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Abstract: Ca2+-ions have a range of affinities to different proteins, depending on the various 

functions of these proteins. This makes the determination of Ca2+-protein affinities an interesting 

subject for functional studies. We have investigated the performance of two methods – Fold-X 

and AutoDock vina – in the prediction of Ca2+-protein affinities. Both methods, although based 

on different energy functions, showed virtually the same correlation with experimental affini-

ties. Guided by insight from experiment, we further derived a simple linear model based on the 

solvent accessible surface of Ca2+ that had practically the same performance in terms of absolute 

errors as the more complex docking methods.
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Introduction
Calcium ions (in the following termed Ca2+-ions or Ca2+) are important signalling agents 

that mediate a large number of intra- and extra-cellular processes,1 for instance blood 

clotting, neurotransmission, or muscle contraction. Many of these processes involve 

proteins that bind Ca2+ more or less transiently, and accordingly, with a wide range of 

Ca2+-protein affinities.2 In order to study the functional mechanisms of these proteins, 

it is desirable to determine these affinities. For some proteins these affinities have 

been determined experimentally,3 but to our experience these data are not available 

for most of the Ca2+-binding proteins. Given that the Protein Data Bank (PDB4) cur-

rently contains about five thousand structures of such proteins, it would be attractive 

for mechanistic studies to have a method at hand to quickly estimate Ca2+-protein 

affinities based on the structures of the corresponding complexes.

Theoretically, it should be possible to compute the Ca2+-protein affinity by free 

energy techniques based on physical models, eg, by pulling the ion out of its pocket 

with a series of umbrella potentials in molecular dynamics simulations and integrating 

over the potential of mean force,5 or by the Molecular Mechanics – Poisson-Boltzmann/ 

Surface Area (MM-PB/SA) method.6 Despite their indisputable potential, these tech-

niques have in the case of Ca2+-protein affinity so far not been demonstrated quantita-

tive agreement with experiment, and, in addition, they are relatively costly in terms 

of computational resources. An alternative would be an estimation using empirical 

approaches. An early attempt towards a fast estimation of Ca2+-protein affinity was the 

work by Boguta et al7 who related secondary structure information with Ca2+-protein 

affinity. They found that for some proteins these relations could be used to classify their 

affinities, while for other proteins their scheme was less successful.8 More recently, 
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Schymkowitz et al9 have published Fold-X, a method and 

empirical force field developed for, amongst other things, the 

fast prediction of the binding sites and affinities of metal ions, 

including Ca2+ and its rival Mg2+. Since Fold-X is a kind of 

docking method for special ligands, it would be interesting to 

compare the predictive performance of this method with that 

of a non-specialized state-of-the-art docking method in order 

to assess the advancement achieved by the special parametri-

zation of protein-metal-ion interactions in Fold-X.

The importance of Ca2+-protein binding has over the 

years led to large body of experimental work from which 

a qualitative picture has emerged of the factors that govern 

Ca2+-protein affinity.2,3 It is particularly notable that Ca2+-

binding usually seems to be dominated by a gain in entropy, 

probably due to the release of water molecules from the 

solvation shell of the ion; in other words: the less ligands of 

the protein-bound Ca2+ are water molecules (and the more 

are functional groups of the protein), the tighter the binding. 

Such qualitative models may also be helpful for guiding the 

development of methods for affinity estimation.

In what follows we will address some of the points 

raised above, namely, we will compare the correlation of 

experimental affinities with affinities predicted by Fold-X and 

the state-of-the-art docking method AutoDock vina.10 The 

surprising finding of this comparison has prompted further 

study to possibly identify more simple computational models 

with the same power and speed in estimation of Ca2+-protein 

affinities. We will show that such models can be found and 

that they reflect knowledge attained by experimental work.

Materials and methods
We compared two docking methods for their ability to esti-

mate Ca2+-protein affinities, Fold-X9 and AutoDock vina.10 

Fold-X has been published as a method for the prediction 

of positions of metal-ions on proteins, and for the prediction 

of affinities between proteins and metal-ions. The energetic 

model underlying Fold-X has an ad hoc form with a number 

of parameters that have been fitted to experimental data.9 We 

obtained Fold-X versions 2.5.2 and 3.0b3 as executables for 

Linux from the respective server, including documentation. 

