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Abstract: Wound healing process is an intricate sequence of well-orchestrated biochemical and 

cellular phenomena to restore the integrity of the skin and subcutaneous tissue. Several plant 

extracts and their phytoconstituents are known as a promising alternative for wound healing 

agents due to the presence of diverse active components, ease of access, and their limited side 

effects. The development of nanotechnological methods can help to improve the efficacy of 

different therapeutics as well as herbal-based products. Here, we present a review of the effi-

cacy of the plant based-nanomaterials in the management of wounds and discuss the involved 

therapeutic targets. For this purpose, a profound search has been conducted on in vitro, in vivo, 

and/or clinical evidences evaluating the efficacy and pharmacological mechanisms of natural 

product-based nanostructures on different types of wounds. Different pharmacological targets 

are involved in the wound healing effects of herbal-based nanostructures, including suppressing 

the production of inflammatory cytokines and inflammatory transduction cascades, reducing 

oxidative factors and enhancing antioxidative enzymes, and promoting neovascularization and 

angiogenic pathways through increasing the expression of vascular endothelial growth factor, 

fibroblast growth factor, and platelet-derived growth factor. Moreover, nanostructure of plant 

extracts and their phytochemicals can enhance their bioavailability, control their release in the 

form of sustained delivery systems to the wound site, and enhance the permeability of these 

therapeutics to the underlying skin layers, which are all necessary for the healing process. 

Overall, various plant extracts and their natural compounds, used in nanoformulations, have 

demonstrated high activity in the management of wounds and thus can be assumed as future 

pharmaceutical drugs.

Keywords: nanomedicine, nanoparticle, nanofiber, natural product, medicinal plants, phy-

tochemicals, herbal products, hydrogels, nanoemulsion, electrospinning, wound healing, wound 

dressing, nanostructure

Introduction
Wound healing process is an intricate and essential regulated sequence of several 

well-orchestrated biochemical and cellular phenomena to restore the integrity of the 

skin. During the wound healing process, wound progresses within three differentiated, 

though overlapping stages: inflammation, proliferation (neo-angiogenesis, granula-

tion, re-epithelialization), and maturation (extracellular matrix [ECM] remodeling).1–3 

Wound management and the efficacy of wound healing in occlusion of the injured tissue 

can considerably depend on the materials used in the wound dressing.4 Traditional 

wound healing therapies have been investigated experimentally and clinically, and 

a wealth of information about the role of traditional therapies in alleviating the 
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underlying causes of nonhealing wounds is found in several 

studies.5–7 Medicinal plants can be taken into account as 

the potent and promising therapeutics for improvement of 

wound healing processes based on the variety of the active 

and effective components such as flavonoids, essential oils, 

alkaloids, phenolic compounds, terpenoids, fatty acids, and 

so on.7 These traditional medicines can be preferred over 

modern therapy due to the low cost, limited adverse effects, 

bioavailability, and efficacy.8,9

Beside the advantages of medicinal plants for wound 

management, one of the promising ways to promote their 

efficacy is to subject them to nanosizing process or incorpo-

rate them into nanostructures. Nanomaterials possess unique 

characteristics due to their nanoscale size and the high surface 

area to volume ratio, and nanosizing the medicinal plants can 

occur in association with modification in their physical and 

chemical characteristics.10,11

Natural product-based compounds can be used directly as 

medicaments for alleviating the wound or as drug carriers for 

delivery of other therapeutics.12 The advantageous efficacy 

of the nanostructured medicinal plants stimulated the authors 

to provide a comprehensive review of the plant-based nano-

materials obtained by different methods and their therapeutic 

targets in regulating the wound healing process.

Search strategy and study design
A comprehensive literature review was carried out by the 

authors in the electronic databases of Scopus, PubMed, 

ScienceDirect, and Cochrane Central Register of Controlled 

Trials. The search was conducted without time restriction 

and using the following search strings: “Wound” in the 

title, and “Herb” OR “Plant” OR “Phytochemical” in the 

title, abstract, and keywords. On PubMed, all these words 

were searched in “title, abstract”. The reference lists of the 

former review articles and the retrieved papers were manu-

ally reviewed for additional applicable studies. The initial 

search results, including 6,622 reports, were recorded for 

investigating whether they used herbal-based nanomaterials. 

Two individual authors initially assessed the papers based 

on their title and abstract. In this step, regarding the titles 

and abstracts, the duplicate articles, review papers, non-

English papers, and the papers which were irrelevant to the 

topic or were not in nanoscale range (totally 6,446 papers) 

were excluded. The full text of the retrieved articles (176 

reports) was carefully examined by the authors to examine 

the potential of inclusion in the current review, and 96 

papers were excluded in this step based on the full text. 

The exclusion criteria were as follows: the papers that 

included plant extracts and phytochemicals which have 

not undergone nanosizing process; the papers that reported 

nanoformulations containing biomaterials which were not of 

plant-based origin; and the papers that included plant-derived 

nanoformulations which were not directly evaluated for 

wound healing effect and the involved mechanisms. Finally, 

80 original articles, which have reported nanoscale wound 

healing process based on herbal substances, were extracted 

from the search results to be used as the main source of study 

in this paper. The diagram of the search study procedure is 

illustrated in Figure 1.

Foremost methods used for 
producing natural product-based 
nanomedicine for wound healing
Different nanostructured formulations have been successfully 

produced to help in natural wound healing (Figure 2). Here 

we discuss the foremost methods in detail.

Electrospinning
The porous structure and excellent pore interconnectivity 

of nanofibers make them desirable for wound dressing and 

wound healing due to their oxygen permeability, the ability 

of keeping the moisture at the desired level, their inhibitory 

effect on the exogenous microorganism invasions, their 

conformity to skin at the wound site, and their ability to 

alleviate scars.13–15 Incorporating the herbal extracts and 

phytochemicals in the nanofibrous membranes has been car-

ried out in several studies, which superposed the advantages 

of these structures and the benefits of herbal compounds for 

ameliorating different wounds.16–22 Emodin, 3,8-trihydroxy-

6-methyl-anthraquinone, an extract of some medicinal plants 

(such as Polygonum and Aloe vera), has been frequently 

used for treating the wounds. It has several advantages such 

as anti-inflammatory and antibacterial activity, ability to 

increase the rate of migration of fibroblasts into the wounded 

region, and ability to enhance the nucleotide excision repair 

of DNA damage in human cells.23,24 The incorporation of 

this compound into the polyvinylpyrrolidone nanofibrous 

nonwoven membrane produced a promising wound heal-

ing structure for treating acute full-thickness skin wound, 

and the drug was well distributed on the porous membrane 

structure.23 Electrospinning of polyvinylpyrrolidone/emodin 

gave the favorable, nontoxic, non-allergenic, and highly 

biocompatible nanofibrous membrane with a considerably 

higher dissolution rate of emodin in comparison to the pure 

drug. The effect of this nanostructure on the full-thickness 

skin wound in rats promoted fluid retainment and continu-

ity of re-epithelialization with shrinkage of the wound area, 

in comparison to the free drug. It was also successful in 
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Figure 1 Search diagram of study selection.

