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Abstract: Adaptive metabolic responses toward a low oxygen environment are essential to main-

tain rapid proliferation and are relevant for tumorigenesis. Reprogramming of core metabolism 

in tumors confers a selective growth advantage such as the ability to evade apoptosis and/or 

enhance cell proliferation and promotes tumor growth and progression. One of the mechanisms 

that contributes to tumor growth is the impairment of cancer cell metabolism. In this review, 

we outline the small-molecule inhibitors identified over the past decade in targeting cancer cell 

metabolism and the usage of some of these molecules in clinical trials.
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Introduction
Cancer is one of the leading causes of morbidity and mortality worldwide, with 

approximately 14 million new cases and 8.2 million cancer-related deaths reported 

in 2012.1 It is a major disease burden worldwide and will be a prominent health issue 

globally. The inability of cells to respond to stress and to repair damage underlies 

many forms of cancer.

Lung, liver, stomach, and bowel cancers are the most common causes of cancer 

death worldwide, accounting for nearly half of all cancer death. Lung and breast cancers 

were reported as the most common cancers diagnosed in men and women, respec-

tively.2 Interestingly, in more developed countries (as defined by the United Nations 

which includes all regions of Europe, Northern America, Australia/New Zealand, and 

Japan), prostate and lung cancers are the leading cause of cancer death in men and 

women, respectively.2 The regional imparity in the mix of cancers is driven largely by 

the availability of improved treatment and technological progress in early detection 

of tumor.3 Cancer is also regarded differently in different settings, by which in high-

income countries, it is regarded as a preventable and often curable disease. However, 

in many low- and middle-income countries, it is regarded as a painful death sentence. 

According to the World Health Organization, it is expected that the number of annual 

new cases to rise by 70% for the next 20 years.

Past research has identified many oncogenes and tumor suppressors that are fre-

quently altered in human tumors. These altered genes affect key signaling pathways 

that govern the cell cycle and thus have the potential to be therapeutic targets. Multiple 

classes of chemotherapy drugs are used, mainly in combination, to target cancer cells 

more effectively. In recent years, it has become apparent that differences in the genetic 

background of cancer patients result in varying responses to chemotherapy. This has 
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led to an increased research focus on pharmacogenomics. 

Cancer pharmacogenomics relates to the study of germline 

genetic variants that contribute to a chemotherapy-induced 

phenotype.4

A fundamental characteristic of cancer cells is their 

ability to sustain indefinite cycles of proliferation by deregu-

lating the release of growth signals. Growth-promoting 

signals govern entry and progression of cells through the 

cell cycle, thereby ensuring the homeostasis of cell number 

and maintenance of normal tissue architecture and func-

tion. In 2000, Hanahan and Weinberg outlined the acquired 

capability of “hallmarks of cancer,” which includes the 

ability to sustain growth signals, avoid growth suppressors, 

invade and metastasize to other tissues, induce angiogenesis, 

resist cell death, and proliferate indefinitely.5 In 2011, these 

hallmarks were updated to include the ability of cancer cells 

to maintain the tumor microenvironment.6 Among the ways, 

cancer cells achieve this by metabolic reprogramming that 

involves altering energy metabolism in order to fuel their 

growth and division.6 Mitochondria have long been rec-

ognized as the powerhouses of the cell and have recently 

received recognition as a potential target for therapeutic 

intervention of cancer.

In contrast to normal undifferentiated cells, which mainly 

rely on oxidative phosphorylation (OXPHOS) to produce 

energy for cellular processes, cancer cells in the hypoxic 

microenvironment rely on glycolysis as their primary energy 

source. The phenomenon in which cancer cells preferentially 

use glycolysis to metabolize glucose in the presence of 

oxygen was identified by Otto Warburg and was later known 

as aerobic glycolysis. At that time, Warburg hypothesized 

that the switch to energy production by glycolysis in cancer 

cells was due to irreversible mitochondrial damage leading 

to permanent impairment of aerobic respiration.7 However, 

this hypothesis was disputed as most cancer cells retain 

functional mitochondria. Although aerobic glycolysis is 

often found in malignant tumors, OXPHOS still contrib-

utes to energy production in cancers and may play a major 

role in energy production in some cancers.8 Nonetheless, 

the “Warburg effect” is one of the best studied metabolic 

phenotype of cancer cells.

