response, transcriptional priming of NLRP3 

inflammasome formation, and IL1β production via activation 

of Panx1–P2X
7
 signaling.54 

The eye has emerged as an important model in under-

standing pathological mechanotransductive roles for Panx1. 

When the retina is exposed to mechanical stress, ATP is 

released physiologically by glia and neurons via Panx1 

 channels.29,69,130 In OHT-injured retina, synergistic effects of 

mechanical stress induced by elevated pressure and massive 

ATP release facilitate sustained extracellular ATP eleva-

tion and prolonged activation of the Panx1–P2X pathway, 

a combination that is particularly toxic to RGCs, which are 
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highly enriched in Panx1.119,130,149 Experimental data gener-

ated in the murine eye indicate that RGC loss and axonal 

damage strongly correlate with mechanical deformation150 

and repetitive intraocular pressure spikes.29,130,151 An increase 

in extracellular ATP has been reported in eyes exposed to 

acute or chronic OHT in animal models, as well as in human 

primary open-angle glaucoma.69,111,149,151,152 Conversely, strain-

activated, pannexin-regulated release of cytokines may also 

serve a protective role, as demonstrated by increased IL3 and 

IL6 expression in RGCs subjected to a 4% chronic strain in 

vitro or increased intraocular pressure in vivo.153 Further-

more, the release of IL18 via inflammasome activation has 

also been reported to be neuroprotective.125,154 

Concurrent with Panx1-mediated ATP release, Cx43 

HCs have been demonstrated as another key pathway of ATP 

release. Although the contribution of Cx43 vs Panx1 to ATP 

release has been heavily debated recently,155–157 the current 

consensus indicates that Panx1 channels initiate and Cx43 

HCs facilitate the bulk of ATP release from macroglia, espe-

cially in the presence of TNFα and IL1β.158–160 Consistent with 

this view, upon their exposure to TNFα and IL1β cytokines, 

glial cells become activated and release ATP via Cx43 HCs.161

Given its structural role, the cytoskeleton is a leading can-

didate to participate in mechanical signaling. Actin dynamics, 

particularly those mediated by ARP2/3, have been reported 

to be regulated by pannexin activity,17 and pannexin interacts 

physically with actin (through the C terminus of Panx1), but 

not tubulin/microtubules.24,162 In a recent publication, it was 

reported that the Panx1–P2X
7
 autocrine loop induced by ATP 

increased the migration speed of dendritic cells by promoting 

reorganization of the actin cytoskeleton.163 In addition, pan-

nexin influences a number of cellular changes that require 

cytoskeletal plasticity, including migration, differentiation, 

and proliferation.162,163 A role for actin is emphasized by 

evidence that Rho-kinase pathways, which have long been 

implicated in regulating actin dynamics, are dependent on 

pannexin-channel activity.164 The importance of pannexins 

in regulating cytoskeletal dynamics has also been suggested 

by the localization of pannexin to the actin-rich filopodia of 

directionally migrating or path-finding cells.17 We have shown 

that loss or inhibition of Panx1 increases neurite extension and 

branching in sensory neurons ex vivo.165 This finding suggests 

that pannexins may play a suppressive role in neuronal growth. 

Finally, pannexin channels may also somehow play a role in 

the mechanical sensitivity of other mechanosensitive chan-

nels, such as TRPV4 and TRPV1.166–168 It is not yet clear how 

the activity of these channels is coupled to pannexin activity. 

Such regulation may also be mediated by the cytoskeleton, 

the rigidity of which likely influences mechanosensitive-

channel response and the stability of which may be regulated 

by pannexin–P2-mediated pathways, such as those already 

noted. Therefore, mechanosignaling through Panx HCs may 

play a role in normal cell migration, growth, and differentia-

tion. However, persistent exposure to mechanical stress may 

facilitate sustained activation of a Panx1–P2X-signaling loop, 

contributing to chronic inflammation (Figure 4A and B).

