
© 2019 Zhu et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Cancer Management and Research 2019:11 419–430

Cancer Management and Research Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
419

O R i g i n a l  R e s e a R C h

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/CMAR.S179467

Identification of key genes and specific pathways 
potentially involved in androgen-independent, 
mitoxantrone-resistant prostate cancer

sha Zhu1  
lili Jiang1,2  
Liuyan Wang3  
Lingli Wang1  
Cong Zhang1  
Yu Ma1  
Tao huang4

1Department of Immunology, 
Collaborative Innovation Center of 
Cancer Chemoprevention, College of 
Basic Medical Sciences, Zhengzhou 
University, Zhengzhou, Henan, China; 
2Department of Basic Medicine, 
School of Nursing, Zhengzhou 
University, Zhengzhou, Henan, 
China; 3Department of Medicine, 
The Third People’s Hospital of 
Zhengzhou, Zhengzhou, Henan, China; 
4Oncological Surgery, Cancer Hospital 
Affiliated to Zhengzhou University, 
Zhengzhou, Henan, China

Background: Resistance to mitoxantrone (MTX), an anthracenedione antineoplastic agent 

used in advanced and metastatic androgen-refractory prostate cancer (PCa), seriously limits 

therapeutic success.

Methods: Xenografts from two human PCa cell lines (VCaP and CWR22) were established in 

male severe combined immunodeficiency mice, and MTX was administered, with or without 

concurrent castration, three times a week until tumors relapsed. Microarray technology was used 

to screen for differentially expressed genes (DEGs) in androgen-independent, MTX-resistant PCa 

xenografts. Gene expression profiles of MTX-treatment xenografts and their respective parental 

cell lines were performed using an Agilent whole human genome oligonucleotide microarray 

and analyzed using Ingenuity Pathway Analysis software.

Results: A total of 636 genes were differentially expressed (fold change ≥1.5; P<0.05) in MTX-

resistant castration-resistant prostate cancer (CRPC) xenografts. Of these, 18 were selected to be 

validated and showed that most of these genes exhibited a transcriptional profile similar to that 

seen in the microarray (Pearson’s r=0.87). Western blotting conducted with a subset of genes 

deregulated in MTX-resistant CRPC tumors was shown through network analysis to be involved 

in androgen synthesis, drug efflux, ATP synthesis, and vascularization.

Conclusion: The present data provide insight into the genetic alterations underlying MTX 

resistance in androgen-independent PCa and highlight potential targets to improve therapeutic 

outcomes.

Keywords: castration-resistant prostate cancer, gene expression profiling, drug resistance, 

differentially expressed genes

Introduction
Prostate cancer (PCa) is the most prevalent cancer and the second leading cause of 

cancer death among European and American men.1 Most patients presenting with 

advanced PCa have disease that is initially sensitive to androgen deprivation therapy 

(ADT), which successfully reduces tumor burden, improves symptoms, and can delay 

disease progression for several years.2,3 However, responses are not durable, and disease 

progression is inevitable. Mitoxantrone (MTX), a synthetic anthracenedione, has been 

routinely used for its palliative benefit and enhanced clinical remission alone or in 

combination with other drugs for the treatment of cancers.4–6 However, despite good 

initial response and survival benefits, most patients eventually develop resistance to 

this therapy.7

The anti-neoplastic activity of MTX is believed to be related to its ability to bind 

DNA and inhibit DNA topoisomerase II, an essential enzyme in DNA synthesis and cell 
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division, which is highly expressed in cancer cells.8 Numer-

ous changes in the genetic makeup of tumor cells occur 

typically during acquisition of drug resistance.9 The advent 

of microarray-based comparative genomic hybridization 

has greatly expanded our ability to identify genes involved 

in tumor chemotherapy resistance, to predict treatment 

response, and to forecast prognosis. In this study, the diver-

sity and magnitude of transcriptional responses to genotoxic 

damage induced by MTX were assessed in two castration-

resistant prostate cancer (CRPC) xenograft types and their 

parental cell lines using microarray-based gene expression 

profiling. Identification of differentially expressed genes 

(DEGs) in MTX-resistant CRPC may facilitate improved 

screening and further our understanding of the mechanisms 

mediating PCa relapse, paving the way for the development 

of targeted interventions that circumvent treatment resistance.