In this review, we focus on the research conducted over 

the past decade in identifying potential therapeutic targets of 

cell metabolism mainly in cancer. We summarize published 

in vivo, in vitro, and clinical studies of new evidences and 

novel small molecules that have implications in regulating 

cancer cell metabolism.

The OXPHOS system in 
mitochondria
Functionally, mitochondria are the key players in cellular 

adenosine triphosphate (ATP) production, fatty acid oxida-

tion, heme biosynthesis, apoptosis induction, heat generation, 

and calcium homeostasis. Mitochondria are best known 

for their role in ATP production, which is performed via 

OXPHOS. The mitochondrial OXPHOS system is embedded 

in the mitochondrial inner membrane (MIM) and represents 

the final step in the conversion of nutrients to energy by cata-

lyzing the generation of ATP. Carbon fuels are oxidized in 

the citric cycle to yield high-energy electrons.9 This electron 

motive force is converted into a proton motive force, and this, 

in turn, is converted into a phosphoryl transfer potential. The 

flow of electrons from nicotinamide adenine dinucleotide 

(NADH) or flavin adenine dinucleotide (FADH) to oxygen 

through protein complexes located in the MIM leads to the 

pumping of protons out of the matrix. The resulting uneven 

distribution of protons generates a pH gradient and trans-

membrane electrical potential that creates the proton motive 

force. ATP is synthesized when protons flow back to the 

mitochondrial matrix through ATP synthase (complex V).10 

The membrane potential is essential for other mitochondrial 

functions such as mitochondrial protein import and is used to 

trigger molecular changes that alter mitochondrial behavior 

in response to mitochondrial dysfunction.9 Induction of cell 

death is influenced by changes in the amount of ATP gener-

ated by the mitochondria, and this death may occur in various 

ways depending on the level of ATP in the cell. In several cell 

types, it has been shown that a change in the amount of ATP 

production is sufficient in itself to initiate apoptosis.10,11 The 

intrinsic apoptotic pathway is initiated following the activa-

tion of caspase-9, which requires Apaf-1. In the absence of 

apoptotic stimuli, Apaf-1 exists in a monomeric form. In 

response to apoptotic stimuli, cytochrome c activates Apaf-1 

by binding to its C-terminus. Concurrently, ATP bound to the 

ATPase domain of Apaf-1 is hydrolyzed, and this promotes 

Apaf-1 oligomerization.

Interestingly, Izyumov et al reported a two-third decrease 

of the initial intracellular ATP level in HeLa cells, which was 

achieved by using 2-deoxyglucose (DOG) and OXPHOS 

inhibitors, and was found to induce apoptosis.12 In contrast, 

a severe depletion of ATP (>70%) using staurosporine (pro-

tein kinase inhibitor) in human T cells resulted in a switch in 

response of cells to typical apoptotic stimuli from apoptosis 

to necrosis.12 Collectively, these data suggest that cell death 

is elicited under a compromised ATP level. Apoptosis inac-
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tivates PARP-1, whereas necrosis causes PARP-1 overacti-

vation, which consumes large amount of NAD+ resulting in 

massive ATP depletion.10,13 Perhaps modulating in vivo ATP 

availability might be an important strategy in inducing cell 

death and preventing tumor growth and progression.

OXPHOS as a therapeutic target
Aerobic glycolysis has long been accepted as one of the 

pathways utilized by proliferative cancer cells to meet their 

bioenergetics demand, which is essential in tumorigenesis. 

Elevated mitochondria-derived reactive oxygen species 

(ROS), a by-product of electron transport chain activity, 

regulate both tumor cell proliferation and quiescence and 

promote metastasis14 and genomic instability.15 This review 

discusses on the current small-molecule inhibitors, typically 

less than 900 Da16 that are developed to target the mitochon-

drial OXPHOS in cancer cells (Table 1).

Uncouplers transport protons into mitochondrial matrix 

via ATP-synthase-independent pathway. Hence, this reduces 

the proton motive force across the MIM and decreases the 

mitochondrial ROS production. Mitochondrial uncouplers 

such as FCCP not only inhibit mitochondrial membrane 

potential but may also affect the membrane potential and cell 

volume.17 Kenwood et al reported a bona fide mitochondria 

uncoupler, BAM15 that has preference for protonophore 

activity at the mitochondria but not at the plasma membrane. 

