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Abstract: Previous studies have reported the existence of three promoters for the human type I 

interleukin-1 receptor (hIL-1R1) gene. These promoters were discovered by identifying discrete 

transcription start sites (TSS) from limited human cell lines. In this study, we examined the TSSs 

of hIL-1R1 mRNA from 24 different tissues and identified several novel TSSs in hIL-1R1 that 

suggest the existence of seven hIL-1R1 promoters: three of them are the same as those reported 

previously and four are putative novel promoters. Using a promoter-reporter assay, we show 

here that these promoters can drive the transcription of the reporter gene. In addition, these 

promoters exhibit cell type specific expression patterns and they can be regulated by enhancer 

elements in a cell type specific manner. Only one of the promoters was found to be sensitive 

to the stimulation by glucocorticoids. Similar to our recent report on murine IL-1R1, two of 

the hIL-1R1 promoters appear to be the dominant promoters, one of which was published 

previously and the other is identified in the present study. We also found an internal promoter 

that drives the expression of IL-1R1 after the conventional translation start codon, suggesting 

that a truncated hIL-1R1 may be expressed by this promoter. These results provide additional 

information regarding the transcription of hIL-1R1.

Keywords: type1 interleukin receptor, human IL-1R1 promoters, transcription start sites, 

reporter gene, stress hormones, acute phase proteins

Introduction
Interleukin-1 (IL-1) is a pleiotropic factor that is active in multiple systems. In the immune 

system, IL-1 can act on neutrophils,1 macrophages,2 and natural killer cells3 to initiate 

innate immune responses, and on dendritic cells4 and T cells5 to modulate adaptive immune 

responses. In the central nervous system, IL-1 can act on endothelial cells,6 astrocytes,7 

microglia,8 and neurons9 to modulate neuroinflammation, neurogenesis, learning and 

memory, pain,10 and sickness behavior.11 In the neuroendocrine system, IL-1 can act on 

secretory cells of the pituitary to influence the production and release of stress hormones.12 In 

the liver, IL-1 can act on hepatic cells to induce the production of acute phase proteins.13

In the context of this vast array of the distinct IL-1 activities, a surprising aspect of 

the IL-1 biology is that IL-1 exerts its function mostly through a single receptor, the type 

I IL-1 receptor (IL-1R1).14 We showed in a recent study, that three different promoters 

control murine IL-1R1 (mIL-1R1) expression in a tissue- and cell type-specific man-

ner,15 suggesting that the regulation of IL-1R1 by multiple promoters is an important 

mechanism for controlling the diverse functions of IL-1R1. Screening transcription start 

sites of mIL-1R1 from a large panel of different tissue samples was necessary for the 

discovery of these mIL-1R1 promoters because some promoters are not active in all 
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tissues. Previous studies have reported the existence of three 

human IL-1R1 (hIL-1R1) promoters in several cell lines.16 It is 

not clear whether other hIL-1R1 promoters exist in other cell 

types. In this study, we screened 24 different human tissues 

to identify additional hIL-1R1 promoters that might regulate 

hIL-1R1 transcription.

Material and methods
Reagents and cell lines
Luciferase reporter vector pGL4.10 was obtained from Pro-

mega (Madison, WI, USA). PolyJet™ in vitro DNA transfection 

reagent was purchased from SignaGen (Ijamsville, MD, USA). 

Steady-Lite™ HTS for luciferase assay was purchased from 

PerkinElmer Life Sciences (Waltham, MA, USA). CCD-18co 

(human fibroblast), SH-SY5Y (human neuronal cell), H1299 

(human lung cell), 293 (human kidney), HeLa (human cervix 

adenocarcinoma), RAW 264.7 (murine macrophage), Neuro-

2a (murine neuroblast cell) and SVEC4-10 (murine peripheral 

endothelial cell) were purchased from ATCC (Manassas, 

VA, USA). These cell lines were maintained according to the 

instructions of the ATCC protocols. The pSG5-hGR (a plasmid 

that expresses human glucocorticoid receptor) was generously 

provided by Keith Yamamoto (University of California, San 

Francisco CA, USA) and the pGRE-Luc (glucocorticoid 

receptor (GR) reporter construct) was provided by Jeanette 

Marketon (Ohio State University OH, USA).

