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Background: Encapsulation of hydrophilic drugs within liposomes can be challenging.

Methods: A novel chitosan derivative, O-palmitoyl chitosan (OPC) was synthesized from chito-

san and palmitoyl chloride using methane-sulfonic acid as a solvent. The success of synthesis was 

confirmed by Fourier transform infra-red (FT-IR) spectroscopy and proton NMR spectroscopy 

(H-NMR). Liposomes encapsulating ferrous sulphate as a model hydrophilic drug for intestinal 

delivery were prepared with or without OPC inclusion (Lipo-Fe and OPC-Lipo-Fe). 

Results: Entrapment of iron was significantly higher in OPC containing liposomes compared to 

controls. Quantitative iron absorption from the OPC liposomes was significantly higher (1.5-fold 

P,0.05) than free ferrous sulphate controls. Qualitative uptake analysis by confocal imaging 

using coumarin-6 dye loaded liposomes also indicated higher cellular uptake and internalization 

of the OPC-containing liposomes. 

Conclusion: These findings suggest that addition of OPC during liposome preparation cre-

ates robust vesicles that have improved mucoadhesive and absorption enhancing properties. 

The chitosan derivative OPC therefore provides a novel alternative for formulation of delivery 

vehicles targeting intestinal absorption.

Keywords: gut delivery, intestinal absorption, Caco-2, ferrous sulfate

Introduction
Liposomes are formed from the spontaneous reordering and organization of phospholipid 

molecules in an aqueous medium that results in the formation of vesicles comprising 

one or more lipidic bilayers and an aqueous core.1 Bioactive molecules can either be 

encapsulated within the core, or incorporated within the phospholipid bilayer/bilayer 

interphase. Since they are composed of biologically similar lipids, liposomes are non-

toxic, biocompatible, and biodegradable as a carrier system.2 Liposomes thus represent 

an attractive delivery system for pharmaceutical applications where they can be utilized 

for targeted and controlled drug delivery, and in the cosmetic and food industry where 

the focus is on protection of the active ingredient and enhanced permeability and 

absorption.3,4 The lipid composition of liposomes can also affect the level of incorpora-

tion of drug/substances perhaps by affecting the packaging of vesicular bilayers.5

Although liposomes are capable of incorporating both hydrophilic and hydro-

phobic drugs, encapsulation of hydrophilic molecules is most challenging, partly 

due to loss of drug in the external aqueous phase during liposome formulation.6 This 

issue is further exacerbated in the case of ferrous iron whereby the metal iron–lipid 

interaction is known to have a detrimental effect on the integrity of the lipid bilayer.7 

Ferrous sulfate is a hydrophilic drug that is commonly used for iron supplementation 

therapy, most often via oral delivery. Its utility is severely limited by its ability to 

cause adverse gastrointestinal events.8,9 Others have also reported low iron absorption 
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from lipid-based iron delivery products when used as oral 