The exact mechanism of BAM15 remains unclear. However, 

BAM15 was capable in increasing mitochondrial respira-

tion in the presence of an ATP synthase inhibitor, providing 

evidence of BAM15 as a mitochondrial uncoupler.18 It was 

suggested that the effect is due to the structural preference of 

BAM15 for the lipid composition of the inner mitochondrial 

membrane.18

A high-throughput screening of small-molecule library 

using luciferase-driven hypoxia-inducible factor (HIF)-1 

reporter HCT116 cells under hypoxic condition led to the 

identification of BAY 87-2243. BAY 87-2243, a class of 

aminoalkyl-substituted compounds, was initially found to 

inhibit HIF-1α and HIF-2α protein accumulation without 

affecting HIF target gene expression levels.17 Further inves-

tigations revealed that BAY 87-2243 inhibited in vitro and 

in vivo mitochondrial complex I activity which prevented 

ROS-mediated HIF-1 inhibition.19,20 It was also noted that 

BAY 87-2243 restored prolyl hydroxylase enzyme activity, 

a negative regulator of HIF-1, and thus, a reduced level of 

HIF-1 was observed.19 Combination of B-RAF inhibitor that 

upregulates OXPHOS and BAY 87-2243 was shown to induce 

augmented tumor regression in nude mice-bearing B-RAF 

mutant melanoma xenografts.20 This evidence provides a 

promising future for combination of targeted therapies to 

prevent resistance to either agent.

A biochemical absorbance-based high-throughput study 

was used to identify the small-molecule inhibitor of com-

plex IV in mitochondrial extracts. The current available 

complex IV inhibitors either bind to the allosteric site18 or 

inhibit the copper-dependent activity21 within complex IV, 

which disrupts the electron transport chain. Tissues with 

high dependence on aerobic respiration, such as the central 

nervous system and heart, are affected upon treatment with 

these inhibitors. ADDA, 5(1-[2-(1-adamantyl)ethoxy]-3-(3,4-

dihydro-2(1H)-isoquinolinyl)-2-propanol hydrochloride]), 

was found to possess a significant in vitro and mouse 

Table 1 List of OXPHOS drugs and their functions

No. OXPHOS drugs Function Reference

1 Berberine Inhibitor of complex I 73
2 IACS-10759 Inhibitor of complex I 74
3 BAY 87-2243 Inhibitor of complex I 20
4 AG311 Inhibitor of complex I 75
5 Atpenins Inhibitor of complex II 76
6  3-NP Inhibitor of complex II 77
7 DT-010 Inhibitor of complex II 78
8 Rosamine Inhibitor of complex II and ATP synthase activities 79
9 Phenethyl isothiocyanate Inhibitor of complex III 80
10 Tetrathiomolybdate Inhibitor of complex IV 21
11 ADDA 5 Inhibitor of complex IV 22
8 Meclizine Inhibitor of complex V 81
12 Bupivacaine Mitochondrial uncoupler 82
13 FCCP Mitochondrial uncoupler 17
14 BAM 15 Mitochondrial uncoupler 18

Abbreviations: OXPHOS, oxidative phosphorylation; ATP, adenosine triphosphate; 3-NP, 3-nitropropionic acid.
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xenograft model (nude mouse, rear flank) antiglioblastoma 

multiforme activity by specifically noncompetitively inhib-

iting complex IV activity.22 Of note, chemoresistance to 

temozolomide in glioblastoma multiforme is associated with 

an increased level of complex IV activity.23

Glycolysis
Both normal and cancer cells utilize glucose and glutamine 

as sources of energy and also for biosynthesis of macromol-

ecules. The high rate of glucose metabolism in cancer cells 

is facilitated by an increase in glucose transport by one or 

more isoenzymes of the glucose transporters (GLUT 1–4).19 

Glucose molecules are phosphorylated by hexokinases to 

form glucose-6-phosphate. Glucose-6-phosphate will either 

generate pyruvate or be fed into the pentose phosphate path-

way (PPP) to generate ribose-5-phosphate and nicotinamide 

adenine dinucleotide phosphate (NADPH). Glutamine, on 

the other hand, is converted into glutamate in the cytosol by 

the enzyme glutaminase-1. Glutamate is then transported to 

the mitochondria, where it is converted into α-ketoglutarate. 