Figure 2 The foremost methods to produce nanoformulations from different natural products. 
Abbreviations: DHQ, dihydroquercetin; eGCG, epigallocatechin gallate.

accelerating the wound healing process.25 Incorporation of 

emodin in a nanostructure of cellulose acetate (CA) fiber 

exhibited the potential to enhance the synthesis of collagen 

from human dermal fibroblast adults cells 100%.26 CA 

is a highly hydrophilic derivative of cellulose with a high 

potential to absorb water. The electrospun CA nanofibers 

provided a biocompatible environment for attachment 

and proliferation of L929 skin fibroblasts.27 In spite of its 
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advantages, its low breaking stress, strain, and poor resis-

tance are the limitations in clinical use of this biopolymer, 

and it should be electrospun in combination with other 

biomedical materials for wound healing applications.28–30 

Nanostructured wound dressings based on CA have been 

prepared by co-electrospinning of this biopolymer with poly-

ester urethane,31,32 gelatin,33,34 poly (ε-caprolactone) (PCL)/

polyurethane and dextran,35–37 polyurethane and zein,28 and 

polylactic acid (PLA).38,39 The polyhexamethylene biguanide-

loaded nanofibrous membrane of CA and polyether urethane 

showed strong antibacterial activity, good moisture retention 

and air permeability, good physical and mechanical proper-

ties, and accelerated the wound healing process. The pres-

ence of CA in nanofibrous membrane increased the water 

uptake of wound dressing and prepared a moist environment 

for the wound, increased adhesion to the rat skin fibroblast, 

and supported the rapid regeneration of epidermal layer.31 

Co-electrospun CA and gelatin membranes can successfully 

simulate fibrous ECM, which is a complex combination of 

proteins and polysaccharides. In addition to their ability to 

mimic the fibrous structure of the native dermis, they can 

increase the proliferation of human dermal fibroblast, which 

is necessary for the regeneration stage and healing of any 

wound; they also possess high fibroblast affinity and collagen 

secretion, which make them appropriate for healing different 

types of skin injuries.33 Higher affinity for the proliferation of 

fibroblasts and bioactivity was also observed in the presence 

of CA in PLA nanofibrous membranes.38 This could be due 

to the high hydrophilicity of CA, which promotes cellular 

interaction. The CA/PLA nanofibrous membranes were also 

potent in accelerating the re-epithelialization of wounds in 

mice and increasing the rate of wound closure in compari-

son with the control.38 Incorporating the herbal therapeutic 

agents in CA nanofibers leads to combining the advantages of 

these biomaterials as an interactive wound dressing material. 

Asiaticoside (one of the major phytoconstituents of Cen-

tella asiatica), a trisaccharide triterpene, was loaded on CA 

nanofibers and provided advantageous antioxidative effect 

at the initial stage of wound healing.40 Asiaticoside showed a 

significant effect in the proliferation and production of types 

I and III procollagen mRNAs and also increased the levels 

of corresponding proteins of skin fibroblasts.41,42 The other 

herbal compound loaded on the CA was curcumin, which 

enhanced the attachment and proliferation of fibroblasts, 

increased the amount of collagen synthesis, and protected 

the normal human dermal fibroblast cells against H
2
O

2
-

induced oxidative stress.43 Curcumin (1,7-bis (4-hydroxy-

3-methoxyphenyl)-1,6-heptadiene-3,5-dione), an active 

ingredient of turmeric, is a polyphenolic compound obtained 

from Curcuma longa L. Curcumin is an active ingredient 

possessing a broad range of innate biological activities such 

as anti-inflammatory, antibacterial, antioxidant, anticancer, 

and angiogenic effects,44 which make it a valuable agent for 

treating wounds. Curcumin has long been used in clinical 

studies and different in vivo animal models for accelerating 

cutaneous wound healing.45 In the in vivo studies on animals 

treated with curcumin, this phytochemical showed its activity 

in early re-epithelialization through increasing the rate of 

collagen synthesis due to upregulating the level of transform-

ing growth factor (TGF)-β1 growth factors,46 increasing the 

granulation tissue and blood vessels,47 enhancing neovascu-

larization, increasing the fibroblast and vascular densities,48 

and accelerating the migration of cells.49 The ethanolic extract 

of curcumin caused the tissue debris and hemorrhages disap-

pear and formed keratin layer on the epidermal surface of 

the wound in Black Bengal goats.45

However, the low insolubility of curcumin, poor absorp-

tion, and instability cause inherent limitations impeding 

the use of curcumin alone.50 Incorporating curcumin into 

hydrophilic nanoformulations is a useful way to circumvent 

unwanted properties of this herbal compound.51,52 The incor-

poration of curcumin into gelatin biomimetic nanofibrous 

mats was studied in acute wound in rats.53

Green-synthesized metal 
nanoparticles using plants
Metal-based nanoparticles are extensively used in diverse 

fields such as engineering, chemistry, biology, and 

medicine.54–56 There is growing interest on the biological 

applications of metal nanoparticles in medicine and phar-

macy. Tremendous growth in these expanding applica-

tions has opened applied frontiers and novel methods for 

synthesis of these nanoparticles, including physical and 

chemical methods. Most of these methods are expensive 

and environmentally hazardous due to the application of 

toxic and perilous chemicals with high biological risks.57–59 

The biologically inspired experimental processes have 

been evolved to overcome these drawbacks and are more 

acceptable in medical applications due to high biocompat-

ibility, biodegradability, nontoxicity, and the green nature 

of the agents, and also their cost-effectiveness. The most 

common metallic nanoparticles in biomedical and medici-

nal applications are silver- and gold-based nanostructures 

(nanoparticles, nanocomposites, and nanocoating), which 

have drawn the attention of researchers. Silver nanoparticles 

(AgNPs) and different silver salts have recently intrigued 
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medical scientists in the fields of clinical and fundamental 