Pannexin and receptor plasticity
The magnitude and persistence of an activating signal have 

been noted to influence the functional plasticity of pannexin 

and pannexin-associated purinergic receptors (Figure 4A 

and B). In addition to the low-affinity binding already 

mentioned, another negative-feedback mechanism response 

to increased extracellular ATP involves rapid internaliza-

tion of Panx1 into endosomes (Figure 4C) in as little as 15 

minutes, possibly through signaling initiated by P2X recep-

tors.169 Positive feedback mechanisms include coregulation 

of pannexins with purinergic signaling proteins, detected in 

experiments with hypertonic saline treatment, which trig-

gered both pannexin-channel activity and expression levels 

of P2X receptors in Jurkat T cells.95 Similar coregulation 

was observed in chronic mechanical strain in astrocytes 

that resulted in an increased expression of Panx1, -2, and 

-3 both in vitro and in vivo.130

Therapeutic implications of Panx1 
inhibition
Pannexin has been implicated in regulating normal and 

pathological cellular function in a wide range of tissue 

Figure 4 Persistent Panx1 and P2X activation (A) leads to inflammasome formation 
(B) and channel/receptor plasticity, including channel internalization through 
endocytosis (C).
Abbreviations: EC, extracellular; IC, intracellular.
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types. In normal physiology, pannexin has been shown to 

modulate vascular tone,170 brain development,9 memory, 

sleep,166,171 skeletal muscle homeostasis,172,173 red blood-cell 

biomechanics,146 retinal signaling, response to ischemia,117,174 

and leukocyte emigration.105 In pathology, pannexin-mediated 

signaling has been implicated in brain ischemia,64,175 ischemic 

stroke,176 pain,177,178 cardiomyocyte fibrosis,179 microbial 

infection,59,180 cancer,181 brain inflammation (autoimmune 

encephalomyelitis/multiple sclerosis),182–185 and immuno-

genic cell-death-inducing antineoplastic agents.96,186 On one 

hand, this potential breadth of functions renders pannexin a 

powerful and widely applicable therapeutic target. On other 

hand, this same breadth suggests potentially significant 

side effects of anti-pannexin therapy, manifested within the 

same cell type, within the same tissue, or systemically. In 

addition, as demonstrated by varying results of different 

commonly used pharmacological inhibitors of pannexin or 

P2 receptors, including probenecid, Panx1-blocking peptide 

(10Panx),105 carbenoxolone, P2-receptor-inhibiting peptides, 

and the extracellular ATP scavenger apyrase, the specificity 

of inhibition can appreciably impact a phenotypic response. 

In the following sections, we briefly describe possible out-

comes related to the authors’ expertise, in which the diverse 

functions of Panx1 must be considered within translational 

therapeutic strategies.

Panx1 inhibition in the eye
Panx1 forms an ATP-, K+-, and Ca2+-permeable membrane 

channel that is highly expressed in the retina, making this 

easily accessible neural tissue a good model system for 

delineation of Panx1 function. In the retina, Panx1 has 

been shown to be activated by mechanical stress,29,69,111,130 

intracellular Ca2+,117 extracellular K+,187 interactions with 

transient-receptor-potential channels,142,188 N-methyl-d-

aspartate receptors,189 activation of C2+-dependent caspases 

1/11 and NLRP1/3 inflammasomes,29,117,190,191 and purinergic 

receptors upon binding extracellular ATP.88 Several of these 

stressors and agonists are activated in the retina challenged 

by ischemia, OHT stress, or glaucoma, which can synergize 

to sustain prolonged Panx1 opening. Consistently with this 

observation, therapeutic Panx1 blockade protects RGCs and 

other neurons against mechanical stress and ischemia.29,174 

However, due to the physiological significance of Panx1, 

only transient blockade and partial suppression represent 

therapeutically feasible options, as they are sufficient to block 

inflammasome and ionized Ca2+ influx without affecting 

global retina functionality.

Panx1 inhibition increases lacrimal-
gland repair
Recent studies have proposed distinct roles for both Panx1 

and P2X
7
 receptors in the control of inflammasome activa-

tion, leading to the release of mature IL1α and IL1β. These 

data support the model in which Panx1–P2X
7
 signaling is the 

key regulator of inflammatory response.52,192 Probenecid, a 

well-studied inhibitor of Panx1 and P2X
7
 receptors193,194 and 

organic anion transporters, has been traditionally used to treat 

an inflammatory gout disease.195 Treatment with probenecid 

has been found to affect ATP release195 and suppress neuronal 

death in ischemic stroke176,196 and cerebral edema.197 This sug-

gests that modulation of Panx1 signaling may prevent inflam-

matory damage of brain tissue. Another study reports that in 

vivo administration of the P2X7R antagonist A438079 in the  

mouse model of salivary gland exocrinopathy could ameliorate 

salivary gland inflammation and enhance saliva secretion.198

Panx1 and P2 receptors are strongly upregulated during 

acute and chronic inflammation of the lacrimal gland,18 the pri-

mary contributor to the aqueous layer of tear film in humans. 