Despite considerable efforts we were not able to generate 

estimates of affinities of metal-ions to proteins using the 

commands described in the documentation of the software; 

we suspect that the option in those versions of the software 

is dysfunctional. Fortunately, the authors of Fold-X have 

offered as Table 4 in their supplementary material to Ref9 a 

list of 48 Ca2+-binding pockets in 19 X-ray structures, mostly 

with experimentally determined affinities, and affinities 

predicted with an earlier version of Fold-X. Hence, we took 

these data (“Fold-X dataset”) as basis for the comparison, 

specifically the columns “experimental energy” and “pre-

dicted energy” of Table 4 in Ref.9 For five of the binding 

pockets, two experimental energies were given; since the dif-

ferences between the first and second energies were relatively 

small, only the first value was considered in each case. For 

ease of comparison with Ref 9 we give all affinities in units 

of kcal/mol (1 kcal/mol = 4.1868 kJ/mol).

The 19 X-ray structures of the Fold-X dataset were 

retrieved from the Protein Data-bank (PDB4) for comparative 

analysis with AutoDock vina.10 AutoDock vina version 1.0.3 

for Linux was downloaded as executable from the website 

of its authors.

Usually, some information is missing from X-ray struc-

tures that is needed for energy calculations. Most impor-

tantly, this is the case for hydrogen positions, including also 

hydrogen bond networks. Related to this is the possibility 

to optimize X-ray structures by flipping carbonyl-oxygens 

and –NH groups (both groups have similar electron densi-

ties). Finally, sometimes X-ray structures contain atomic 

overlaps that can be removed relatively easily. To see 

whether by considering these effects, affinity predictions 

can be improved, we used three different protocols with 

AutoDock vina.

In the first protocol, PDB files were prepared with the 

AutoDockTool suite of AutoDock 411 by removing water 

molecules, non-standard residues, and alternate positions of 

residues. Then polar hydrogens were added to the protein 

in standard orientation without rotational optimization, 

and Gasteiger charges12 were computed for protein atoms 

by AutoDock. Finally, all Ca2+-ions in the protein were 

redocked with AutoDock vina using default parameters, 

except for the “search space”, ie, the volume in which the 

optimal docking position is searched for. Since we were 

interested in affinities at the crystallographically determined 

positions of the Ca2+-ions, and not in finding optimal posi-

tions, we restricted the search space to the minimum allowed 

by AutoDock vina around the crystallographically deter-

mined positions, namely a cube of 1 Å (0.1 nm) length in 

x-, y-, and z-directions around the crystallographic positions 

of the Ca2+-ions. This protocol was applied to all Ca2+-ions 

in the Fold-X dataset.

In the second protocol we introduced in the preparation 

of the protein structures a further step in which the “reduce” 

method13 was used to optimize positions of hydrogen atoms 

around crystallographically determined heavy-atom posi-

tions, including also potential flips of amide-groups in side 
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chains of asparagine and glutamine. Otherwise this second 

protocol had the same elements as the first, including also 

the restrained docking of Ca2+-ions with AutoDock vina.

The third protocol was similar to the first one, but addi-

tionally optimized hydrogen positions with pdb2pqr,14 includ-

ing debumping to avoid steric clashes and optimization of 

the hydrogen bonding network.

For computations of solvent accessible surfaces (SAS) 

we used MSMS version 2.5.715 with standard atomic radii 

for protein atoms and 1 Å for Ca2+. All statistical analyses 

were carried out with R.16

Results and discussion
Comparison of Fold-X 
and AutoDock vina
We first analyzed the correlation of Ca2+-affinity predictions 

by Fold-X and AutoDock vina with experimental data in the 

Fold-X dataset. To this end, linear models were fitted using 

the least-squares algorithm. The Fold-X predictions had a 

value of Pearson correlation coefficient r of 0.67 with a least-

square fitted straight line  ∆G
exp

 = 3.4221 kcal/mol + 0.5854 

∆G
pred

 (Figure 1). The predictions by AutoDock vina (using 

the first protocol described in “Materials and methods”) 