researches due to their excellent antibacterial and antimi-

crobial activities,60 which could be attributed to their large 

surface area to volume ratio, and could be remarkably 

interesting due to growing microbial resistance against 

metal ions, antibiotics, and the development of resistant 

strains.61 In addition to these characteristics, these nano-

particles possess the advantages of high chemical stabil-

ity, antiviral, antifungal, and anti-inflammatory activities, 

and possibility to be incorporated into different composite 

structures, cosmetic products, food industry, and so on.57,62,63 

These plant-mediated biosynthesized nanoparticles exhibit 

potential in wound healing and in efficiently retarding and 

preventing bacterial infections.64,65 The biological methods 

for preparation of AgNPs are based on the administra-

tion of reducing agents such as bacteria, fungi, and plant 

extracts to interact with the Ag ions and reduce them into 

AgNPs. A large variety of herbal extracts have been used to 

develop the green-synthesized AgNPs and prepare proper 

medications for wound. Some of the prominent examples 

of these plants are Cassia roxburghii,66 Drosera binata 

Labill.,67 Indigofera aspalathoides DC.,68 Azadirachta 

indica A. Juss.,69 Arnebia nobilis Rech.f.,70 Melia dubia 

Cav.,71 Terminalia chebula Retz.,72 Lansium domesti-

cum Corrêa,73 Orchidantha chinensis T.L.Wu,74 A. vera 

(L.) Burm.f.,75 glucuronoxylan,76 Momordica charantia 

L.,77,78 Carica papaya L.,79 Cymbopogon citratus (DC.) 

Stapf,80 Nyctanthes arbor-tristis L.,81 Naringi crenulata 

(Roxb.) Nicolson,82 Phytophthora infestans,83 Biophytum 

sensitivum,84 Propolis,85 and Bryonia laciniosa L.86

Most of these extracts possess inherent antibacterial and 

antimicrobial activity, which makes them appropriate for 

wound care. The importance of the presence of antimicrobial 

agents in wound dressing is their substantial role in controlling 

the microorganism colonization and subsequent proliferation, 

which helps accelerating wound healing process.67,87–89 In 

vivo treatment of mice with AgNPs, synthesized with 

Catharanthus roseus leaf extract, could successfully control 

bacterial and fungal growth, prompt the closing of wound, 

and considerably reduce the wound site.90 In addition to the 

extracts applied for green synthesis of AgNPs, the antibacte-

rial endophytic fungus of O. chinensis was also advantageous 

in biosynthesis of AgNPs and treated the infected wounds 

developed on the Sprague Dawley rats.74 It produced well-

stabilized AgNPs and inhibited different bacterial strains by 

metabolizing special proteins as well. Additionally, it success-

fully accelerated wound healing process, enhanced the wound 

contraction rate, completely re-epithelialized the epidermis, 

minimized the scars after treatment period, minimized the 

bacterial count in the infected wound site, and downregulated 

the level of proinflammatory cytokines tumor necrosis factor 

alpha (TNF-α), interleukin (IL)-1β, and IL-6.

The other parameter which can be controlled to accel-

erate the wound healing process is the rate of synthesis 

of collagen.73 The first step in synthesis of collagen is 

hydroxylation of proline to form hydroxyproline.91 Thus, the 

hydroxyproline content is a good marker for collagen depo-

sition, which has been determined in several studies on the 

application of green-synthesized AgNPs. Phytosynthesized 

AgNPs by L. domesticum fruit peel extract were potent in the 

enhancement of hydroxyproline content, a marker of collagen 

deposition, as well as the wound closure time. Complete 

epithelialization with keratinization as well as fibrous con-

nective tissue proliferation were also the results of adminis-

tration of nanoparticles.73 The level of hydroxyproline and 

total proteins at the initial phase of wound healing was also 

increased in the presence of biosynthesized AgNPs, which 

confirmed the effect of these biosynthesized nanoparticles 

on cellular hyperplasia and deposition of matrix proteins 

in granulation tissues.74 The linseed hydrogel was another 

choice for the green synthesis of AgNPs, possessing the 

advantages of increasing the wound closure percentage and 

also the collagen content at the wound site.60

Cassia auriculata L.-mediated AgNPs were effective on 

both incision and excision wound models in Wistar albino 

rats. Although the wound healing activity of Cas. auriculata 

extract alone has been established in the literature, the 

Cas. auriculata AgNPs exhibited better performance in 

wound healing process rather than the extract and also Povi-

done Iodine ointment. Nanoparticles were also more effective 

on enhancement of excision wound contraction.92

Wound tensile strength is a key parameter governing 

neocollagen production, and the quality and speed of tis-

sue regeneration is directly related to the collagen content 

of wounds.93 Biosynthesized AgNPs can promisingly be 

applied to enhance the collagen content and tensile strength 

of wounds. The administration of L. domesticum-mediated 

and linseed-mediated AgNPs to the animals increased the 

tensile strength of wound due to organization of collagen 

fibers.60,73 Guar gum/AgNPs were other phytosynthesized 

medications possessing significant effect on the tensile 

strength and modulation of collagen deposition, in addition 

to regulation of keratinocytes and accelerating the essential 

re-epithelialization process.94

In addition to the abovementioned nanostructures, 

green-synthesized AgNPs can be included into/or coated 
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on the common dressings, electrospun nanofibers, and 

nanofibrous membranes. This integrates the advantages of 

electrospun nanostructures, AgNPs, and the medicinal plants. 

M. charantia fruit extract was used to prepare AgNPs by 

biological reduction, and then, addition of PLA to AgNPs 

caused stabilization of the Ag particles and made them elec-

trospinnable. The electrospun nanofibers were found to be 

capable of wound healing and were highly efficient against 

bacteria and highly cytocompatible. Although AgNPs alone 

possessed antibacterial activity, the presence of M. charantia 

extract caused potentiation of antimicrobial activity as well 

as reduction of cytotoxic activity against fibroblasts.77 AgNPs 

prepared using Piper nigrum leaf extracts were included in 

PCL membrane and this nanostructure was found highly 

promising in inhibiting bacterial colonization in wounds.95

Green-synthesized titanium dioxide, gold, and copper 

oxide nanoparticles are other wound healing enhancers, 

which cause rapid wound healing and prevent/decrease 

infections and posttreatment side effects. Gold nanoparticles 

synthesized by Coleus forskohlii root extract remarkably 

accelerated re-epithelialization of excision wound created 

on rats, increased connective tissue formation, and promoted 

the rate of proliferation and migration of epidermal cells.96 

The synthesis of titanium dioxide nanoparticles (TiNPs) 

in the presence of Moringa oleifera leaf extract enhanced 

wound contraction and reduced the excision wound site in 

Albino rats.97 Similar results were observed in Albino rats 

after treating the excision wound with biosynthesized cop-

per oxide nanoparticles using Ficus religiosa leaf extract. 