5′-rapid amplification of cdna ends
The Human Sure-RACE panel HRAA-101 (OriGene, 

Rockville, MD, USA) containing PCR-ready human cDNAs 

(generated from 24 different tissues) was used. The 5′ end 

of mRNA in this kit has been modified to contain 5′ adaptor 

sequences (ADP) to facilitate polymerase chain reaction (PCR) 

amplification of the 5′ ends of mRNAs. Two gene-specific 

primers (GSP) for hIL-1R1 were designed from the pub-

lished hIL-1R1 mRNA sequence in the GenBank (accession 

number: NM_0008770). The sequence for GSP1 is 5′-TGA 

TGAATCCTGGAGGCTTGTTC, and the sequence for GSP2 

is 5′-GGACAGGGACGAACATCAATTTC. These prim-

ers are located in exon 4 of the published hIL-1R1 mRNA 

sequence, downstream of the start codon in exon 3. Nested 

PCR was performed with the pair of outer anchor primers, 

ADP1 and GSP1, followed by the pair of inner anchor primers, 

ADP2 and GSP2. A graphic depiction of the RACE design 

is shown in Figure 1A. The PCR products were separated by 

electrophoresis using a Bioanalyzer (Agilent, Santa Clara, CA, 

USA). For the RACE-PCR amplicons with a single major band, 

the products were directly cloned into the pCRII-TOPO vector 

by TOPO TA cloning® (Invitrogen, Carlsbad, CA, USA). For 

the RACE-PCR amplicons containing multiple bands, all of 

the visible bands were resolved by 1.0% agarose gel electro-

phoresis and purified. The isolated bands were subsequently 

cloned into the PCR II-TOPO vector. The cloned cDNAs 

Figure 1  A) diagrammatic illustration of the 5′-RaCE design used in the present study. nested pCR was performed first with adp1 and GSp1, followed with adp2 and GSp2. 
the arrows denote the positions of pCR primers in the context of hIL-1R1 genomic dna structure. B) electrophoresis results of 5′-RaCE pCR from 24 human tissues. 
molecular weight markers (in base pairs) are shown in the far left lane. Lane 1. Brain; lane 2. Heart; lane 3. Kidney; lane 4. Spleen; lane 5. Liver; lane 6. Colon; lane 7. Lung; lane 8. 
Small intestine; lane 9. muscle; lane 10. Stomach; lane 11.  testis; lane 12. placenta; lane 13. pituitary; lane 14. thyroid gland; lane 15. adrenal gland; lane 16. pancreas; lane 17. ovary; 
lane 18. uterus; lane 19. prostate; lane 20. pBL (leukocyte); lane 21. Fetal brain; lane 22. Fetal liver; lane 23. Fat (adipose); lane 24. mammary gland. C) annotation of TSSs found 
in the present study in the context of the known genomic dna structure of human IL-1R1. p1d, p1a, p1E, p1B, p1C, p6 and p7 denote the position of the putative promoters 
of hIL-1R1 deduced from the tSSs. EX1d, EX1a, EX1E, EX1B and EX1C denote the five separate alternative exons 1 found in this study.
Abbreviations: adp, adaptor primer; GSp, gene-specific primer.
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were sequenced by an automatic sequencer (Plant-Microbe 

Genomics Facility at Ohio State University). The sequence 

data were aligned to the human genomic database of the 

National Center for Biotechnology Information.

Sequence data from the RACE assay revealed seven 

clusters of Transcriptional Start Sites (TSSs). Five TSS 

clusters were located upstream of exon 2 and two clusters 

were located immediately upstream of exon 3 and exon 4. 

These TSS sites are annotated in Figure 1C.

Promoter-reporter constructs
To determine promoter activities associated with these TSSs, 

1.2 kb to 2.2 kb of genomic sequences were PCR-amplified. 

Each PCR product contains at least 1 kb upstream sequence 

of each TSS cluster and at least 100 bp downstream sequence. 