Materials and methods
Cell culture
The human VCaP and CWR22 PCa cell lines were obtained 

from Cell Bank of the Chinese Academy of Science (Shang-

hai, China). Cells were cultured in DMEM (Thermo Fisher 

Scientific, Waltham, MA, USA) supplemented with 10% FBS 

(HyClone, Logan, UT, USA) and 1% penicillin/streptomycin, 

at 37°C in a humidified atmosphere with 5% CO
2
. Confluent 

cells were harvested with 0.05% trypsin/0.53 mM EDTA, 

centrifuged 5 minutes at 1,200 rpm, and resuspended in 

complete medium at 1×107 cells/mL. Aliquots of 0.1 mL were 

used for subcutaneous injection into CB-17 severe combined 

immunodeficiency (SCID) mice (purchased from Guangzhou 

Provincial Medical Experimental Center).

Tumor inoculation and treatment
The animal study was carried out in a specific pathogen-free 

room and was approved by the medical ethics committee of 

the Zhengzhou University in accordance with the Guide for 

the Care and Use of Laboratory Animals (NIH publication 

no 80-23, revised 1996). Four- to six-week-old CB-17 male 

SCID mice were used in the experiments. Cells (1×106) 

were injected subcutaneously into both flanks resulting in 

two tumors per mouse. Once tumors became palpable, the 

mice were randomly divided into four treatment groups 

(six mice per group). In the first three groups, MTX was 

administered at 0.35, 1.0, and 3.5 mg/kg, respectively. The 

fourth group was treated with physiological saline (control) 

at the same time points. In another set of experiments, ani-

mals with palpable tumors were also assigned to one of four 

groups: MTX (3.5 mg/kg), castration, MTX (3.5 mg/kg) in 

 combination with castration, and control. Surgical castration 

was performed after tumors had developed. In all experi-

ments, MTX and saline were administered intragastrically 

in a 100 µL volume three times a week. Tumor diameters 

were measured with a caliper twice a week until the ani-

mals were sacrificed after 6 weeks of treatment. Tumor 

weight was calculated by the formula: tumor weight (mg) 

= (length×width2)/2.

RNA processing and microarray scanning
Total tumor RNA was extracted using Trizol reagent (Takara, 

Dalian, China), and concentrations determined by a spectro-

photometer (NanoDrop; Nyxor Biotech, Paris, France). All 

the processes were carried out according to the manufactur-

ers’ instructions. Enrichment of total RNA from samples 

was carried out using the RNeasy Micro kit (Qiagen NV, 

Venlo, the Netherlands), and samples’ quality and quantity 

were assessed on a spectrophotometer. Briefly, 1 µg of total 

RNA from each sample was amplified and transcribed into 

fluorescent cRNA using the protocol provided with Agilent’s 

Quick Amp Labeling kit. Labeled cRNAs were hybridized 

onto the Whole Human Genome Oligo Microarray (4×44K; 

Agilent Technologies, Santa Clara, CA, USA) in Agilent’s 

SureHyb Hybridization Chambers. Sample preparation and 

microarray hybridization were performed based on the manu-

facturer’s standard protocols, and the microarray procedure 

conformed to quality standards. Washes and scanning of the 

arrays were carried out according to manufacturer’s instruc-

tions. Images were autogridded, and the chemiluminescent 

signals were quantified, corrected for background at each 

spot, and spatially normalized. DEGs were identified through 

filtering the dataset using P<0.01 and a signal-to-noise ratio 

>2 for use in ANOVA statistical analysis. Three representative 

xenografts were chosen from each treatment cohort for the 

microarray experiments, and data are shown as mean values.