iron supplements.10

The polycationic biopolymer chitosan has been 

explored and employed in a number of liposome systems to 

improve their physiochemical stability and cellular uptake 

characteristics.11–15 Chitosan is a natural polysaccharide 

obtained by alkaline deacetylation of chitin, the major com-

ponent of crustacean shells.16 It has an excellent biocompat-

ibility profile due to its biodegradable nature; within the body 

it is metabolized by a number of enzymes (eg, lysozyme, 

di-N-acetyl chitobiase, N-acetyl-beta-d-glucosaminidase, 

and chitotriosidase).17,18 In addition, chitosan has strong 

mucoadhesive properties due to the presence of amine 

groups in its structure, which lead to electrostatic interac-

tions with the negatively charged cell surfaces, with resultant 

bioadherence.19,20 Chitosan coating onto the surface of micro 

or nanoparticles is therefore frequently used as a strategy 

to facilitate increased gastrointestinal uptake.21,22 Surface 

coating of liposomes with chitosan has also been shown to 

improve vesicle stability. Chitosan adsorbs strongly on the 

vesicle surface due to interplay between its amine groups and 

the negatively charged phospholipid polar heads.23 Unmodi-

fied chitosan, however, is limited in that the surface coating 

it forms on the liposomes is prone to rapid degradation in 

the gastric environment, thus affecting vesicle integrity 

and impairing the utility of these carriers for oral delivery 

applications.7

Chitosan is soluble only in dilute acids, which limits 

formulation approaches and hence its applications.11 Several 

studies have sought to improve the physical and chemical 

characteristics of chitosan by conjugating hydrophobic or 

hydrophilic moieties to its structure, such as alkyl groups, 

poly (ε-caprolactone), and poly (ethylene glycol) (PEG).24,25 

Acylation of chitosan can be carried out at the amino (NH
2
) 

group, the hydroxy (OH) group, or at both (N, O acyl 

chitosan) to obtain hydrophobic derivatives that are soluble 

in organic solvents such as chloroform, acetone, and dichlo-

romethane. These chemical modifications have led to the 

development of novel chitosan derivatives that have further 

widened its drug delivery applications.

In this study, we synthesized and characterized a novel 

hydrophobic chitosan derivative, O-palmitoyl chitosan 

(OPC), and used this to formulate liposomes loaded with 

ferrous sulfate as a model hydrophilic drug. Cytotoxicity, 

as well as qualitative and quantitative drug uptake from the 

liposomes, was evaluated in vitro using the human intestinal 

cell line Caco-2.

Materials and methods
Materials
Chitosan (chitosan oligosaccharide, molecular weight: above 

5k by viscosity method) was obtained from Kitto Life Co., 

Seoul, Korea, and egg phosphatidylcholine (egg PC) was 

obtained from Lipoid (Ludwigshafen, Germany). Palmitoyl 

chloride, ferrous sulfate, coumarin-6, cholesterol, and all 

other chemicals, reagents, and solvents were of analytical 

or cell culture grade, and purchased from Sigma-Aldrich 

(Gillingham, UK). Caco-2 cells were purchased from 

European Collection of Cell Cultures (catalog no. 09042001; 

ECACC, Salisbury, UK). Ferritin ELISA Kit (product 

code S-22) was from Ramco (ATI Atlas, Chichester, UK) 

and BCA Protein Assay Kit (product no. 23225) was from 

Pierce (Thermo Fisher Scientific, Basingstoke, UK). Cell 

culture media, fetal calf serum (FCS), and reagents were 

from Thermo Fisher Scientific. Cell Culture Plasticware 

was purchased from Nunc (Roskilde, Denmark) or Corn-

ing (Amsterdam, the Netherlands). All reagents used were 

prepared using ultrapure water (resistivity of 18.2 MΩ cm). 

Prior to use, all glassware and utensils were soaked in 10% 

HCl and rinsed with ultrapure water to remove any potential 

traces of residual minerals.

Methods
synthesis of O-palmitoyl chitosan
OPC was synthesized from chitosan and palmitoyl chloride 

using methanesulfonic acid as a solvent in order to protect 

the amino groups of chitosan. Chitosan was dissolved in 

methanesulfonic acid at room temperature for 1 hour and 

palmitoyl chloride was added dropwise with continuous 

stirring. The molar ratio of the repeating unit of chitosan to 

palmitoyl chloride was 1:2. The reaction mixture was kept 

under stirring conditions for 5 hours, before terminating 

the reaction by adding crushed ice. The resultant mixture 

contained OPC along with residual products such as unre-

acted chitosan, unreacted palmitoyl chloride, and chitosan 

reacted with methanesulfonic acid. Methanesulfonic acid was 

removed using sodium bicarbonate while the other impuri-

ties were removed using dichloromethane and chloroform to 

extract OPC from the mixture. Organic solvents were then 

evaporated using a rotary evaporator (Hei-VAP Advantage 

Rotary Evaporator, Schwabach, Germany) and the product 

dialyzed against distilled water for 2–3 days using dialysis 

tubing of molecular weight cutoff 7,000 Da (membrane size 

7,000/3, diameter 28 mm; Medicell International, London, 

UK). The dialyzed product was then lyophilized for 24 hours 
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(-40°C) using a VirTis AdVantage 2.0 bench top freeze dryer 

(SP Industries, Genevac, UK) to obtain pure OPC.