The sequences corresponding to the previously published 

three hIL-1R1 promoters are designated as P1A, P1B, and P1C 

(they are associated with three alternative first exons). The 

sequences associated with the two newly discovered alterna-

tive exons 1 are designated as P1D and P1E. The sequences 

associated with TSSs immediately upstream of exon 3 and 

exon 4 are designated as P6 and P7, respectively. The following 

primer pairs were used: 5′-CCAACCCTAGTCATCTTCCC 

TCAGTG/5′-AGTCACAAACTACAGGCCCAAGGAAG 

(P1D); 5′-GCTCACTTCTGCTATCTCCGTTATCATC/ 

5′-TCTTACCGTCTCCGTTCTTCATCCTTG (P1E);  

5′-CTGGCCTGGACAACTGAGTGCTG/5′-CTCACCT 

TGGCCTCCCTTCCAC (P1A); 5′-TCTAGCAGGA 

CACTGGGTAGGAGTG/5′-GAGTTAGTTGAGACAAC 

TCACCTAG (P1B); 5′-CAAAGTGAGCTGGTGGGCAT 

AAGTG/5′-CACACTCTGACAACCAAGTGCAACTTAG 

(P1C); 5′-CACAGAAAGAGCTCATAGACCAGACTG/ 

5′-GTATGAGAAATGACTCTGTTAGGGAAGGTAC 

(P6); 5′-TTCATGGGATATGGAATTCTAGGTAGAC/ 

5′-TGGGTTAAGAGGACAGGGACGAAC (P7).

Each resulting amplicon (P1A, P1B, P1C, P1D, P1E, 

P6 and P7) was sequenced and cloned separately into the 

pGL4.10 vector between the restriction sites KpnI/XhoI, 

immediately before the luciferase reporter sequence. To study 

the influence of potential enhancers on the activities of these 

putative promoters, an SV40 enhancer was added to each 

promoter-reporter construct downstream of the luciferase 

reporter sequence to generate the promoter-reporter-enhancer 

constructs.

Promoter-reporter assay
Promoter-reporter constructs were transfected into CCD-

18co, SH-SY5Y, H1299, 293, HeLa, RAW 264.7, Neuro-2a 

and SVEC4-10 cells using the PolyJet reagent. Briefly, in a 

24-well culture plate, the promoter construct (0.1 µg) was 

added in the PolyJet reagent according to the manufacturer’s 

instructions. The cells were always grown to be 90% confluent 

at the time of transfection. Transfected cells were incubated 

at 37 °C in a CO
2
 incubator for 24 hours. Luciferase activity 

was then measured using the Steady-Lite HTS assay system 

and a VICTOR3 Multi-Label Reader (both from PerkinElmer 

Life Sciences).

In silico analysis of the hIL-1R1  
promoters
The core promoter sequences (sequences encompassing the 

TSSs containing 500 bp upstream and 100 bp downstream 

sequence) of the seven hIL1-R1 promoters were subjected to 

a web-based transcription factor binding site analysis (Patch 

1.0 using TRANSFAC 6.0 public sites).

Dexamethasone treatment
DNA transfection was carried out in HeLa cells using PolyJet 

transfection reagent as described. Empty vector, pGRE-

Luc and the seven promoter-reporter constructs were co-

transfected with pSG5-hGR. Twelve hours after transfection, 

media was changed and 1 µM dexamethasone (Dex) was 

added. Fourteen hours after the Dex treatment, luciferase 

activity was measured.

Statistical analysis
The data are presented as the means ± standard error of 

mean (SEM). Variations in mRNA levels were evaluated by 

one-way analysis of variance followed by post-hoc analysis 

(Tukey test). A P-value of  0.05 was considered significant 

in all statistical comparisons.

Results
Figure 1B shows results of electrophoresis of 5′-RACE PCR 

products from various human tissues listed in the Figure 1 leg-

end. Multiple band patterns were obvious when PCR products 

from different tissues were compared. In some tissues, for 

example; heart (lane 2), spleen (lane 4), stomach (lane 10), 

testis (lane 11), pituitary (lane 13), pancreas (lane 16), and 

fetal liver (lane 22) and mammary gland (lane 24), multiple 

bands (indicated by asterisks) were generated by the RACE-

PCR. These bands were isolated, cloned into the TOPO 

pCRII vector, and sequenced. In other tissue, for example, 

liver (lane 5), only one major band was generated. The PCR 

products from these tissues were directly cloned into TOPO 

vector and sequenced.
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The sequences generated from the RACE clones were 

aligned to the genomic DNA sequence of human IL-1R1 by 

BLAST. The results are summarized in Table 1. Only the 

unique sequences are listed. Many TSSs were identified in 

different tissues. Seven major groups of TSS in IL-1R1 were 

found. Five groups are upstream of exon 2; the resulting 5 

alternative first exons are all followed by the published exon 

2 and the rest of the IL-1R1 mRNA sequence. The other two 

groups are downstream of exon 2. The first group of TSSs 

spans 147 bp, aligning to nucleotide positions 7360679-

7360825 of the reference contiguous sequence NT_022171.15. 