Gene expression data validation by 
quantitative reverse transcription PCR 
(qRT-PCR)
qRT-PCR was performed with QPK-201 SYBR Green 

master mix (Toyobo, Osaka, Japan) and the ABI 7300 

system from Thermo Fisher Scientific. The primers used 

in the study were obtained from Thermo Fisher Scientific. 

Thermocycling parameters included an room temperature 

step at 50°C for 20 minutes, followed by a DNA poly-

merase activation step at 95°C for 2 minutes and 50 PCR 

cycles (95°C for 20 seconds and 60°C for 30 seconds). All 

reactions were conducted in triplicate. Differential expres-
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sion ( fold change) for each gene was calculated using the 

comparative C
T
 method.

Pathway enrichment and network 
construction
The GeneSpring GX software package (Agilent Technolo-

gies) was used to statistically analyze 636 DEGs. To assess 

the relationships between DEGs and signaling pathways, 

additional filtering (minimum three-fold change) was applied 

to extract the most relevant DEGs, which were analyzed 

using Ingenuity Pathway Analysis (IPA) software. Genes 

with known gene symbols and their corresponding expression 

values were uploaded into the software. Each gene symbol 

was mapped to its corresponding gene object in the Ingenuity 

Knowledge Base. Networks of these genes were algorithmi-

cally generated based on their connectivity.

Western blot analysis
Protein samples from total cell lysates were separated on 10% 

polyacrylamide resolving gels and transferred onto nitrocel-

lulose membranes for 2 hours at 250 mA. Protein binding 

sites on membranes were blocked for 1 hour at 25°C in 5% 

(w/v) Marvel’s dried skimmed milk/PBS/3% (v/v) Tween-

20 (PBST), then incubated overnight at 4°C with EPHA4, 

AKR1C3, HIF1A, and HSD17B12 monoclonal antibodies 

(1:1,000 dilution; Thermo Fisher Scientific). The membranes 

were washed 3×10 minutes in tris buffered saline tween and 

probed with horseradish peroxidase-conjugated secondary 

antibodies (Amersham Life Sciences, Buckinghamshire, UK) 

for 1 hour at 25°C. Following 3×10-minute washes in PBST, 

bands were detected using enhanced chemiluminescence 

(ECL+ reagents; Amersham Life Sciences). Densitometric 

quantification of band intensities was performed using Kodak 

one-dimensional image analysis software.

Statistical analyses
Results are presented as mean ± standard error of the mean. 

The Wilcoxon rank-sum test of variance was performed to 

determine whether differences between groups were statis-

tically significant, with P<0.05 set as threshold to indicate 

significance. SPSS 12.0 software was used for statistical 

analyses.

Results
MTX and androgen sensitivity testing
To investigate the sensitivity to MTX of human PCa cells in 

vivo, 106 PCa cells (from VCaP or CWR22 cell lines) were 

inoculated into the flanks of 5-week-old male CB-17 SCID 

mice to generate subcutaneous tumors. In general, palpable 

tumors developed 4–5 weeks after implantation. Once tumors 

grew to nearly 200 mm3, mice were treated intragastrically 

with different concentrations of MTX. Tumor volume and 

weight were measured twice weekly. As shown in Figure 

1A and B, tumor volumes differed significantly between 

control and MTX-treated mice (P<0.01). MTX decreased 

tumor growth in a dose-dependent manner; although no 

significant effect was noted with the lowest dose, a 38.2% 

and 34.3% volume reduction was observed with 3.5 mg/

kg MTX in VCaP and CWR22 xenografts, respectively. 

However, all mice eventually relapsed and tumors became 

resistant to MTX.

SCID mice with palpable PCa xenografts were castrated 

and treated with 3.5 mg/kg MTX to evaluate potential syner-

gistic antitumor activities of androgen deprivation and MTX. 