Polymer characterization
h-NMr spectroscopy
Proton NMR spectroscopy was performed on OPC using a 

Bruker 400 Ultra Shield spectrometer (Bruker, Coventry, 

UK). For measurements, chitosan was dissolved in deuterium 

oxide (D
2
O) and OPC was dissolved in deuterated chloroform 

(CDCl
3
), and spectra were obtained at room temperature.

Fourier transform infra-red spectroscopy
Fourier transform infra-red (FT-IR) spectra were collected at 

room temperature using a Perkin Elmer Spectrum 100 spec-

trometer (Perkin Elmer, Buckinghamshire, UK). Data were 

analyzed using the Perkin Elmer Spectrum Express software 

(Perkin Elmer).

Differential scanning calorimetry
In order to determine the thermal properties of the reactant, 

chitosan, and the product, OPC, differential scanning calo-

rimetry (DSC) experiments were performed using a DSC 

Q2000 module (TA Instruments, New Castle, DE, USA). 

Samples of approximately 5 mg (accurately weighed) were 

loaded onto aluminum hermetic pans. The thermal properties 

of chitosan were studied at a scan rate of 50°C/min and OPC 

was studied at 10°C/min. Both the materials were heated 

from -20°C to 200°C–300°C under a nitrogen atmosphere.

X-ray powder diffraction
The solid state properties of chitosan and OPC were measured 

by powder X-ray diffraction (XRD) studies using an Oxford 

Diffraction Xcalibur nova T X-ray diffractometer (Agilent 

Technologies, Wokingham, UK), which were processed 

using CrysAlis Pro software (Oxford Diffraction, Oxford, 

UK) and scanned at a step size of 10°2-theta.

Preparation of iron-loaded liposomes
Blank and iron-loaded liposomes were prepared by the thin-

film hydration method, with some modifications.26 Egg PC 

(200 mg) and cholesterol (20 mg) were dissolved in a round-

bottomed flask containing 5 mL chloroform. OPC (20 mg) 

was simultaneously dissolved in the chloroform for prepa-

ration of OPC liposomes. Organic solvent was removed 

using a rotary evaporator (Hei-VAP Advantage Rotary 

Evaporator) under reduced pressure (10 minutes, 60°C) 

yielding a lipid film on the walls of the flask. The lipid film 

was hydrated by adding a prewarmed aqueous ferrous sulfate 

solution dropwise and shaking the flask vigorously while 

maintaining at 60°C. The lipid suspension was then trans-

ferred into a glass vial and agitated gently in an ultrasonic 

bath for 3 minutes after which size reduction was performed 

using a probe sonicator (80% sonication power, 20 seconds 

on and off intervals). The samples were allowed to stand 

for 1 hour, followed by centrifugation to remove the unen-

trapped drug. The four liposome formulations prepared –  

blank liposome (Lipo-blank), iron-containing liposomes 

(Lipo-Fe), liposomes incorporating OPC (OPC-Lipo), and 

iron-containing OPC-liposomes (OPC-Lipo-Fe) – were 

stored in nitrogen purged glass vials at 4°C. For uptake 

visualization studies coumarin-6-loaded liposomes (Lipo-

Cou and OPC-Lipo-Cou) were prepared using a similar 

methodology.

Determination of entrapment efficiency
Iron entrapment efficiency (EE) was determined as described 

previously.27,28 Briefly, liposome preparations were centri-

fuged (13,000 rpm, 30 minutes, 4°C), and aliquots of the 

supernatant were collected to quantify unassociated drug. 

Ferrous iron levels in the solution were measured spectro-

photometrically at 572 nm using the ferrozine method.29 

Coumarin-6 concentration was determined using a microplate 

fluorimeter (Fluostar Optima; BMG Labtech, Ortenberg, 

Germany) at 450 nm/505 nm (excitation/emission). The mean 

values of three independent readings were recorded and the 

results were expressed as mean±SD.