had r = 0.71 with a best-fit line ∆G
exp

 = −2.393 kcal/mol + 

7.309 ∆G
pred

 (Fig. 2). Both above correlation coefficients 

are different from zero with high significance according to 

t-tests (p ≈ 10–6). Although the range of predictions by Fold-

X has a much better overlap with the range of experimental 

affinities, the linear correlation as given by r is slightly worse 

than that obtained with the AutoDock vina predictions. How-

ever, closer inspection of the data shows that the ranking of 

r-values is mainly based on a single value, the outlier in the 

lower left corner in Fig. 2. This outlier is given in the Fold-X 

dataset with a negative experimental affinity of −1.2 kcal/mol, 

though without reference to an experimental source of that 

value. The corresponding structure in the Fold-X dataset is 

that of a calmodulin of Paramecium tetraurelia17 (PDB entry 

1exr), and the conspicuous affinity value probably refers to 

an unusual fifth Ca2+-ion bound to a pocket that, according to 

the crystallographers, probably had been created by crystal 

contacts and thus may be without functional relevance. In the 

Fold-X dataset there is no prediction given for this pocket, 

while AutoDock vina produces the mentioned outlier. We 

can interpret this complex as representative of an extremely 

weakly bound Ca2+, and if we replace the experimental 

value of −1.2 kcal/mol by 0 kcal/mol (ie, zero affinity) the 

correlation coefficient r of AutoDock vina and experiment 

is practically unchanged at 0.71. If we omit this experimen-

tal value altogether, the value of r drops to 0.63, which is 

somewhat lower than r = 0.67 of Fold-X with experiment. 
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Figure � Correlation of Fold-X predictions and experiment.  The straight line is a 
least-square fit between experimentally determined Ca2+-protein affinities (∆Gexp) 
and affinities predicted with Fold-X (∆Gpred). Pearson correlation coefficient is r = 
0.67. Data.8
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Figure � Correlation of AutoDock vina predictions and experiment. The dashed 
straight line is the least-square fit between experimentally determined Ca2+-protein 
affinities (∆Gexp) and affinities predicted with AutoDock vina (∆Gpred). Pearson correla-
tion coefficient is r = 0.71. If the outlier in the lower-left is dropped, r decreases to 
0.63 (solid line). Experimental affinities.8
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If we consider the 95% confidence intervals based on a 

t-test for r we obtain [0.46, 0.81] for Fold-X vs experiment 

and [0.41, 0.78] for AutoDock vina vs experiment. Thus, 

the correlation coefficients between Fold-X predictions and 

experiment, and AutoDock vina predictions and experiment 

are virtually equal. This is astonishing since Fold-X had 

been at least partially calibrated with the same dataset, as 

mentioned in Ref,8 while AutoDock vina has probably not 

been specifically developed to solve the problem for which 

we have employed it here.

The two other protocols used in conjunction with 

AutoDock vina (see “Materials and methods”) had little effect 

and did not improve the correlation with experiment (r = 0.71 

and r = 0.69 for the second and third protocol, respectively). 

This may be due to the fact that these protocols mainly affect 

hydrogen positions, while Ca2+-binding pockets usually are 

dominated by anionic groups with few protons.

A simple model for estimating  
Ca2+–protein affinities
The fact that Fold-X and AutoDock vina did show the same 

correlation with experiment could be a consequence of the 

two underlying energy models capturing the same dominat-

ing cause of Ca2+-protein affinity. If this hypothesis is true, 

we should find a strongly decreased correlation of the two 

models with experiment after removing the contribution of 

that dominating cause out of the data.

A candidate for such a dominating effect mentioned in the 

introduction is the entropy gain due to water molecules that 

are released from the first hydration shell of Ca2+ on bind-

ing of the ion to the protein. In other words, the more water 

molecules are still attached to the protein-bound Ca2+, the 

lower the entropy gain and thus, the lower the affinity. This 

argument suggests an avenue to a computational test of the 

above hypothesis of a dominating factor: if we assume that 

the number of water molecules attached to the protein-bound 

Ca2+ is proportional to the solvent accessible surface (SAS) 

of the ion, we should expect a negative linear correlation of 

experimental free energy of binding ∆G
exp

 and SAS. The part 

of ∆G
exp

 not explained by the correlation with SAS is then 

contained in the residuals e
i
 = αSAS

i
 + β −∆G

exp,i
, with α and 

β slope and intercept, respectively, of the least-squares fitted 

linear model, and SAS
i
 and ∆G

exp,i
 the SAS and experimental 

affinity, respectively, of the ith Ca2+ in the Fold-X dataset. 