These nanostructures also possessed persistent inhibitory 

activity against human pathogenic bacteria, and effectively 

increased the formation of macrophages, fibroblast, and 

collagen fibers.98

Incorporation of natural products in 
different forms of nanoparticles to 
achieve a controlled delivery system 
to the wound site
Another common technique for utilizing the medicinal 

plants for wound healing involves their incorporation into 

different forms of nanoparticles. In drug delivery sys-

tems, control over the release of drug at the target organ 

is critically important. Several forms of biocompatible 

drug carriers are used in controlled drug delivery systems, 

including nanoparticles, nanoemulsion, nanohydrogels, 

nanofilms, and nanoliposomes. These systems are capable 

of diminishing the side effects and increasing the efficacy 

of different therapeutic agents by providing a sustained and 

controlled delivery system, and they increase the dissolution 

rate of the drugs based on their surface characteristics.99–105 

Besides the advantages of the herbal-based compounds in 

wound healing process, nanosizing these therapeutics or 

incorporation of these materials in nanoparticles provides 

a chance of controlling their delivery to the injured side 

and can increase their chemical activity.106 For instance, 

nanosizing the curcumin particles provided a well-regulated 

and sustained delivery system and enhanced their wound 

healing activity by increasing the antimicrobial effect and 

accelerating the formation of granular tissues and collagen 

synthesis.99,107

Nanoemulsions are nanostructures that provide the pos-

sibility to nanosize different essential oils. Upon application 

of nanoemulsions on the injured sites, the droplets form a film 

on the injured sites after evaporation of their water content. 

The plant essential oils have attracted considerable attention 

because of their high content of bioactive components.108 

The essential oil of Eucalyptus globulus was nanosized by 

nanoemulsification method, which promoted its antibacterial 

activity. The high activity and accelerated wound healing 

could be attributed to the existence of 45.4% 1,8-cineole 

(eucalyptol), which is known to be an active compound facili-

tating the penetration in transdermal and topical drug delivery 

systems.109 Similar results were obtained in the in vitro and 

in vivo studies on application of tragacanth gum nanoemul-

sions impregnated with A. vera extract, which was attributed 

to the potential of A. vera in modulation of proteases.110 The 

encapsulation of active components of medicinal plants into 

nanoemulsions has provided a new approach for controlled 

drug delivery. A vital issue in the topical administration 

of lipophilic drugs for wounds is the localization of these 

ingredients in the superficial skin layers. Encapsulation of 

these drugs into nanoemulsions facilitates their penetration 

into the skin layers and provides a dispersed oil droplet phase 

to improve their solubility.111–113

Nanohydrogels are a group of nanostructures for wound 

dressing that offer discrete advantages of high flexibility, 

high hydrophilicity, high mechanical strength, tunable 

structure, and the ability to absorb wound exudates as well 

as permeate oxygen and prevent wound dehydration.114,115 

Due to their porous structure, they can be considered as 

another promising nanostructure for providing a sustained 

and controlled delivery system to the wound.116 Li et al 

prepared a sticky micro/nanohydrogel from alginate-gum 

arabic. Adhesive nanohydrogels possess the ability to 

bind to the injured tissues, and can successfully act as 
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hemostat and provide a microenvironment to facilitate the 

proliferation, differentiation, and migration of cells.117 As 

mentioned, curcumin as an active herbal compound suf-

fers from the drawback of low water solubility and low 

bioavailability, which restrict its therapeutic applications. 

One promising method to overcome this drawback of cur-

cumin and other hydrophobic compounds is to incorporate 

them in the aqueous nanostructures such as nanohydro-

gels. Incorporation of curcumin in polyethylene glycol 

(PEG)-PCL and PEG-PCL-PEG hydrogels improved the 

solubility and bioavailability of the drug, accelerated the 

re-epithelialization of wound, and regulated the granula-

tion tissues.118

In addition to the mentioned formulations, nanoliposomes 

can be considered as the nanostructures which could be uti-

lized to improve the solubility and efficacy of poorly soluble 

herbal-based therapeutics. Nanoliposomes (liposomes in 

nanometric scales) are colloidal structures composed of 

lipids and/or phospholipid bilayers encapsulating aqueous 

compartment(s), and they possess the ability to improve 

bioavailability, cause sustained transdermal delivery of 

different medicinal compounds, and overcome the possible 

drug overdose and the toxicity.119,120 Modification of nanoli-

posomes with polymers for dermal delivery of therapeutics 

causes the promotion of skin permeability and prolongs the 

retention time. PEG is one of the polymers successfully used 

in association with liposomes to enhance the dermal delivery 

of natural compounds. Entrapment of curcumin in PEG-

nanoliposomes promisingly prolonged its anti-inflammatory 

activity, promoted the permeation rate into the dermal layers, 

and accelerated the wound closure.120,121

Cellular and molecular mechanisms 
involved in the wound healing 
potential of herbal-based 
nanostructures
Antioxidative stress
Oxygen is an important local factor which is critical for 

the wound healing process due to its vital role in different 

stages of wound healing by mediating angiogenesis, enhanc-

ing re-epithelialization, and increasing collagen synthesis 

and fibroblast proliferation.122,123 Reactive oxygen species, 

such as hydrogen peroxide (H
2
O

2
) and superoxide (O

2
−), 

by-products of oxygen metabolism in the human body, are 

important regulators of wound healing.124,125 For maintaining 

the levels of free radicals at the desired level, medicinal 

plants are promising choices due to their inherent antioxidant 

potential, which are potent in regulating enzymes SOD, 

glutathione peroxidase, and catalase. The herbal-based 

compounds, plant extracts and essential oils, such as cur-

cumin, genistein, cellulose (extracted from Citrus reticulate), 

Asiaticoside, Chromola enaodorata extract, Co. forskohlii 

root extract, black seed oil, and wheat germ oil, in wound 

dressings inhibit the oxidative stress and exert antioxidant 

activity.40,89,96,120,121 Curcumin is known as a potent antioxidant 

compound, and nanosizing this herbal-based compound can 

be achieved without any significant alteration in its intrinsic 

antioxidant activity. This has been recognized by Li et al 

who observed 1% reduction in the antioxidant activity of 

nanocurcumin incorporated into chitosan/alginate hydrogels, 

in comparison to the unmodified curcumin (native form).119 

The inclusion of curcumin in wound dressings significantly 

decreased the wound oxidative stress by diminishing the 

SOD level.118 In another study, bioconjugation of AgNPs by 

Cat. roseus leaf extract caused strong antioxidant activity, 

rather than the conventional AgNPs, due to adherence of the 

functional groups of Cat. roseus extract to the nanoparticles.90 

Fraxinus angustifolia bark and leaf extracts showed antioxi-

dant activity against H
2
O

2
-induced oxidative stress in both 

in vitro and in vivo studies, which was due to the presence of 

a high content of quercetin and tannic acid, two of the most 

potent antioxidants. Apart from these results, the ability of 

these extracts was proved in chelating ferrous ions and this 

inhibited their activity to convert peroxides to free radicals. 