EE was calculated using the following equation:

 
EE (%)

Unbound drug in supernatant

Total drug added
=

 

liposome physicochemical characterization
size analysis
Size distribution determination of the liposomes by dynamic 

light scattering (DLS) was carried out using the Zetasizer 

Nano ZS (Malvern Instruments, Malvern, UK). Prior to 

measurements the liposome dispersion was diluted using 

MQ H
2
O. All measurements were performed at 25°C, and 

three readings were taken for each sample to calculate mean 

particle size and standard deviation (SD).

Zeta potential
Zeta potential of the liposome dispersions was determined by 

measuring their electrophoretic mobilities using the Zetasizer 
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Nano ZS (Malvern Instruments). Measurements were carried 

out in triplicate at 25°C. All samples were diluted in water 

(1:10) before measuring the zeta potential.

cytotoxicity assay
The potential toxic effects of liposome formulations on 

Caco-2 cells were assessed by carrying out the colorimetric 

MTT assay, incubating Caco-2 cell monolayers with lipo-

some formulations diluted to final iron concentrations of 20, 

50, and 100 µM (and equivalent volumes of correspond-

ing blank liposomes) in phenol red free media for 48 and 

72 hours.28,30 Following incubation, 20 µL MTT (5 mg/mL) 

was added to each well and the plates were incubated for 

a further 4 hours. Media were then carefully aspirated and 

cell monolayers solubilized with DMSO (100 µL/well). The 

purple formazan product formed was quantified by measuring 

the absorbance spectrophotometrically at 550 nm to give an 

estimate of cell viability.

caco-2 cell iron absorption/quantitative cellular 
uptake
Caco-2 cells were obtained at passage 20 and used experi-

mentally between passages 35 and 55. Stock cultures were 

maintained in 75 cm2 tissue culture flasks in complete 

medium (DMEM – Glutamax®, pH 7.4 supplemented with 

10% FCS, 1% antibiotic/antimycotic solution, and 25 mM 

HEPES) in an incubator at 37°C in an atmosphere of 95% 

air and 5% CO
2
 at constant humidity. Caco-2 cell uptake 

experiments were carried out as described previously and 

lysed samples were stored for analysis.28,30 Total ferritin 

concentration of cell lysates was determined using a RAMCO 

ferritin ELISA kit following the manufacturer’s protocol 

with modifications.28 The protein content of Caco-2 cells was 

determined using the Pierce BCA kit following the manu-

facturer’s protocol. Ferritin concentration was standardized 

against total protein concentration, and ng ferritin/mg pro-

tein was considered an index of liposomal iron uptake and 

absorption by Caco-2 cells.

cellular uptake visualization/qualitative cellular 
uptake
Qualitative cellular uptake visualization studies were 

carried out as described previously with modifications.31 

The Caco-2 cell uptake experiment was carried out as 

described in the previous section, replacing Fe-loaded lipo-

somes with coumarin-6 liposomes (Lipo-Cou). Briefly, 

Caco-2 cell monolayers were washed twice with sterile 

Dulbecco’s phosphate buffered saline (DPBS), fixed with 

3% paraformaldehyde solution, and washed again twice with 

DPBS before cell permeabilization solution (0.5% Triton 

X-100 in DPBS) was added for 5 minutes. Cells were then 

washed again with DPBS before being incubated with a 5% 

BSA block solution containing RNAse A (final concentra-

tion 10 µL/mL). Cells were then incubated with Lipo-Cou 

and OPC-Lipo-Cou formulations diluted in DPBS at a con-

centration of 1 µg/mL for 2 hours at 37°C. Cell nuclei were 

stained with TO-PRO-3 (1 µM; Thermo Fisher Scientific) for 

1 hour at room temperature. Caco-2 cells were then exam-

ined under a confocal microscope (Leica TCS SP2; Leica 

Microsystems, Buckinghamshire, UK). The coumarin-6 and 

TO-PRO-3 were investigated at 488/520 and 642/661 nm 

wavelengths (excitation/emission), respectively. Images 

were analyzed using the Leica LCS Lite software suite 

(Leica Microsystems).

statistical analysis
Data are presented as mean±SD, and differences between 

samples were analyzed by one-way ANOVA followed by 

Tukey’s post hoc test using the PRISM software package 

(Version 6; Graphpad Software Inc., San Diego, CA, USA). 