This showed that VCaP and CWR22 were androgen depen-

dent, and surgical castration led to a statistically significant 

(P<0.05) decrease in the tumor size of VCaP and CWR22 

xenografts (Figure 1A and B). Although both VCaP and 

CWR22 xenografts are castration sensitive, these xenografts 

eventually developed to androgen-independent phenotype 

associated with regrowth. It demonstrated that tumor growth 

was significantly inhibited in castrated mice concurrently 

treated with MTX (P<0.01). As shown in Figure 1C and D, 

tumors of VCaP and CWR22 in the combination group were 

significantly smaller than those in the control group (P<0.01), 

the MTX-only group (P<0.05), and the castration-only group 

(P<0.05). Although significant reductions in median tumor 

size were recorded for the combination group on days 24, 

35, 42, and 51, treatment resistance, evidenced by tumor 

regrowth, developed thereafter. All mice consistently main-

tained their body weight during each study.

Microarray-based identification of DEGs 
in MTX-resistant CRPC xenografts
Identification of DEGs between MTX-treatment xenografts 

and their parent PCa cell lines was carried out by microar-

ray analysis on an Agilent Whole Human Genome Oligo 

Microarray platform. Comparative analysis was done after 

applying a strict threshold. We found that 636 genes were 

differentially expressed (P<0.05) in MTX-resistant CRPC 

xenografts. From these, we selected the top 20 upregulated 

and downregulated genes according to the log ratio expres-

sion values (Tables 1 and 2), and among these, the ones in the 

MTX-resistant CRPC groups whose expression levels were 

changed more than three fold (P<0.01) were compared with 

their parent groups. Upon comparison of DEGs from both 
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xenografts (VCaPR and CWR22R), we found that nearly a 

quarter of the genes overlap.

Validation of gene expression data by 
qRT-PCR and Western blotting
The expression patterns of four DEGs, EPHA4, AKR1C3, 

HIF1A, and HSD17B12, were evaluated by Western blot 

(Figure 2A) and qRT-PCR (Figure 2B). Results confirmed 

upregulated EPHA4, AKR1C3, and HSD17B12 expression in 

both VCaPR and CWR22R MTX-resistant CRPC xenografts. 

In contrast, HIF1A expression was markedly downregulated 

in both tumor types, compared with their respective parental 

cell lines. In addition, a panel of 18 DEGs with the highest 

and lowest expression differences between both VCaPR 

and CWR22R MTX-treatment xenografts and their parental 

cells lines was selected and tested by qRT-PCR (Figure 3A 

and B). Results showed that most of these genes exhibited a 

transcriptional profile similar to that seen in the microarray 

(Pearson’s correlation coefficient=0.87). Hence, the micro-

array provided a reliable assessment of gene expression 

differences between MTX-treatment xenografts and their 

originating PCa cell lines.

Canonical pathways and network analysis
By considering only probe sets common to both MTX-

resistant PCa xenografts, 252 genes were qualified as net-

work and function eligible by IPA. The DEGs identified in 

the two sets of data were then analyzed by the IPA library 

of canonical pathways. The ten most significant canonical 

pathways affected by these DEGs were mainly related to 

Figure 1 Tumor growth effect of a 6-week treatment with MTX and/or castration.
Notes: (A) Antitumor activities of different concentrations of MTX (control, 0.35, 1, and 3.5 mg/kg) in PCa xenograft mouse models. (B) Combined effects of androgen 
deprivation and MTX on PCa xenograft growth (P<0.015) (n=5 mice per group).
Abbreviations: MTX, mitoxantrone; PCa, prostate cancer; wk, Week.
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DNA replication, recombination, protein expression, and 

cell cycle (Figure 4A). Four pathways, namely PCa signaling, 

PI3K/AKT signaling, glioblastoma multiforme signaling, and 

PTEN signaling, involved in cellular growth, proliferation, 

and development, showed significant enrichment.