Their high chelating activity could be another reason for 

their antioxidative ability in the wound tissue. The higher 

cellular uptake of nanoformulated samples led to higher 

antioxidant activity and better wound healing function of 

these structures.126

Anti-inflammatory activity
Inflammation is involved in the first stage of wound healing 

process, which is characterized by the migration of leuko-

cytes into the wound, and mainly starts by the aggregation 

of platelets followed by infiltration of leukocytes. Leuko-

cytes are indispensable cellular components involved in the 

inflammatory response, which affect the pathogens, tissue 

degradation, and tissue formation, as well.127 The inflam-

matory response is crucial for the healing process, which 

orchestrates the cellular cascades associated with wound 

healing by supplying the growth factor as well as cytokine 

signals.3 On the other hand, in the physiological inflam-

matory response, inflammatory cells can cause preventive 

and inhibitory effects against bacterial invasion and debris 

degradation, as well.128
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The infiltration of cells at the wound site occurs after 

the invasion of monocytes into the wound tissue and their 

differentiation into macrophages. Macrophages can provide 

several growth factors and proinflammatory cytokines such 

as IL-1α and IL-1β, TNF-α, platelet derived growth factor 

(PDGF), TGF-α, keratinocyte growth factor, and vascular 

endothelial growth factor (VEGF).129 It is worth noting that 

inflammation can cause either advantageous (attraction of the 

immune system elements to the injury site, facilitating the 

repair of damage) or destructive (tissue dysfunction within 

prolonged inflammatory phase) effects during treatment of 

different disorders,130 and thus, control over inflammation 

is highly crucial. Based on the various growth factors and 

cytokines involved in normal and acute wound healing, 

the mechanism of modulation of inflammatory processes 

in wound repair should be cleared for different types of 

medications. Polyphenolic compounds are the promising 

candidates for regulating and modifying inflammatory 

responses. They have been found to be potent in regulating 

the levels of TNF-α, interferon-γ, and different types of 

ILs.131,132 Curcumin, one of the most important polyphenols, 

has long been used due to its high radical scavenging activity 

and its ability to reduce the inflammatory response, inhibit 

NF-kB, and downregulate TNF-α, COX2, LOX, NOS, and 

MMP-9, all of which play a significant role in the inflamma-

tory phase.46,133,134 In a study, curcumin showed efficient pro-

healing activity against excision wounds in rats, which was 

due to decreasing the level of  TNF-α, increasing the level 

of IL-10, and up-regulating the production of TGF-β1.46 The 

anti-inflammatory activity of other polyphenol-rich plants, 

such as Fraxinus angustifolia,126 confirmed the effective-

ness of this group of herbal-based products on early stages 

of wound healing.

Biosynthesized AgNPs and plant-loaded AgNPs are the 

other nanostructures possessing intrinsic anti-inflammatory 

activity. Bamboo cellulose nanocrystals impregnated with 

AgNPs were administered to mice, where they caused 

decreased inflammation through downregulating the levels 

of proinflammatory cytokines IL-6 (which is responsible 

for stimulating fibroblast proliferation) and TNF. The high 

levels of these two cytokines cause hyperinflammation and 

delay the wound healing process.135 The AgNPs formulated 

using Co. forskohlii root extract caused decrease in the num-

ber of neutrophils, macrophages, and other inflammatory 

cells.96 Application of B. laciniosa leaf extract in preparing 

AgNPs resulted in a significant decrease in the levels of 

proinflammatory cytokines IL-6 and IL-10 and consequently 

diminished the inflammation and provided scarless wound 

healing.86

Neovascularization and angiogenesis
After controlling inflammation, re-epithelialization, and col-

lagen synthesis, capillary tissues, called granulation tissues, 

are formed due to growth of capillaries and lymphatic vessels 

from the pre-existing vessels at the wound site.2 Two of the 

most important stimuli for angiogenesis are fibroblast growth 

factor (FGF) and VEGF.127 VEGF induces healing by aiding 

in vascular permeability and prevents inflammatory cells to 

reach the injured site, and accelerates the proliferation and 

migration of endothelial cells.136

The tragacanth gum scaffold incorporated with curcumin 

showed high efficacy in enhancing angiogenesis and form-

ing new blood vessels. Curcumin could be responsible for 

the well-increased angiogenesis.137 The angiogenesis can be 

triggered by green-synthesized metal nanoparticles.138 Apart 

from other effects of curcumin on wound healing stages, 

nanosizing curcumin causes enhancement in neovasculariza-

tion and angiogenesis, which could be due to its effects on 

nitric oxide synthase.107 Gold nanoparticles are an important 

group that successfully triggered angiogenesis by differen-

tial regulation of growth factors such as VEGF and related 

protein expression.36,139,140 The green-synthesized AuNP-

deposited hydrocolloid membranes showed accelerating 

effect on angiogenesis-related proteins by upregulating the 

expressions of VEGF, Ang-1, and Ang-2.121 Biosynthesized 

CuO nanoparticles (synthesized with F. religiosa leaf extract) 

and AgNPs (synthesized with guar gum and L. domesticum 

fruit peel extract) were also found potent in enhancing the 

capillary blood formation and facilitating angiogenesis and 

regulating proteins.73,94,98

PDGF is another growth factor possessing inhibitory 

effect in the wound microenvironment and regulating 

wound vascularization.141 Impregnation of bamboo cellulose 

nanocrystals by AgNPs vascular network formation induced 

angiogenesis by intensifying the production of VEGF and 

FGF (P0.05) and also increased the PDGF level.135 The 

production and accumulation of these growth factors could 

be due to the high capability of the prepared nanostructure to 

absorb water and regulate the moisture content of the wound 

microenvironment well, which enhances the proteolytic 

activity and induces wound repair.142

Re-epithelialization and wound 
regeneration
The synthesis of collagen, from fibroblast cells, is a key 

factor in homeostasis, re-epithelialization, and regeneration 

of wound healing process. Based on this fact, the probable 

effective role of different plant-based nanostructures on 

promoting collagen synthesis has been investigated. Emodin 
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acts as a promoter of collagen synthesis and fibroblast pro-