Results were considered significantly different if P#0.05.

Results
The FT-IR spectra of chitosan and OPC are shown in 

Figure 1. The important peaks for chitosan are the broad 

peak from 3,200 to 3,500 cm-1, signifying the free hydroxyl 

and amine groups of chitosan; the small peak at 2,871 cm-1 

signifying the acyl groups; and the peak at 1,649 cm-1 sig-

nifying carbonyl stretching of an amide bond, suggesting 

acyl substitution at the amino group of chitosan. The low 

intensity of the peak suggests that the degree of acetylation 

of chitosan is low.32 The FT-IR spectrum of OPC differs 

from that of chitosan. The broad peak at 3,200–3,500 cm-1 is 

much reduced in OPC signifying substitution of the hydroxyl 

and amino groups of chitosan. There are two sharp peaks 

at 2,919 and 2,851 cm-1, which signify the palmitoyl (acyl) 

groups, indicating acylation of chitosan. The sharp peak at 

1,740 cm-1 signifies ester bond formation, which suggests that 

the substitution of the palmitoyl groups has occurred at the 

hydroxy groups of chitosan.33 The peak at 1,657 cm-1 signify-

ing amide bond formation is low in intensity, suggesting that 

the degree of N-acylation of chitosan is low.32 These FT-IR 

results confirm the successful synthesis of OPC.

The proton NMR (H-NMR) spectrum of chitosan 5k 

(Figure 2A) shows the characteristic peaks for chitosan, 

which occur between 1.8 and 5.2 ppm.33 The peak at 1.97 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

5841

Hydrophobically modified chitosan nanoliposomes for intestinal drug delivery

was assigned to the N-acetyl proton of N-acetyl glucosamine 

while the peak at 2.63 was assigned to a proton of N-acetyl 

glucosamine or glucosamine residues. The peaks from 3.3 to 

4.0 ppm were assigned to the ring protons and the peaks at 

4.38 and 4.40 ppm were assigned to protons of glucosamine 

and N-acetyl glucosamine, respectively.32 The peak at 

4.60 ppm is the D
2
O solvent peak. The H-NMR spectrum of 

OPC (Figure 2B) differs from that of chitosan. The peaks at 

0.86, 1.24, and 1.59 ppm were assigned to characteristic alkyl 

protons of the palmitoyl residue.33 The peak at 0.86 ppm was 

assigned to the protons of the terminal carbon of the alkyl 

chain, that is, [CH
3
-R] of the palmitoyl residue, while the 

peak at 1.24 ppm was assigned to the protons of the middle 

carbon, that is, [-CH
2
-] of the alkyl chain of the palmitoyl 

residue. The peak at 1.59 ppm was assigned to the protons of 

the carbon attached to the carbonyl carbon, that is, [-(CO)-
CH

2
-] of the palmitoyl residue.32 The peak at 7.24 ppm was 

the solvent peak for CDCl
3
. The H-NMR data thus confirm 

the formation of OPC.

The DSC thermogram of chitosan (Figure 3A) showed a 

small endothermic peak at 70.6°C and a broad endothermic 

peak at 100°C–150°C which indicate loss of unbound and 

bound water.34 There was also a sharp endothermic peak at 

243.5°C which indicates thermal degradation of the sample.35 

The DSC thermogram of OPC (Figure 3B) did not show any 

thermal transitions from 0°C to 160°C. The thermogram 

showed a sharp endothermic peak at 182°C, indicating 

polymer decomposition.36

The X-ray diffractogram of chitosan (Figure 4A) 

showed peaks at 2Θ=9, 20, and 23 which were charac-

teristics of chitosan.32,35 The diffractogram suggested that 

chitosan was crystalline. The X-ray diffractogram of OPC 

(Figure 4B) showed a broad peak at 2Θ=21. The peaks at 

2Θ=9 and 23 which were seen in chitosan have disappeared. 