α-Ketoglutarate that enters the tricarboxylic acid (TCA) cycle 

results in the generation of malate and citrate. Glutamine 

serves as a source of carbon to replenish the TCA cycle, 

produces glutathione, and is a precursor to nucleotide and 

lipid synthesis via reductive carboxylation.24

The inappropriate proliferation of cancer cells requires 

high energy, and the cells generate ATP to satisfy the biomass 

production. The enhanced glycolytic rate in cancer cells is 

required not only to meet the need for energy but also to 

maintain the level of glycolytic intermediates needed for 

biosynthesis of macromolecules. The biosynthetic activities 

required for proliferating cancer cells involve high rates of 

nucleotide synthesis, amino acid synthesis, and lipogenesis. 

Glycolysis provides essential molecules for both nucleotide 

and amino acid syntheses. The PPP consists of the oxidative 

generation of NADPH and nucleotide biosynthesis. The 

oxidation of glucose-6-phosphate generates NADPH, and 

the non-oxidative interconversion of phosphorylated sugars 

is required for nucleotide biosynthesis.

Glycolysis inhibitors
The accelerated glycolysis rate in cancer cells is associated 

with the overexpression of pathway enzymes, transporters, 

and isoenzymes with different regulatory properties.25 Inter-

estingly, overexpression of glycolytic enzymes was noted in 

almost 70% of human cancers.26 The key enzymes involved 

in glycolysis are hexokinase, phosphofructokinase, and pyru-

vate kinase (PK). Inhibition of glycolysis severely impairs 

the ATP generation and renders cancer cells to be highly 

dependent on this metabolic pathway for survival. Table 2 

depicts small-molecule inhibitors of glycolysis along with 

their mechanisms emphasized on current molecular targets.

The generation of pyruvate is an important metabolic con-

trol point in cellular metabolism as it can be converted to either 

lactate and NAD+ by lactate dehydrogenase A (LDHA), which 

is important for continuation of glycolysis, or acetyl coenzyme 

A (CoA) by pyruvate dehydrogenase (PDH) for entry to gly-

colysis and mitochondrial respiration. NADH-competitive 

selective inhibitor of LDHA, quinolone-3-sulfonamide, was 

developed through high-throughput screening and leads opti-

mization.27 However, this compound was reported to possess 

an unacceptable pharmacokinetic profile that prevents it to 

be further investigated in in vivo models.27 

Acetyl CoA is involved in the synthesis of several lipid 

building blocks, which includes mevalonate. Protein farne-

sylation and geranylgeranylation are collectively known 

Table 2 List of glycolysis drugs and their functions

No. Glycolysis drugs Application Reference

1 AZD7545 Inhibit PDK 2 83
2 VER-246608 Inhibit PDK 84
3 6-Aminonicotinamide Inhibit G6PD 85
4 3-Bromopyruvate Inhibit HK 86
5 3PO Small-molecule inhibitor of PFKFB3 87
6 PFK-158 Inhibit PFKFB3 88
7 FX11 Inhibit LHDA 89
9 Quinoline 3-sulfonamides Inhibit LDHA 27
10 Shikonin Inhibit PKM2 90
11 ENO block Inhibit enolase 91
12 Epigallocatechin-3-gallate Inhibit PGM1 92
13 Pitavatstatin and zolendronic acid Inhibit geranylgeranylation 30
14 Simvastatin Inhibit prenylation 31