liferation, after encapsulating in fibrous mats.25,26 Fenugreek, 

Trigonella foenum-graecum, is an herb capable of modify-

ing the physicochemical characteristics of collagen and has 

been used for preparation of collagen-based materials.89 

Incorporation of fenugreek in silk fibroin nanofibrous mats 

was another way to improve the collagen synthesis and 

deposition, due to the high amounts of saponins and fla-

vonoids present in it.143

Nanosized curcumin could successfully increase collagen 

deposition in the granulation tissue, increase myofibroblasts 

and blood vessels in the granulation tissue and capillary 

formation, and enhance the contraction of wounds in a 

mouse model. This could be due to the fact that the nano-

structure enhanced the bioavailability of curcumin at the 

wound site and was potent in absorption of growth factors 

and cytokines.119

Tragacanth gum causes quicker regeneration due to 

the faster signaling pathway, which simulates the natural 

ECM and causes absorption of fibroblast cells to the derma 

layer.137 This biopolymer comprises mineral constitutes, 

namely, calcium (a key factor for epidermal cell migration 

and regeneration), acts as promoter in normal homeostasis 

of the dermal cells, and successfully modulates the prolif-

eration of keratinocytes.144 On the other hand, magnesium 

is effective in the motility of fibroblast cells as well as 

keratinocytes.145

Concluding remarks
Wounds are severe disorders affecting the quality of life of 

people all over the word. An efficient and fast healing process 

can reduce the costs and hospitalization, but achieving an 

ideal medicament is still an issue due to the complexity of 

skin tissue structure. In spite of the recent advances in the 

field of wound management and novel medications for wound 

healing and skin regeneration, traditional methods based on 

herbal and natural therapeutics are still known as promising 

alternative medications due to the diversity of active com-

ponents, ease of access, and their limited side effects and 

low costs. There are several review studies in the literature 

about the role of natural products as wound dressing. Some 

of them have analyzed the role of biomaterials from animal 

origin146–148 and some others have dedicated their focus of 

interest on plant-based biomaterials, but not in nanosize 

scales.2,149,150 The potential of these natural occurring products 

has been well presented in these studies. In a recent review, 

Andreu et al100 elucidated the efficacy of natural origin com-

pounds in combination with the common wound dressings. 

They have examined the current methods for preparation 

of nanostructured wound dressing from both natural and 

synthetic product polymers. Furthermore, the role of herbal 

medicine in management of different wounds has been 

reviewed in their study, while the studied compounds were 

not in the nanoscale. This study, for the first time, addressed 

the nanosizing method considerations for herbal-based natu-

ral compounds, as well as the mechanistic evaluation of the 

present herbal-based nanoformulations for wound dressing. 

In fact, this review presented a comprehensive study on the 

nanoformulations of herbal origin for wound management 

from both engineering and mechanistic points of view, while 

there is currently no similar review article available in the 

literature. Tables S1 and S2 give a summary of the plants 

and plant-derived phytochemicals that help in alleviation 

and healing process successfully. At this time, in spite of 

the advantages of the natural products in wound dressing 

and wound healing, development of these medicaments is 

continuously required to be improved. The appearance and 

development of nanoscience and technology could help to 

improve the efficacy of different therapeutics as well as 

herbal-based products. In recent years, nanostructures and 

nanoformulations have promisingly overcome the drawbacks 

of common medicaments, provide a smart healing process, 

regulate the release of therapeutics, reduce the doses required 

for healing, and provide a unique opportunity to facilitate 

healing even for chronic wounds. Different nanoformulation 

methods have long been used for producing plant-based nano-

structures in the presence or absence of synthetic materials. 

Electrospining method successfully provides wound dress-

ings which includes herbal compounds as the base material. 

The well-regulated porosity and the similarity of electrospun 

nanofibers to the skin tissue, in association with several other 

benefits such as the possibility of incorporation of various 

types of materials, make them the ideal dressing for wound 

management. According to the literature review, it can be 

concluded that, at this time, the plant-based electrospun 

nanofibers mainly facilitate the adhesion, proliferation, and 

differentiation of fibroblasts and keratinocytes. This could 

be attributed to their ability to provide ideal microenviron-

ments due to the porous structure and promising permeability 

and moisture retention of these herbal-based nanostructures. 

Another advantage of these nanostructures is the ability for 

co-electrospinning of the herbal-based compounds with 

other biomaterials, combining the advantages of all the con-

stituents. Application of medicinal plants and their extracts 

in forming metal-based biocompatible nanoparticles in a 

green and cost-effective method has produced a group of 

nanostructures with excellent antibacterial and antimicro-

bial activities. Different plant-mediated metal nanoparticles 
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possess the ability of preventing the bacterial colonization as 

well as prolonging the anti-inflammatory effects. According 

to the literature, impregnation of herbal-based compounds 

in nanoparticles, nanoemulsion, nanoliposomes, hydrogels, 

and so on is one of the most effective methods for enhanc-

ing their availability, controlling their release in the form of 

sustained delivery system to the wound site, and enhancing 

the permeability of these therapeutics even to the underlying 

skin layers, which all are necessary to the healing process. 

The water-insoluble herbal-based compounds are commonly 

used in this method to improve their solubility and wound 

healing efficacy.

The most important cellular and molecular mechanisms 

corresponding to the herbal-based nanostructures are anti-

oxidative stress, anti-inflammatory activity, angiogenesis, 

neovascularization, and re-epithelialization (Figure 3). 