Moreover, lacrimal-gland injury due to inflammation leads 

to aqueous tear-deficiency dry eye. Most current therapies 

to treat lacrimal-gland disorders suggest topical treatments, 

including usage of artificial tears and autologous serum eye-

drops, but they do not treat the cause of the disease and lead to 

limited success. Cell-based regenerative therapies may provide 

better and longer relief to dry-eye patients; however, survival 

of transplanted cells strictly depends on the degree of inflam-

mation.199,200 We recently have shown that the best cell engraft-

ment is observed when Panx1 has been blocked with specific 

Panx1 inhibitors, including 10Panx and self-deliverable RNAi 

(sdRNAi) specific to Panx1.200 Moreover, lacrimal-gland 

treatment with Panx1 sdRNAi resulted in significant reduc-

tion in IL1β and Nlrp3 expression in TSP1–/– mice, a mouse 

model of aqueous tear-deficiency dry eye.200 These findings 

have implications for therapeutic strategies targeting Panx1-

signaling pathways for suppression of inflammation and/or 

increasing donor lacrimal-gland progenitor-cell engraftment.

The role of Panx1 in peripheral 
nerve disease and repair
Pannexins have been implicated in a number of pain- 

sensitization pathways, in both the peripheral nervous system 

and the CNS, through activity within and communication 

between neurons and their supporting cells.99,100,201,202 Zhang 

et al provided initial evidence that cell bodies of sensory 

neurons release ATP in response to electrical stimulation. 
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Further, this release stimulated activation of P2X
7
 receptors 

and subsequent release of the inflammatory cytokine TNFα 

in neighboring glial cells.203 Pannexin interactions with 

 various isoforms of P2 receptors may be localization-specific, 

as P2X
4
 receptors have also been implicated in purinergic 

pain pathways: in this case, through activity at sensory end-

ings in the skin.204 Interestingly, P2X
3
 receptors have also 

been noted to play a prominent role in pannexin-mediated 

signaling in DRG neurons.203,205,206 Consistently with a role 

for pannexin-P2X
3
 activity in pain pathways, the neurotoxin 

BomoTx, from the Brazilian lancehead pit viper, activates 

ATP release through pannexin HCs and downstream P2X
3
-

receptor activation, resulting in inflammatory pain, thermal 

hyperalgesia, and mechanical allodynia. Further, nerve injury 

results in increased Panx1 gene and protein expression due to 

epigenetic mechanisms.178 In contrast, a recent study revealed 

that Panx1 inhibition, genetically or through pharmacological 

reagents, reduced hypersensitivity induced by nerve injury.207

Although studied less comprehensively, pannexins also 

likely play an important role in peripheral nerve develop-

ment and regeneration. For example, a role in myelination 

has been suggested for both P2X
7
 receptors and pannexin,208 

likely due to communication between stimulated neurons 

and their flanking Schwann cells.209 In addition, a recent 

study by our research team indicated that pannexin nega-

tively regulated developmental and regenerative growth of 

peripheral neurons, as suggested by the increased caliber of 

axons in the sciatic nerves of Panx1–/– mice and increased 

regenerative outgrowth and branching of cultured DRG 

explants harvested from Panx1–/– mice, as well as in wild-type 

DRG explants treated with inhibitors of the Panx1-signaling 

pathway, including apyrase, probenecid, and 10Panx.210 Based 

on its physiological properties and roles in inflammasome 

activation, it is feasible to suggest that pannexin activity 

can modulate the neuroregenerative environment, which 

is enriched in inflammatory cytokines, as well as immune 

and activated glial cells that respond to inflammatory cues. 

As such, pannexin reduction may be an effective strategy 

to reduce pain and promote regeneration after nerve injury.

Conclusion
The switch between normal (minor) and pathological 

(massive) ATP release from Panx HCs and downstream P2 

receptors and other channels can determine whether an out-

come will be “good” or “bad”. Low levels of extracellular 

ATP and K+ produced by physiological pannexin activity 

is required for homeostatic cell function (Figure 5A). Con-

versely, high levels of extracellular ATP and K+ and overload 

of the intracellular compartment with Ca2+ synergistically 

lead to sustained activation of Panx1–P2X
7
 signaling and 

inflammasome pathways, inducing Casp1/11-dependent 

pyroptotic cell death (Figure 5B). Therefore, therapeutic 

modulation of Panx1 channels represents a feasible new 

strategy to reduce inflammation and promote regeneration 

(Figure 5C).
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