Figure 1 FT-Ir spectra of chitosan 5k (red) and O-palmitoyl chitosan (black).
Abbreviations: FT-Ir, Fourier transform infra-red; T, transmittance.
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The diffractogram suggested that OPC was crystalline and that 

o-acylation had slightly altered the chitosan structure.35

Both the iron-containing liposome formulations demon-

strated high iron EE. The EE of Lipo-Fe was 72.8%±1.93%, 

which was increased and in case of OPC-Lipo-Fe, 

82.7%±2.70% (P,0.05; Table 1). Mean hydrodynamic 

diameters of all liposomes were in the range 204–304 nm 

following sonication (Table 1). Iron loading decreased mean 

particle size (P,0.05). Chitosan imparted a positive charge 

to the blank and iron-loaded liposomes, confirming its pres-

ence on the outer surface of the liposomes (Table 1), whereas 

liposomes without OPC had a net negative zeta potential. 

Iron loading affected the surface charge (P.0.05) of OPC-

containing liposomes, but decreased the negative surface 

charge of non-OPC liposomes (P,0.05), through an ionic 

interaction with the electric double layer.

Figure 2 h-NMr spectra of (A) chitosan 5k and (B) O-palmitoyl chitosan.
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Caco-2 cells were exposed to increasing concentrations 

of the liposome formulations standardized at specific iron 

concentrations (20, 50, and 100 µM elemental iron), as 

described previously.28,30 Cells were also incubated with 

iron-free liposome formulations to exclude the effect of iron. 

Cell viability in all cases was observed to be at least 85% 

of control cells at both the experimental time points (48 and 

72 hours; Figure 5).

To assess the efficacy of the liposome preparations to 

deliver iron intracellularly, comparative absorption experi-

ments were conducted (Figure 6) using the well-characterized 

human intestinal cell line Caco-2.37–39 Iron absorption from 

the liposome preparations was compared to that from free 

FeSO
4
 solution, as it is generally considered to have the 

best bioavailability profile among iron compounds and 

was employed in the preparation of the liposomal for-

mulation. The overall highest iron absorption was from 

OPC-Lipo-Fe liposomes (313.46±26.53 ng/mg protein) and 

was 1.5 fold (P,0.05) higher than for the free FeSO
4
 control 

(200.42±24.42 ng/mg protein).

The cellular uptake characteristics of the liposome for-

mulations were further evaluated qualitatively using confo-

cal microscopy. Figure 7 shows confocal micrographs of 

Caco-2 cells incubated with conventional (Lipo-Cou) and 

OPC liposomes (OPC-Lipo-Cou) loaded with equivalent 

concentrations of the fluorescent dye coumarin-6. The results 

suggest that the inclusion of the OPC influenced the surface 

charge of the liposomes. It is likely that the OPC was incor-

porated into the liposome structure due to the hydrophobic 

nature of the chitosan.

Discussion
Several previous studies have demonstrated the use of hydro-

phobic chitosan derivatives for formulating drug and gene 

°

°

°

°

Figure 3 Dsc thermogram of (A) chitosan (50°c/min) and (B) O-palmitoyl chitosan (20°c/min).
Abbreviation: Dsc, differential scanning calorimetry.

Figure 4 X-ray powder diffractograms of (A) chitosan and (B) O-palmitoyl chitosan.
Abbreviations: aDUs, analog digital units; deg, degrees.
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delivery carriers.40–44 In this study, a novel hydrophobically 

modified chitosan derivative was produced by conjugating 

palmitoyl to the chitosan backbone. The successful synthesis 

and formation of the reaction product OPC were determined 

by FT-IR and H-NMR, and the synthesized polymer was 

further characterized by DSC and XRD.