Medicinal plants are the richest sources of antioxidants such as 

polyphenols and flavonoids. Nanostructures including herbal 

products such as curcumin, Asiaticoside, and Cat. roseus pos-

sessed radical scavenging activity and regulated the oxygen 

level in the wound site. Controlling the inflammatory phase 

could be achieved by reducing the inflammatory responses, 

inhibiting NF-kB, targeting inflammation pathways (intracel-

lular transcription and transduction), and downregulating the 

proinflammatory cytokines. Curcumin-based nanostructures 

were found to be the most potent herbal-based nanostructures 

in inflammatory phase, regulating the levels of TNF-α, IL-10, 

and TGF-β1. Biosynthesized AgNPs were another group of 

plant-based nanostructures playing a vital role in controlling 

the wound inflammation. Different herbal-based compounds 

and extracts (such as Co. forskohlii, B. laciniosa, O. chinen-

sis) used in the preparation of AgNPs caused a considerable 

anti-inflammatory activity attributed to the downregulated 

levels of TNF-α, IL-6, IL-1β, and IL-10. Improving angio-

genesis and vascularization during the wound healing process 

depends on the stimulation of FGF, VEGF, and PDGF. Cur-

cumin and plant-mediated metal nanoparticles were found 

to be potent in triggering angiogenesis via regulating these 

growth factors. Another key factor in wound healing process 

is the rate of re-epithelialization. Nanostructures including 

natural products such as emodin, fenugreek, curcumin, and 

tragacanth gum are some of the examples with the ability of 

prompting collagen synthesis and proliferation of fibroblasts, 

resulting in accelerated re-epithelialization. It is worth noting 

that although all of the prepared herbal-based nanostructures 

were successful in ameliorating wounds, curcumin-based 

nanostructures were found to be the most potent nanostruc-

tures, which play a significant role in controlling most of the 

wound healing stages. Among different methods used for 

preparing nanoformulations of phytochemicals, metal-based 

nanoparticles (especially AgNPs) involve the most pharma-

cological targets in the wound healing process, indicating 

their best therapeutic properties. The results of the current 

review article mainly confirmed the significance of natu-

ral compounds as alternative choices for healing different 

wounds and corroborated the success of nanotechnology in 

α β α
κ

Figure 3 The role of natural nanoformulations in different stages of wound healing.
Abbreviations: ECM, extracellular matrix; FGF, fibroblast growth factor; IL, interleukin; PDGF, platelet-derived growth factor; TNF, tumor necrosis factor; VEGF, vascular 
endothelial growth factor; ROS, reactive oxygen species; SOD, superoxide dismutase; CAT, catalase.
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enhancing the efficacy of different medicaments. The impact 

of nanostructure approaches for natural wound healing agents 

has gained wider attention because of improvement in tar-

geted therapy and bioavailability, as well as development of 

stability. Further pharmacological experiments are manda-

tory to evaluate the intracellular targets involved in wound 

healing effects of natural nanomedicine. Also, conducting 

well-designed clinical trials is necessary to confirm the safety 

and efficacy of natural product-based nanoformulations in 

treating wounds.
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Table S1 Herbal-based nanoformulations used for wound management

Plant name Fraction/extraction Wound healing model Reference

Electrospinning

Astragali Radix Hydroethanolic extract In vivo on Sprague Dawley rats 1
Tragacanth gum – In vivo on Sprague Dawley rats 2
Calendula officinalis NM In vivo on Sprague Dawley rats 3
Henna Leaves ethanolic extract In vivo on wistar rats 4
Fenugreek Seed extract In vivo on wistar rats 5
Soybean Protein isolates In vitro against primary HDFs 6
Spartium junceum L. vegetable branch extracts In vitro against human keratinocytes (HaCaT) 7
Tecomella undulata Bark methanolic extract In vitro 8
Centella asiatica Crude extracts In vitro on NHDF 9

Green-synthesized metal nanoparticles

Cassia roxburghii Aqueous extract In vivo (male wistar albino rats) 10
Arnebia nobilis Root aqueous extract In vivo on wistar albino rats 11
Biophytum sensitivum Aqueous extract In vitro on L929 fibroblast 12
Cellulose gum – In vivo Sprague Dawley rats 13
Coleus forskohlii Aqueous root extract In vivo on albino wistar rats 14
Drosera binata Leaf chloroform extract In vitro on human keratinocytes 15
Ficus religiosa Leaf aqueous extract In vivo on wistar albino rats 16
Naringi crenulata Aqueous extracellular leaf extract In vivo on wistar albino rats 17
Citrus reticulate Toluene:ethanol extract In vitro 18
Moringa oleifera Aqueous leaf extract In vivo on male albino rats 19
Potato starch – In vivo on Swiss albino rats 20
Guar gum – In vivo on wistar rats 21
Nyctanthes arbor-tristis L. ethanol leaf extract In vitro 22
Turmeric Acetone extract In vivo albino rats 23
Bryonia laciniosa Aqueous leaf extract In vivo on wistar rats 24
Cassia auriculata Aqueous leaf extract In vivo on wistar albino rats 25
Lansium domesticum Fruit peel aqueous extract In vivo Sprague Dawley rats 26
Phytophthora infestans Aqueous leaf extract In vivo on albino rats 20
Azadirachta indica Aqueous leaf extract In vivo on rabbits 27
Piper nigrum Aqueous leaf extract In vitro 28
Catharanthus roseus Methanolic leaf extract In vivo on albino rats 29
Propolis Propolis:gelucire aqueous extract In vivo on wistar rats 30
Orchidantha chinensis endophytic fungus OC-11 isolate In vivo Sprague Dawley rats 31
Linseed Linseed hydrogels obtained from aqueous extract In vitro 32
Momordica charantia Fruit ethanolic extract In vitro on L929 fibroblast 33

Loading on different nanoparticles

Eucalyptus eucalyptus essential oil In vivo on Sprague Dawley rats 34
Aloe vera Aqueous extract In vitro against human fibroblast cells 35
Cal. officinalis Aqueous extract In vitro against conjunctival epithelial cells 36
Dendrocalamus hamiltonii NM In vivo on Swiss albino mice 37, 38
Bambusa bambos Leave extract In vivo on Swiss albino mice 37, 38
Danggui Buxue Aqueous extract In vivo on Sprague Dawley rats 39
Black seed essential oil In vitro against HaCaT cells 40
wheat germ essential oil In vitro against HaCaT cells 40
Pluchea indica Leaf ethanolic extract In vitro against HO-1-N-1 buccal mucosa  

carcinoma-derived cells
41

Tragacanth gum – In vitro against human fibroblast cells 35
Silybum marianum L. Isolated silymarin content In vivo on male BALB/c mice 42
Fraxinus angustifolia Leaf ethanolic extract In vivo on CD-1 mice 43
Gum arabic – In vivo on C57BL6 mice 44

Abbreviations: HDF, human dermal fibroblast; NHDF, normal human dermal fibroblast; NM, not mentioned.
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Table S2 Nanoformulations of different phytochemical compounds used as wound healing agents

Phytochemical 
name

Structure Nanostructure 
method

Wound 
healing model

Therapeutic outcomes Reference

emodin electrospinning 
(encapsulated in 
cellulose acetate fiber 
mats)

In vitro (HDFa) The nontoxic nature of CA 
fibers containing emodin 
between 0.005% and 0.1% 
wt against HDFa cells 
(96.8%–87.2% viability)
Toxic nature of CA fiber 
mats containing 1.0% wt 
(31.6% viability)
↑Collagen synthesis of  
HDFa (twofold) for 
emodin-loaded fiber mats 
in comparison to the neat 
emodin

45

electrospinning with PvP In vivo on mice promoting fluid retainment 
and accelerating re-
epithelialization of wound 
in mice
Decreasing the wound area

46

eGCG eGCG-loaded 
nanoliposomes

In vivo on male 
BALB/c mice

Potent antibacterial activity 
against Staphylococcus aureus 
bacterial strain
Protective effect on 
infections induced by 
methicillin-resistant S. aureus