This group of TSSs is close to a published mRNA start site 

(accession number AK314433.1). The second group of TSSs 

was found clustered close to the nucleotide 7394858 of the 

NT_022171.15 sequence, aligning to a published mRNA start 

site (CR858295.1). The third kind of TSS aligns to 7401174 

of the NT_022171.15 sequence, and the corresponding tran-

script is not recorded in the current database. The fourth and 

the fifth TSSs were found in proximity to each other, aligning 

to 7432595 and 7433270 of the NT_022171.15 sequence, 

respectively. These two TSSs are close to the start sites of a 

published EST (DA333942.1) and a cDNA (CR595183.1). 

The sixth group of TSSs was found immediately upstream 

of exon 3, and the corresponding transcript is not recorded 

in current database. The seventh group of TSSs was found 

immediately upstream of exon 4, and it is close to the start 

site of a published cDNA (BP233286.1).

These seven TSS groups suggest the existence of seven 

promoters, including five promoters which yield five alter-

native exons 1 and two internal promoters. The second, 

the fourth and the fifth TSS groups correspond to the three 

promoters published in previous reports (resulting in three 

different exon1s: EX1A, EX1B and EX1C).16,17 We desig-

nated these seven putative promoters as P1D, P1A, P1E, 

P1B, P1C, P6 and P7 of the hIL-1R1, in the 5′ to 3′ order. 

The positions of the hIL-1R1 promoters are annotated in 

Figure 1C in the context of known genomic structure of 

the hIL-1R1 gene.

Figure 2 shows the results of the promoter-reporter assay. 

We define a detectible promoter activity as an observed lucif-

erase activity in cells transfected with a promoter-reporter 

construct that is at least 3 times higher than that seen in cells 

transfected with the empty vector. In 293 cells, only P1D and 

P1C showed promoter activity. In the presence of the SV40 

enhancer, P1C activity was significantly reduced and the 

activities of other promoters remain unchanged. In CCD-18Co 

cells, again, only P1D and P1C were active without the SV40 

enhancer. The presence of the SV40 enhancer significantly 

increased the activity of these promoters and caused P1E and 

P7 to become active. In H1299, and SH-SY5Y cells, P1D, 

P1E, and P1C were active without the SV 40 enhancer, and 

P6 and P7 promoters became active in the presence of the SV 

40 enhancer. In HeLa cells, P1D, P1E, P1A and P1C were 

active without SV40 enhancer, and all 7 promoters became 

active in the presence of the SV40 enhancer. In the three 

mouse cell lines, similar promoter activity patterns emerged. 

In the SVEC-10 and Neuro-2a cells, P1D, P1E and P1C 

were active without the SV40 enhancer and P1D, P1E, P1C, 

P6 and P7 were active in presence of the SV40 enhancer. 

In the RAW cells, P1D and P1C were active without SV40 

enhancer and all the promoters except P1B were active in the 

presence of the SV40 enhancer. Except for the 293 cells, the 

SV40 enhancer was able to increase the promoter activity in 

all the human cells lines. In the three murine cell lines, the 

presence of SV40 enhancer failed to increase P1A, P1E, and 

P1B activity in Neuro-2a cells, failed to increase P1A and 

P1B activity in SVEC4-10 cells, and failed to increase P1B 

activity in RAW cells.

Figure 3 shows the results of the in-silico analysis of the 

promote sequences. None of the seven promoters contains 

any TATA box or CAAT box. The core promoter regions con-

taining 500 bp upstream and 100 bp downstream sequences 

are shown; NF-κB, SP1, AP-1 and GR are annotated. P1D 

contains NF-κB, SP1 and AP-1 sites which are close to 

P1D’s TSS cluster, whereas transcription factor binding sites 

in P1A and P1E are relatively dispersed. Notably, a dense 

array of SP1 sites was found in the proximity of P1C TSS. 

In addition, numerous GR-binding sites were found in all 

the promoters.