If the above hypothesis of a dominating factor is true, there 

should be a much smaller correlation between the predicted 

∆G
FoldX,i

 (and ∆G
vina,i

) and e
i
 as compared to the correlation 

between ∆G
FoldX,i

 (and ∆G
vina,i

) and ∆G
exp,i

. In the following 

we carry out this partial correlation analysis.

As solvent probe radius we first assumed 1.4 Å, a value 

that is frequently used to model a molecular “water-sphere”. 

With this sphere the distribution of SAS values was strongly 

skewed with a peak at the lowest SAS values. In fact, in 

thirteen of the binding pockets in the Fold-X dataset, Ca2+ 

was not accessible at all (SAS = 0 Å2). An Anderson-Darling 

test rejected with high significance that the SAS values are 

normally distributed. Therefore, the correlation with ∆G
exp

 

was not tested with Pearson correlation coefficient r but with 

Spearman rank correlation  ρ. We found that ρ = −0.52 was 

significantly different from zero (significance level 0.05, 

P = 2 ⋅ 10−4) (see Table 1). This correlation dropped only 

slightly when the outlier discussed above was omitted.

The correlation of ∆G
FoldX

 with the residuals e
i
 of the 

least-squares fitted linear model ∆G
exp

(SAS) was somewhat 

lower (ρ = 0.52) than the correlation of ∆G
FoldX

 with ∆G
exp

, 

but remained highly significant (P = 4 ⋅ 10−4). The same 

was true for ∆G
vina

 (ρ = 0.50, P = 4 ⋅ 10−4). In view of our 

hypothesis this means that there is an effect on the affinity 

that can be formulated in terms of SAS, but it may not be 

dominating affinity.

Our argument has so far neglected the fact that the crystal 

structures are results of an averaging process. A protein at 

ambient temperatures explores many conformations, so 

that the solvent accessibility of Ca2+-ions computed for the 

Table � Spearman rank correlation ρ of four models with experimental affinities ∆Gexp and residuals e

Modela   ρ(∆Gexp, Model)b ρ(e∆Gexp, SAS1.4, Model)c ρ(e∆Gexp,SAS0.5, Model)d

SAS1.4 −0.52 (2 ⋅ 10−4)

SAS0.5 −0.52 (2 ⋅ 10−4)

∆GFoldX  0.66 (2 ⋅ 10−6) 0.52 (4 ⋅ 10−4) 0.39 (0.01)

∆Gvina  0.64 (3 ⋅ 10−6) 0.50 (4 ⋅ 10−4) 0.34 (0.02)

Notes: afour linear least squares fit models with input variables SAS with probe radius 1.4 Å, SAS with probe radius of 0.5 Å (see Eq. (1)), affinities computed with Fold-X, 
affinities computed with AutoDock vina; bSpearman rank correlation ρ of experimental affinities ∆Gexp with predictions of fitted models; cρ of residuals of model based on fit 
with SAS1.4 with Fold-X and AutoDock vina, respectively; dρ of residuals of model based on fit with SAS0.5 with Fold-X and AutoDock vina. Numbers in parentheses are p-values 
for the null-hypothesis that ρ = 0.
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crystal structure may not reflect its true accessibility. Since 

Ca2+-ions in proteins are often surrounded by a tightly packed 

first co-ordination shell and thus have minimum solvent 

accessibility, we expect that conformational flexibility could 

perturb that packing and thus lead on average to a higher 

solvent accessibility. An approach that takes mobility into 

account could be to simulate the molecular dynamics and 

compute the accessibility as thermodynamic average. As this 

is computationally expensive, and we were more interested 

in a fast approximation, we tried to find a faster alterna-

tive that works in a similar direction. In a sense, the higher 

accessibility due to the protein flexibility can be mimicked 

by using a probe with a smaller radius. We therefore carried 

out the partial correlation analysis described above with a 

series of smaller probe radii between 1.4 Å and 0.3 Å. The 

highest correlations of SAS with ∆G
exp

 were obtained with 

0.4 Å and 0.5 Å. As the numerically safe minimum probe 

radius in MSMS (see “Materials and methods”) is 0.5 Å, 

we completed our analysis with this value (see Table 1 and 

Figure 3).