47

Dihydroquercetin Nanocomplex with 
lecithin nanoparticles

In vivo on rats ↓wound area
↑epidermis regeneration rate
High antioxidant activity

48

Curcumin electrospinning (loaded 
on CA nanofibers)

In vitro on 
NHDF

↑Cell viability
↓H2O2-induced cellular 
death
↑Collagen synthesis
↑Proliferation rate

49

electrospinning 
(curcumin/gelatin-
blended nanofibrous 
mats)

In vitro on HS-
27 cells/in vivo 
on rats

↑Cell metabolism and 
proliferation
↑Cell adhesion and  
spreading
↑Mobilization and migration 
of fibroblasts
↓wound closure time

50

↑Re-epithelialization and 
granulation rate
↑Collagen deposition

(Continued)
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Table S2 (Continued)

Phytochemical 
name

Structure Nanostructure 
method

Wound 
healing model

Therapeutic outcomes Reference

electrospinning 
(curcumin-loaded 
gum tragacanth/
poly(ε-caprolactone) 
electrospun nanofibers)

In vivo on rats ↑Healing rate
↓wound area
↑Collagen content
↑Rate of granulation tissue 
formation
↑The rate of transition 
from inflammation to tissue 
granulation phases

51

Loading on the collagen 
functionalized nano-
graphene oxide

In vitro against 
NIH 3T3 
embryonic 
mouse 
fibroblast/
in vivo on the 
wistar rats

↑Cell adhesion due to the 
high hydrophilicity of scaffold
Faster cell migration (90% 
coverage of the scratch area 
within 24 hours)
Potent antibacterial activity
↑wound closure rate

52

Nanocomposite 
hydrogel (composed 
of curcumin, N,O-
carboxymethyl chitosan, 
and oxidized alginate)

In vivo on rats ↓wound area
↑Re-epithelialization and 
granulation rate
↑DNA and protein content 
on seventh day post-wounding
↑Collagen deposition

53

Loading the curcumin/
Ag nanoparticles on the 
nanocellulose-dispersed 
chitosan film

In vivo albino 
rats

↓Scars at the closure of 
wounds
↑Collagen fibers and 
angiogenesis
↑wound contraction rate
↑epithelialization rate
↓wound area (up to 97% 
within 27 days)

23

Chitosan/poly-g-glutamic 
acid/pluronic/curcumin 
nanoparticles

In vitro (HSF)
In vivo

↓Inflammation and infection
↑Neocollagen regeneration
↓Nitric oxide production

54

Curcumin-loaded 
polycaprolactone-
polyethylene glycol 
nanofibers

In vitro (on 
mouse myoblast 
cell line C2C12) 
and mouse 
macrophage cell 
line RAw264.7/
in vivo on 
female BACB/c

High biocompatibility of 
scaffold
↑Proliferation rate of C2C12 
cells
↑Attachment and growth of 
C2C12 cells due to porous 
structure of scaffold
Inhibition of NO production 
in RAw264.7 cells
Antibacterial activity against 
S. aureus
↑wound closure rate

55

encapsulation in 
propylene glycol 
nanoliposomes

In vitro (on 
HDF)

Considerable recovery rate
Complete wound 
contraction after 18 days

56

Loading on chitosan-
based nanoemulsion gel

In vivo on 
excisional 
wounds in 
wistar rats

Full wound closure after 
12 days
enhancing granulation tissue 
formation

57

(Continued)
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Table S2 (Continued)

Phytochemical 
name

Structure Nanostructure 
method

Wound 
healing model

Therapeutic outcomes Reference

↑wound contraction rate
High permeation of curcumin 
to the underlying skin layers

Loading on gel-core 
hyaluosomes

In vivo on 
Sprague Dawley 
rats

complete healing on day 7
↑Density of collagen fibers
↑Deposition of collagen 
fibers
↑Re-epithelization rate
↑Skin penetration and 
dermal localization

58

entrapment in 
hyperbranched 
polyglycerol electrospun 
nanofibers

In vivo on rats/
in vitro on 3T3 
Swiss mouse 
fibroblast cells

High fibroblast cell adhesion 
and spreading
Efficient cell to cell 
interaction
Complete cell migration

59

Hydrogel encapsulated 
in micelles

In vivo on rats ↑Wound breaking strength
↑Collagen content
↑wound maturity
↑Catalase activity at the 
wound site
↑wound closure
↑wound contraction and 
re-epithelialization

60

Asiaticoside
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electrospinning (loaded 
on the CA nanofibers)

In vitro on 
NHDF

↑Cell viability and 
proliferation rate
↓H2O2-induced cellular death
↑Collagen synthesis

61, 62

Cellulose acetate electrospinning (with 
polyester urethane 
composite)

In vivo on 
wistar rats

Inhibition of the growth of 
bacteria such as Escherichia 
coli
Good adhesion of cells to 
the nanofibers
High viability percentage of 
fibroblast cells
↑Regeneration rate and 
recovery performances

63

electrospinning (with 
gelatin)

In vitro on 
NHDF

↑Proliferation rate of cells
Good adhesion of cells to 
the nanofibers
↑expression of collagen

64

electrospinning (with 
PCL)

In vitro against 
NIH 3T3 
embryonic 
mouse 
fibroblast

↑Growth rate of cells
↑Cell attachment
High antibacterial activity 
against S. aureus and E. coli 
bacteria

65

(Continued)
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Table S2 (Continued)

Phytochemical 
name

Structure Nanostructure 
method

Wound 
healing model

Therapeutic outcomes Reference

electrospinning (with 
PLA)

In vivo on 
BALB-c male 
mice

↑Rate of wound closure
↑Re-epithelialization rate and 
granulation tissue
↑Collagen deposition

66

electrospinning (with 
zein and polyurethane)

In vitro 
against 3T3-L1 
fibroblasts

↑Growth rate of cells
↑Cell attachment
High antibacterial activity 
against S. aureus and E. coli 
bacteria

67

wet electrospinning In vitro against 
L929 fibroblasts

↑Growth rate of cells
↑Cell attachment

68

electrospinning (with 
gelatin/hydroxyapatite 
nanocomposite)

In vivo on 
wistar rats

↑wound closure
↑Re-epithelialization rate
↑Angiogenesis index and 
neovascularization

69

Abbreviations: EGCG, epigallocatechin gallate; HDF, human dermal fibroblast; HDFa, human dermal fibroblast adult; HSF, human skin fibroblast; NHDF, normal human 
dermal fibroblast; PCL, poly (ε-caprolactone); PLA, polylactic acid; PvP, polyvinylpyrrolidone; CA, cellulose acetate.
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