Figure 4 shows the influence of GR activation on the 

transcription activity of the seven hIL-1R1 promoters in 

HeLa cells. Data show ratios of luciferase activity of Dex 

treated cells (Dex+) over those in untreated (Dex-) cells. The 

first three bars represent control experiments: background 

luciferase activity is shown in untransfected cells (non); 

cells transfected with hGR and a vector containing luciferase 

cDNA without a promoter (V) did not respond to the Dex 

treatment; cells transfected with hGR and the GR reporter 

construct, pGRE-luc (pGRE-luc), showed a 9 fold increase 

of luciferase activity when they were treated with Dex. The 

rest of the bars represent results from cells transfected with 

hGR together with a vector containing one of the hIL-1R1 

promoter-reporter constructs. Dex treatment did not change 

promoter activity in 6 out of the 7 hIL-1R1 promoters. 

However in P6-transfected cells, Dex treatment increased 

the promoter activity by over 20-fold.
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Figure 2 Results of promoter-reporter assay carried out in 8 different cell lines are shown. Relative luciferase activity was calculated as the ratio of the luciferase activity in 
cells transfected with a promoter-reporter construct over that in cells transfected with a promoter-less vector control. Means and standard errors of the mean calculated 
from three separate experiments are presented. the open bars show promoter activities without the SV40 enhancer; relative luciferase activity over 3 was defined as an 
active promoter (indicated by *). Filled bars show promoter activities in the presence of the SV40 enhancer; significant increase of promoter activity by the SV40 enhancer is 
indicated by # (#: P  0.05, promoter + enhancer versus. promoter).

Discussion
The results of this study revealed seven clusters of TSSs, 

each associated with a unique promoter in the human IL-1R1 

gene. Using RNA generated from 24 different tissues and the 

sensitive 5′-RACE method, we found many novel TSS sites, 

including two TSS clusters (associated with P1E and P6) 

that are not in the current database which includes randomly 

sequenced mRNAs.

The 5′-RACE may produce artificial putative TSSs by 

identifying 5′ truncated RNA. However, all of the TSSs 

associated with the novel P1D, P1E, P6, and P7 promoters 

were found in multiple tissues and multiple clones, suggesting 

that the results were unlikely to be the consequence of faulty 

RACE PCR amplification of randomly truncated RNAs. In 

addition, TSSs associated with the P1A, P1B, and P1C found 

in this study are the same as those found in the previous studies 

using the primer extension assay,16 affirming the accuracy of 

the method used in the present study. Inspection of the core 

promoter sequences showed no TATA box consensus sequence 

in any of the hIL-1R1 promoters. This is consistent with 

previous reports that IL-1R1 uses TATA-less promoters.15,16 

Other studies have demonstrated that TATA-less promoters 

often start transcription from several TSSs downstream of the 

promoter.18 This may account for the fact that P1D, P1A, P6 

and P7 are associated with multiple closely positioned TSSs 

found in the present study (Table 1).

Experimental verification of promoter activity for 

P1A, P1B, and P1C has been reported previously.16 using a 

promoter-reporter assay. We show in the present study that 

all 7 promoters can drive the luciferase reporter expression 

in the promoter-reporter assay. In addition, the promoter 

activity can be modulated by the SV40 enhancer, a viral 

enhancer sequence known to generally increase promoter 

activity. Interestingly, the promoter activity of these hIL-1R1 
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promoters showed dramatic cell type-specific effects. For 

example, although SV40 enhancer increased the activity of 

these promoters in most human cell lines tested, it did not 

do so in the 293 cells. In addition, 4 promoters, P1D, P1E, 

P1A and P1C, were active in the HeLa cells without SV40 

enhancer, but only two promoters, P1D and P1C, were active 

in 293 cells. This is similar to the mIL-1R1 promoters we 

reported recently that different promoters can be active in 

different cell types.15

The two dominant hIL-1R1 promoters are P1D and P1C: 