Abbreviations: 3PO, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one; LDHA, lactate dehydrogenase A.
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as  prenylation, a lipid posttranslational modification that 

facilitates cell membrane anchoring and is required for 

oncoprotein transformation.28 Statins are lipid-lowering drugs 

that block cholesterol biosynthesis by inhibiting 3-hydroxy-

3-methylglutaryl coenzyme A (HMG-CoA) reductase, the 

enzyme that catalyzes the rate-limiting step in the mevalonate 

pathway.27 The role of statins in modulating the mevalon-

ate pathway to exert the anticancer activity was reported 

as early as 2005.29 In a recent study, mevalonate inhibitors, 

pitavatstatin and zolendronic acid, synergistically prevented 

geranylgeranylation, which resulted in inducing apoptosis in 

a panel of ovarian cancer cell lines.30 Simvastatin exerted an 

antiproliferative effect in renal cancer cells through choles-

terol deprivation and prenylation-associated mechanisms.31

AZD3965 is a potent selective inhibitor of monocarboxyl-

ate transporter 1 (MCT1) found in cell lines displaying MCT1 

and shows higher sensitivity in hypoxia.32 Recent studies 

have demonstrated that AZD3965 inhibits lactate transport 

and cell growth in cancer cells which lack MCT4 protein.32–34 

AZD3965 is currently tested in Phase I clinical trial.

The most promising drug-targeting cancer cell metabo-

lism to date is 3-bromopyruvate, which was first discovered 

in the 1960s, but its anticancer properties were discovered 

in 2001.15 3-Bromopyruvate, an alkylating agent, is a broad-

spectrum inhibitor of multiple metabolic enzymes. It was 

shown to dampen ATP generation and inhibits multiple 

metabolic targets such as hexokinase 2 (HK 2), 3-phos-

phoglycerate kinase (PGK), glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH), lactate dehydrogenase (LDH), 

pyruvate dehydrogenase complex (PDC), succinate dehy-

drogenase (SDH), α-ketoglutarate dehydrogenase, isoci-

trate dehydrogenase (IDH), glyoxalases 1 and 2, and serine 

hydroxyethyltransferase.35–39 Currently, no clinical trials have 

been approved for 3-bromopyruvate even though two reports 

have already appeared describing the use of this inhibitor in 

volunteer patients with cancer.40,41

Small-molecule activators of 
glycolysis
PK is a rate-limiting glycolytic enzyme that catalyzes the final 

step of glycolysis, which produces pyruvate and ATP.42 PK 

muscle isozyme, PKM2, is expressed in tissues with anabolic 

functions and is found both in cancer and in normal tissues. 

In the majority of cancer cells, the expression of PKM2 is 

increased, which suggests that PKM2 may be an attractive 

target for cancer therapy.43 PKM2 is expressed in essentially 

all human cancers, and efforts have been made to use PKM2 

as a cancer biomarker.44

ML265 is a potent PKM2 activator that significantly reduces 

the tumor size in 7-week mouse xenograft without showing 

signs of acute toxicity.45 ML265 was found to activate PKM2 in 

pervanadate-treated cells, a condition known to inhibit PKM2 

activity through accumulation of phosphotyrosine peptides.45 

ML285, another small-molecule activator of PKM2, was found 

to reduce the shunt of glucose through the PPP. This sequen-

tially allows the synthesis of NADPH, which is needed for 

generating reduced glutathione and required for ROS detoxi-

fication. ML285 protects the enzyme from oxidation by ROS 

and results in sensitization to oxidative stress and increased 

apoptosis.46 Activation of PKM2 promotes tumor suppression 

in tumor growth in vivo.47–49 PA-12 stimulates the PK activity of 

recombinant PKM2 and effectively suppresses both anchorage-

dependent and anchorage-independent growth of lung cancer 

cells in the nonessential amino acid-depleted medium.50

Activation of AMP-activated protein kinase (AMPK) is 

required to facilitate the oxidative metabolism of non-glucose 

substrates, specially glutamine and lactate, to maintain cell 

survival. BL-AD008, a small-molecule activator of AMPK/

ZIPK, showed antiproliferative activities toward cervical 

cancer cells. It induced apoptosis by targeting AMPK/ZIPK 

in cervical cancer.51 AMPK direct activator MT 63-78 exerted 

growth inhibitory effects in prostate cancer cells in vitro 

as well as in xenograft models by lipogenesis  inhibition.52 

Table 3 shows the lists of small-molecule activators in 

glycolysis.