We further identified potential biological networks likely 

affected by these DEGs to better define how individual DEGs 

interact in specific pathways. Specifically, network 1 (Figure 

4B) was centered on the T3-TR-RXR pathway, in which the 

thyroid hormone receptor (TR) and the retinoid X receptor 

(RXR) act as heterodimers (TR-RXR) that preferentially bind 

thyroid hormone T3, activating gene transcription through 

coactivator recruitment. These gene products indirectly 

interact with an important nuclear receptor, NR1H4, for cell 

Table 1 Top ten up- and downexpressed genes in xenograft of VCaP vs its parent cells

Primary accession Gene symbol Log2 ratio Main function

NM_012445 sPOn2 5.524 Antigen binding and lipopolysaccharide binding
nM_001099 aCPP 5.383 Protein homodimerization activity and phosphatase activity
NM_006998 sCgn 5.262 Calcium ion binding and cell proliferation
nM_002982 CCl2 4.853 Chemotactic activity for monocytes and basophils
NM_001618 PaRP1 4.632 Poly(A) RNA binding and protein kinase binding
NM_000454 sOD1 4.354 Protein homodimerization activity and enzyme binding
NM_001353 AKR1C1 4.123 Oxidoreductase activity and oxidoreductase activity
NM_020783 sYT4 3.518 Ca(2+)-dependent exocytosis and dendrite formation
NM_000905 nPY 3.473 G-protein-coupled receptor activity and hormone activity
NM_002592 PCna 3.216 Involved in the RAD6-dependent DNA repair pathway
NM_152703 saMD9l –3.074 Endosome fusion, and downregulation of growth factor signaling
NM_030763 HMGN5 –3.132 Preferentially binds to euchromatin and modulates cellular transcription
nM_012242 DKK1 –3.273 Signal transducer activity and low-density lipoprotein particle receptor binding
nM_00100839 GPX8 –3.452 Glutathione peroxidase activity
nM_004929 CalB1 –3.638 Calcium ion binding and vitamin D binding
NM_015163 TRiM9 –4.264 A member of tripartite motif family whose function has not been identified
NM_005978 s100a2 –4.316 Regulation of cellular processes, cell cycle progression, and differentiation
nM_001039492 Fhl2 –4.817 Involved in the assembly of extracellular membranes
NM_175887 PRR15 –5.135 May have a role in cell proliferation and/or differentiation
NM_001753 CaV1 –5.237 A negative regulator of the Ras-p42/44 mitogen-activated kinase cascade

Table 2 Top ten up- and downexpressed genes in xenograft of CWR22R vs its parent cells