While the correlation  ρ of SAS with  ∆G
exp

 changed only 

marginally from −0.52 to −0.53 and the p-value remained 

constant, the correlation of the residuals with ∆G
FoldX

 and 

∆G
vina

, respectively, dropped more strongly to 0.39 and 0.34 

with p-values of 0.01 and 0.02 indicating no longer highly 

significant correlation. Omission of the discussed outlier does 

not change the picture; conversely, one could argue that a fully 

solvent exposed Ca2+ with ∆G = 0 (which is approximately 

the case for the outlier) should be included in the data to 

represent the limiting case of no binding. Overall we can 

conclude that SAS with probe radius of 0.5 Å (SAS
0.5

) indeed 

models a dominating effect on affinity.

For a simple model to predict ∆G from SAS we did a 

least-squares fit of SAS
0.5

 and ∆G
exp

 and found

  ∆G
exp

 ≈ − 0.63 · SAS
0.5 

+ 11.95 (1)

with SAS
0.5

 in Å2 and ∆G
exp

 in kcal/mol. Following the above 

argument we replaced in the fit the outlier by the point given by 

theoretical values for an unbound Ca2+, ie, SAS
0.5

 = 4π(r
ca−ion

 + 

r
probe

)2 = 4π1.52 = 18.85 and ∆G = 0, and enforced inclusion 

of this point (18.85, 0) in the linear model. The mean of the 

absolute errors of this model on the Fold-X dataset was 1.9 

kcal/mol, which is not much larger than the mean absolute 

error of 1.8 kcal/mol of Fold-X itself against ∆G
exp

.

We assessed the robustness of the model of Eq. (1) in a 

leave-one-out test: Each of the ∆G
exp

 values was left out of 

the fitting procedure, and then a model was derived from 

the other values. The ∆G
exp

 of the Ca2+-ion left out was then 

predicted by applying the new model to the SAS
0.5

 value of 

the left-out Ca2+-ion. This was iterated over all ∆G values. 

The resulting mean of absolute errors was 2.0 kcal/mol.

Thus, we have achieved our goal of a simple and fast 

computational procedure that allows an estimation of Ca2+-

protein affinities based on the structure of the complexes. 

Judged from the numerical experiments described above, the 

accuracy of the method should be high enough to classify 

Ca2+-binding pockets into weakly or strongly binding. The 

accuracy is limited by several factors, of which we mention 

two: First, as pointed out in Ref 8 the experimental data on 

which the model has been based may in part not satisfy 

modern standards. Second, the simple model of Eq. (1) 

does completely neglect that the binding of calcium is often 

accompanied by global re-arrangements of protein conforma-

tion that also affect the free energy of binding.2

Finally, we can speculate how Fold-X and AutoDock 

vina with their different energy functions could nevertheless 

capture the effect expressed in terms of SAS that we mainly 

attribute to the entropy gain due to release of water molecules 

bound to the solvated Ca2+. Neither the energy function 

of Fold-X nor that of AutoDock vina contains a term that 

explicitly takes into account this physical effect. However, 

both Fold-X and AutoDock vina evaluate the Ca2+-protein 

affinity essentially by estimating interactions of Ca2+ with 

the atoms of the protein lining the binding pocket. According 
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Figure � Correlation of SAS (probe radius 0.5 Å) and experiment. The straight line 
is the least-squares fit between experimentally determined Ca2+-protein affinities 
(∆Gexp) and the solvent accessible surfaces (SAS) of the Ca2+-ions. Spearman rank 

correlation coefficient ρ is  −0.53 (P = 2 ⋅ 10−4 for null-hypothesis ρ = 0). Experi-
mental affinities.8
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to our experience these pockets are dominated by anionic 

groups and groups with negative partial charges. The direct 

interaction of Ca2+ with such negative groups is in fact taken 

into account by Fold-X and AutoDock vina, and this may 

be the cause of the apparent correlation with SAS: the more 

negative groups are around a Ca2+, the lower the predicted 

affinity due to direct interaction, but also the lower the SAS 

of that Ca2+, because each of the neighboring groups will 

supplant water molecules and lead to their release.
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