Hypoxia targeting small-molecule 
inhibitors
Adaptive metabolic response toward a low oxygen environ-

ment is essential to maintain rapid tumor proliferation and 

progression.53 The vascular network that surrounds the tumor 

creates an intermittent hypoxia, which plays a crucial role 

in cancer development, along with mitochondrial transfor-

mation associated with treatment failure.54 When oxygen 

demand exceeds supply, HIF is switched on.55 HIF is a 

heterodimer comprising α and β subunits that translocate 

Table 3 List of small-molecule activators of glycolysis

No. Activator Target Reference

1 ML265 PKM2 45
2 ML285 PKM2 46
3 PA-12 PKM2 50
4 BL-AD008 AMPK/ZIPK 51
5 MT 63-79 Direct AMPK activator 52
6 GSK 621 Direct AMPK activator 93

Abbreviation: AMPK, AMP-activated protein kinase.
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into the nucleus.56 Mammalian cells respond to hypoxia by 

implementing changes in gene expression controlled by the 

hypoxia-inducible factor 1 (HIF-1) transcription factor.57,58 

Three different genes have been identified that encode the 

subunits of HIF: HIF1α, HIF2α, and HIF3α. All three 

HIFα subunits heterodimerized with HIF-1β subunit are 

subjected to posttranslational regulations dictated by the 

oxygen concentration in the environment.59 In hypoxia, 

HIF-1α heterodimerized with the constitutively expressed 

HIF-1β [the aryl hydrocarbon receptor nuclear transporter 

(Arnt)] and translocated to the nucleus, where it bound to 

hypoxia response elements (HREs) in the promoters of vari-

ous genes.55 The interaction between HIF-1α and HIF-1β is 

critical in the process of tumor survival. A hypoxic state is 

important for tumor growth to start. It is thought that HIF-1 

expression (HIF-1α and HIF-1β) controls the initiation of 

tumor growth and could be important in affecting the antitu-

mor growth by its changing growth to be more malignant in 

a hypoxic state.60 Therefore, therapeutic targeting of hypoxia 

in cancer has the potential to improve treatment efficacy.

Resistance to therapy in the presence of hypoxia was 

noted as early as the 1920s, with the first clinical implications 

observed in tumors in the lung that exhibited resistance to 

ionizing radiation. Under hypoxic conditions, DNA-damaging 

free radicals are rapidly reduced, thereby avoiding DNA dam-

age. HIF-1 plays a central role in tumor pathology and is a tar-

get for treatment and therapy.61–65 To date, the small-molecule 

inhibitors that target HIF mainly decrease its protein levels, 

DNA-binding, or transactivation.66,67 Table 4 lists various small 

molecules that target the hypoxic microenvironment in cancer.

Many different agents that specifically target HIF have 

been investigated for their role during hypoxia over the past 

few decades. PX-478 (S-2-amino-3-[4V-N,N,-bis(2-chloro-

ethyl)amino]phenyl propionic acid N-oxide dihydrochloride) 

is known to suppress constitutive and hypoxia-induced levels 

of HIF-1α in various cancer cells, which include ovarian, 

colon, prostate, breast, renal, pancreatic, and lung.68 It was 

noted to show marked tumor regression and growth delay in 

tumor xenografts with high level of HIF-1α.69 This HIF-1α 

suppressor was shown to be selective in lowering HIF-1α and 

inhibiting its activity in multiple levels.70 PX-478 has com-

pleted its Phase I clinical trial as an oral agent in lymphoma 

and advanced solid tumors.

Another small-molecule inhibitor that targets HIF1a is 

EZN-2968. EZN-2968 is an RNA antagonist composed of 

locked nucleic acid-based oligonucleotide that specifically 

binds and inhibits the expression of HIF-1α mRNA.69,70 A 

pilot study of EZN-2968 in patients with refractory solid 

tumors showed a reduction in HIF-1α mRNA and its target 

genes in tumor biopsies.71 Third Phase I clinical trial has been 

recently initiated in patients with hepatocellular carcinoma to 

demonstrate the proof of mechanism of EZN-2968.