Liposomal-iron delivery has been explored previously; 

however, poor iron loading remains an issue. The permeability 

of the phospholipid bilayer of the lipid vesicles can lead to iron 

leakage and loss during formulation as well as upon storage. 

Various approaches have previously been explored to improve 

vesicle membrane stability. Inclusion of cholesterol in the for-

mulation increases membrane stability, resulting in increased 

encapsulation efficiencies.45–47 It is thought that the hydroxyl 

groups in the polar head combine with the choline groups of 

the lipid to create more robust bilayers.48 Cholesterol is also 

known to enhance contact between adjacent lipid molecules by 

having a “drying” effect at the lipid–water interface, thereby 

decreasing bilayer permeability and promoting liposomal 

membrane stability.49 PEGylated polyelectrolytes incorpo-

ration into liposomes similarly enhances drug delivery.50 

Chitosan incorporation in liposomes is known to have a posi-

tive influence on the encapsulation characteristics and delivery 

of liposomes.51–53 Chitosan adsorbs at the vesicle surface due 

to electrostatic interactions with the lipid component thereby 

creating rigid walled vesicles.54 Furthermore, chitosan report-

edly forms a stable complex with iron that might also result 

in higher incorporation and retention in the vesicle.55 The iron 

to lipid ratio is another important parameter that influences 

liposomal EE.28 This study employed an iron to lipid ratio of 

1:100, as increasing iron concentration has an inverse rela-

tionship with liposomal EE, an effect attributed to the strong 

electrolyte behavior of ferrous sulfate.6 OPC interacts with 

liposomes due to positive charge and hydrophobicity, which 

we propose is due to the conjugation of palmitoyl groups at 

the O position on the chitosan structure.

We aimed to obtain liposomes in the size range obtained 

(approximately 200–300 nm); it has been observed previously 

that large-sized liposomes are more likely to be unstable and 

have a tendency for flocculation.56 Furthermore, particles in 

the sub-500 nm range have been reported to be desirable 

for intestinal absorption as they facilitate increased cellular 

contact and permeation.57

The high net positive charge of the liposomes suggests 

electrostatic repulsion between the liposomes and is therefore 

considered favorable for formulation stability.58 Positive 

charge on the liposome surface is also beneficial for inter-

action and binding with cell surfaces, potentially leading to 

increased cellular entry and uptake.

The absorption results obtained in our experiments are 

in agreement with previous in vitro and in vivo liposome 

studies. Hermida et al demonstrated high iron uptake in 

Caco-2 cells from chitosan-coated liposomes compared with 

Table 1 Particle size distribution, surface charge, and entrapment 
efficiencies for liposome preparations

Formulation Mean particle 
size (nm)

Zeta 
potential 
(mV)

Entrapment 
efficiency 
(%)

lipo-blank 253±17 -28.6±8.77
lipo-Fe 204±22 -9.82±4.33
OPc-lipo 304±15 33.1±6.39 72.8±1.93
OPc-lipo-Fe 209±12 27.8±8.67 82.7±2.7

Note: Values are presented as mean±sD, n=3.
Abbreviations: Fe, iron; lipo, liposome; OPc, octyl-palmitoyl chitosan.

Figure 5 caco-2 cell viability assessed by MTT assay following (A) 48 hours and (B) 72 hours incubation with liposome formulations containing increasing drug concentrations 
(mean±sD, n=6).
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Figure 6 Iron absorption by caco-2 cells incubated with liposome formulations: 
intracellular ferritin was measured as a marker of iron absorption by elIsa following 
22 hours of incubation after iron uptake experiments.
Note: results are shown as mean±sD (n=6), *Represents a significant difference (95%)  
between treatment and FesO4 alone. ^Represents a significant difference (95%) bet
ween OPc liposomes and liposomes alone.