they are active in all the cell lines tested including the 3 murine 

cell lines. In the mouse, we reported the existence of three 

mIL-1R1 promoters, P1, P2, and P3, with P1 and P2 being the 

dominant promoters and P3 being expressed only in limited 

cell types of certain tissues. It is possible that P1D and P1C 

in the hIL-1R1 correspond to P1 and P2 in mIL-1R1 in evo-

lutionarily conserved functions. Surprisingly, no significant 

sequence homology between these promoters can be identified 

Figure 3 annotation of the hIL-1R1 promoter sequences by in silico analysis.  arrows indicate the positions of the tSSs.  the core promoter regions containing 500 bp upstream 
and 100 bp downstream sequence are shown. Sp1, nF-κB, ap1, and GR sites are shown.  all indicated sites contain the transcription factor binding sites with 100% sequence 
homology to the corresponding consensus sequences.
Abbreviations: tSS, transcription start sites; GR, glucocorticoid receptor.
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Figure 4 Influence of glucocorticoid on the hIL-1R1 promoter activity in HeLa cells. Fold increases (luciferase activity in dex-treated cells over that in dex-untreated cells) 
are shown. means and standard errors of the mean calculated from 3 separate experiments are presented. 
Notes: non: cells without transfection as negative control.  V: cells transfected with hGR and the luciferase cdna without a promoter as an additional negative control. 
pGRE-luc: cells transfected with hGR together with the GR reporter construct as a positive control for the assay.
Abbreviations: GR, glucocorticoid receptor; Dex, dexamethasone.
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Table 1 Sequence analysis of human IL-1R1 tSS. the sequences are aligned to the latest version of nt_022171.15

 Exon I Exon II Exon III Exon IV Tissue

P1D 7360679 7360825 7444229 7444306 7448000 7448078 7455062 7455135 9

aK314433

7360687 22

7360735 5

7360741 11

7360753 11

P1A 7394858 7395164 7444229 7444306 7448000 7448078 18,

CR858295

7394957 13,16

7395052 13

P1E 7401174 7401379 7444228 7444306 7448000 7448078 5

P1B 7432595 7432746 7444228 7444306 7448000 7448078 7,

da333942

P1C 7433270 7433312 14

CR595183

P6 7448000 7448078 3,14,18

7448010 15

7448021 7

7454412 7455135 20

P7 Bp233286

       7454859 7455095 8

by BLAST (basic local alignment search tool analysis: data not 

shown), suggesting that the functional conservation of these 

promoters may have to be explained at the level of sequence 

framework, but not simple sequence homology. The P1C 

promoter was also the earliest reported hIL-1R1 promoter,19 

probably because it is the most active hIL-1R1 promoter in 

most tissues. This is consistent with our result of the in silico 

analysis that P1C contained many more SP1 sites than the 

other hIL-1R1 promoters; SP1 sites are critical for the activ-

ity of TATA-less promoters.20 It is interesting to note that the 

mouse P1 is 41 kb upstream of P2 and the human P1D is about 

71 kb upstream of P1C. Thus, transcribing IL-1R1 via P1 in 

mouse and via P1D in human might cost significantly more 

energy, due to the need to transcribe much longer intron1, 

than transcribing IL-1R1 via P2 in the mouse and via P1C in 

human. The purpose of using these less efficient promoters 

remains to be elucidated. We have shown previously that the 

mouse P1 contributes to cell type- or tissue-specific regula-

tion of mIL-1R1. This could also be one of the reasons for the 

existence of the multiple promoters in the hIL-1R1 gene.

The other five promoters, P1E, P1A, P1B, P6, and P7, 

may be considered as minor promoters because they are 

much less active compared to P1D and P1C. The physi-

ological significance of these promoters, however, may not 

be minor. For example, a PstI polymorphism near P1B was 

found to have significant association with insulin-dependent 

diabetes mellitus.21and a polymorphism within exon 1B has 

been associated with protective effects against endometriosis 

development.22 It is conceivable that polymorphisms in the 

new promoter sequences discovered in the present study can 

be correlated to other disease conditions.

The existence of P7 was surprising because IL-1R1 

mRNA expressed via this promoter would be missing the 

traditional IL-1R1 translation start codon in exon 3. In fact, 

the sequence of the P7-derived IL-1R1 mRNA predicts the 

translation of a hIL-1R1 from a downstream start codon in 

exon 5 that potentially results in the production of a truncated 

IL-1R1 molecule, lacking a segment of the N-terminus amino 

acid sequence of the IL-1R1. Whether this truncated IL-1R1 

represents a novel IL-1 receptor remains to be determined.

The results of the in silico analysis of the hIL-1R1 

promoters revealed multiple GR binding sites in all the 

promoters. We therefore tested whether these promoters are 

susceptible to glucocorticoid regulation. Surprisingly, only P6 

responded to the glucocorticoid agonist Dex in HeLa cells. 

Therefore, GR regulates hIL-1R1 expression in a promoter-

specific manner in HeLa cells. The effects of glucocorticoids 

in other cell types remain to be determined.
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In summary, the present study reveals the existence of 

7 hIL-1R1 promoters. The activities of these promoters are cell 

type-specific and are susceptible to regulations by enhancers 

and transcription factors in a promoter-specific manner.
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