A library of aryloxy acetylaminobenzoic acid scaffold-

focused screening followed by lead optimization for the 

Table 4 List of HIF drugs and their functions

No. HIF drug Application Reference

1 Chetomin Inhibit HIF transcription 94
2 PX-478 Decrease the expression of HIF-1α, VEGF, and GLUT1 68
3 EZN-2208 Decrease the expression of HIF-1α and VEGF 95
4 Aminoflavone Decrease HIF translation 96
5 Bisphenol A Promote degradation of HIF-1α protein 97
6 YC-1 Inhibit HIF-1α activity 98
7 Compound DJ12 Inhibit HIF-1α transcription 99
8 KC7F2 Suppress HIFα protein regulators 100
9 EZN-2968 Inhibit the expression of HIF-1α mRNA 71
10 FM19G11 Inhibit HIFα proteins 101
11 PX-12 Inhibit HIF-1α 102
12 LW6 Inhibit HIF-1α 103
13 Indenopyrazole 21 Inhibit HIF-1α 104
14 IDF-11774 Inhibit HIF-1α 72
15 Glyceollins Inhibit HIF-1α synthesis 105
16 2ME2 Small-molecule inhibitor of HIF-1 106
17 Echinomycin Inhibit HIF-1 DNA binding 107
18 Cryptotanshinone Inhibit HIF-1 activation 108
19 PT2385 HIF-2α antagonist 109
20 PT2399 HIF-2α antagonist 110

Abbreviations: HIF, hypoxia-inducible factor; 2ME2, 2-methoxyestradiol; GLUT1, glucose transporter 1.
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 identification of HIF-1α inhibitor resulted in the identifica-

tion of IDF-11774, which was later shown to inhibit the 

expression of HIF-1α target genes. IDF-11774 inhibits 

angiogenesis, suppresses HIF-1α refolding, and stimulates 

proteosomal-mediated HIF-1α-degradation.72 Additionally, 

IDF-11774 was shown to decrease the glucose-dependent 

energy metabolism.72 This promising small-molecule inhibi-

tor modulates both hypoxic regulators and glycolysis to pre-

vent cancer cell growth.

Summary and future perspectives
Cancer metabolism is one of the oldest areas of research 

in cancer biology which pioneers from the identification 

of tumor suppressors and oncogenes. With explosion of 

research in cancer cell metabolism in the last decade, it is 

almost impossible to highlight all the findings in one review. 

In this review, we have discussed the various small molecules 

that were discovered in the last decade that are involved in 

cell metabolism, mainly glycolysis, OXPHOS, and hypoxia 

( Figure 1). The advancement of current technologies espe-

cially in high-throughput studies allows rapid identification of 

compounds with selected and specific targets. The ability of 

these small molecules to render cell metabolism is supported 

by the impaired growth of tumor in vivo and/or in vitro.

Rewiring metabolism in cancer cells plays a pivotal role in 

tumor survival, invasion, proliferation, and resistance to anti-

cancer therapies. The use of cell metabolism small-molecule 

inhibitor in cancer treatment imposes several challenges. 

Several drugs that impair cell metabolism have demonstrated 

the modest effect in cancer therapy. This is most likely due 

to the complexity of the metabolic pathways in cancer. Many 

pathways and transcriptional factors associated with cancer 

metabolism are also involved in maintaining the physiological 

process of the body. For example, the normal tissues of brain, 

retinae, and testis use glucose as their main energy source. 

Impairment of glycolysis that limits the glucose supply may 

potentially be toxic to these tissues. Metabolic plasticity and 

heterogeneity in cancer cells drive tumor growth, mediate 

metastasis, and contribute to treatment resistance. Hence, 

the efficacy of cancer metabolism therapy requires careful 

evaluation. Inhibiting individual enzymes or blocking single 

pathways seldom leads to effective cancer treatment. There-

fore, the combined approach of targeting cellular metabo-

lism in conjunction with the use of chemotherapeutic drugs 

may provide a promising strategy to overcome therapeutic 

resistance and therefore aid in cancer therapy. In conclusion, 

the concept of cancer metabolism provides more targets for 

cancer treatment. Undoubtedly, like other targeted therapies 

Figure 1 (Continued)
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Figure 1 Summary of metabolic pathways (A–C) and small molecules that modulate these pathways (green).
Abbreviation: HIF, hypoxia-inducible factor.
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being developed, therapies directed to cancer metabolism 

will be most effective if the orchestrations of metabolic 

alterations in cancer cells to support growth, proliferation, 

and differentiation are well understood.
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