Figure 7 confocal microscopy images of caco-2 cells following incubation with coumarin-6 loaded (A–C) conventional (lipo-cou) liposomes and (D–F) OPc liposomes 
(OPc-lipo-cou). 
Notes: Images (A and D) demonstrate cell nuclei stained with TO-PrO-3 (blue), images (B and E) show cell cytoplasm with accumulated liposomal coumarin-6, and images 
(C and F) show merged images. scale shown is 50 µM.

uncoated liposomes.7 The behavior of chitosan liposomes 

within the intestinal tract was studied by Takeuchi et al using 

the Wistar rat model.59 Rat intestines were examined follow-

ing administration of liposome preparations, with and without 

chitosan inclusion, resulting in the highest levels of retention 

and mucosal penetration observed with chitosan inclusion. 

Chitosan has well-characterized mucoadhesive properties due 

to its cationic structure, and also acts as a potent permeation 

enhancer, particularly in the pH environment encountered 

in the small intestine.60

Lipid-based carriers are known to possess high cellular 

permeability, presumably by virtue of ease of transport across 

the phospholipid bilayer of cell membranes.61 Furthermore, 

the size range of our liposome particles is favorable toward 

intestinal absorption. The influence of particle size on intes-

tinal absorption has been explored previously; it is generally 

thought that particles of 100–500 nm dimensions are most 

likely to diffuse through the submucosal layer and subse-

quently enter the cell via absorptive endocytosis.62

The intensity of intracellular green fluorescence emitted by 

coumarin-6 was considered a marker of uptake of the dye-loaded 

liposomes in Caco-2 cells, as described previously.31,63 Similar 

studies by others have demonstrated that free coumarin-6 does 

not internalize in Caco-2 cells, and therefore the intracellular 

fluorescent intensity is a direct indicator of the internalization 

of the dye-loaded liposomes.64,65 As observed in Figure 7, a 

green fluorescent signal was seen in both images, Figure 7B and 

E, indicating successful entry into the cell of coumarin-loaded 

liposomes; however, a noticeably stronger signal was observed 

in Caco-2 cells incubated with OPC-Lipo-Cou (Figure 7E) 
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compared with Lipo-Cou (Figure 7B). Confocal imaging was 

performed under similar parameters (sensitivity, gain, and 

offset) to allow an unbiased comparison. These results are in 

agreement with the quantitative uptake data as measured by 

ELISA (Figure 6), and provide further supporting evidence 

that OPC has a beneficial effect on the cellular uptake and 

internalization characteristics of the liposomes.

While mechanistic studies of the internalization and 

intracellular behavior of the liposomes were not conducted 

as part of our experiments, others have suggested potential 

pathways of cellular uptake and transport. Oral micro and 

nanoparticle drug carriers may gain cellular and subsequent 

systemic entry via either transcellular or paracellular path-

ways. Paracellular transport is thought to be limited, as the 

tight junctions between the intestinal enterocytes have an 

average pore radius of 5 nm.66 Even under conditions of 

induced dilation with pharmacological agents or due to patho-

logical insults, these junctions may allow the passage of very 

small-sized molecules.67 It is speculated that lipid particles 

are internalized via transcytosis and endocytosis followed 

by physiological degradation and intracellular drug release 

and subsequent transport across the basolateral membrane. 

This model is consistent with our observations, with higher 

intracellular levels of coumarin-6 and ferritin protein for-

mation observed following loaded liposome administration 

compared with drug alone. These results suggest that the drug 

released from the liposome formulations is actively processed 

within the enterocyte following cellular liposome uptake.

Conclusion
The purpose of this article was to synthesize a hydrophobi-

cally modified chitosan derivative and utilize this to formu-

late liposomes for oral drug delivery, using iron sulfate as 

a model hydrophilic drug. OPC not only led to increased 

liposomal iron encapsulation efficiency, but also significantly 

increased iron absorption in Caco-2 cells. These results 

confirm that this chitosan derivative retains the characteristic 

permeation-enhancing properties of chitosan, and further-

more its inclusion in the liposome may have altered the 

vesicle microstructure and influenced greater interaction with 

cell membranes leading to increased cellular uptake.

In summary, our results present OPC polymer incorpora-

tion into liposomes to be utilized for micro- and nanodelivery 

systems, and demonstrate the potential of OPC liposomes as 

promising carriers for intestinal drug delivery.
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