Primary accession Gene symbol Log2 ratio Main function

NM_002996 CX3CL1 5.721 Receptor binding and chemokine activity
NM_001633 aMBP 5.635 Regulation of inflammatory and pathological processes
NM_000905 nPY 5.274 G-protein-coupled receptor activity and hormone activity
nM_004438 ePha4 5.126 Identical protein binding and protein kinase activity
NM_001353 AKR1C1 4.823 Oxidoreductase activity and oxidoreductase activity
nM_018014 BCl11a 4.514 Protein homodimerization activity and RNA polymerase II sequence-specific DNA binding
NM_005233 ePha3 4.465 Transferase activity and protein tyrosine kinase activity
BC005008 CEACAM6 3.917 Cell adhesion affects the sensitivity of tumor cells to adenovirus infection
NM_003295 TPT1 3.764 Poly(A) RNA binding and transcription factor binding
NM_014739 BClaF1 3.693 BCL2-associated transcription factor and poly(A) RNA binding
NM_004653 KDM5D –3.136 Oxidoreductase activity and histone demethylase activity
NM_148957 TnFRsF19 –3.417 Tumor necrosis factor-activated receptor activity
NM_004126 gng11 –3.649 GTPase activity and signal transducer activity
NM_005141 FgB –3.841 Receptor binding and chaperone binding
NM_004651 UsP11 –4.132 Cysteine-type endopeptidase activity and thiol-dependent ubiquitinyl hydrolase activity
NM_001733 C1R –4.545 Calcium ion binding and serine-type peptidase activity
NM_005613 Rgs4 –4.674 GTPase activator activity and G-protein alpha-subunit binding
nM_130902 COX7B2 –5.529 Cytochrome-c oxidase activity
nM_012242 DKK1 –5.537 Signal transducer activity and low-density lipoprotein particle receptor binding
NM_006528 TFPi2 –5.746 Serine-type endopeptidase inhibitor activity and peptidase inhibitor activity
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Figure 2 Detection of EPHA4, AKR1C3, HIF1A, and HSD17B12 expression.
Notes: Expression data from VCaPR and CWR22R PCa xenografts from castrated, MTX-treated mice, and parental cell lines were assessed by Western blot (A) and qRT-
PCR (B). EPHA4, AKR1C3, and HSD17B12 expression was significantly increased, whereas HIF1A expression was dramatically lower in the MTX-treatment xenografts 
compared to their parental cell lines (P<0.01).
Abbreviations: qRT-PCR, quantitative reverse transcription PCR; MTX, mitoxantrone; PCa, prostate cancer.
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Figure 3 qRT-PCR analysis of DEGs identified in the microarray.
Notes: Comparison of DEGs between PCa xenografts from castrated mice and parental cell lines. (A) CWR22R vs CWR22. (B) VCaPR vs VCaP. Expression data are 
represented by a log ratio calculated by comparing ΔCq from the xenograft with ΔCq from the parent cells. ΔCq was calculated as the difference between Cq of the targeted 
genes and Cq of the endogenous control gene, β-actin. Using this method, 16/18 (89%) genes pulled from the microarray analysis were confirmed to be differentially 
expressed by qRT-PCR.
Abbreviations: DEGs, differentially expressed genes; qRT-PCR, quantitative reverse transcription PCR; PCa, prostate cancer.
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survival, proliferation, and upregulation of enzymes, includ-

ing CYP17A1, AKR1C3, and AKR1C1/AKR1C2 involved 

in androgen synthesis. Network 2 (Figure 4C) is centered 

on the NF-κB pathway, associated with cell proliferation, 

differentiation, and DNA damage response. Here, several 

members of the UDP-glucuronosyltransferase 2B (UGT2B) 

gene family, including UGT2B4, UGT2B10, UGT2B7, and 

UGT2B28, were highly upregulated. The UGT2B gene sub-

family is involved in the metabolic clearance of numerous 

endogenous compounds, including bile acids and steroid 

hormones, as well as exogenous agents including various 

carcinogens and drugs.10,11 Apoptosis-related genes such 

as apoptosis 9, apoptosis 10, CYP27B1, and GPX1 were 

significantly downregulated in MTX-treatment xenografts 
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Figure 4 Pathway function enrichment and deregulated gene networks.
Notes: Representation of canonical pathways across the entire dataset; y-axis displays the significance. For ratios, taller bars indicate more genes associated with the canonical 
pathway (A). Deregulated gene networks in MTX-treatment xenografts (B and C). Red and green intensities indicate the degree of upregulation and downregulation, 
respectively. Genes in uncolored notes were not identified as differentially expressed and were integrated into the computationally generated networks based on evidence 
stored in the IPA knowledge memory, indicating a relevance to this network.
Abbreviations: IPA, Ingenuity Pathway Analysis; MTX, mitoxantrone.
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and are also shown in the network. These DEGs are mainly 

associated with regulation of proliferation, gene expression, 

differentiation, and cell survival.

Discussion
Many molecular methods have been used in the attempt to 

elucidate the heterogeneous nature of PCa, determine the 

mechanisms behind its development, and propose new thera-

peutic and prognostic targets.12 Gene expression profiling or 

genome scale analysis has proven to be successful in vari-

ous experimental settings and has the potential to highlight 

the dynamic molecular diversity encountered during tumor 

progression.13 Since studies investigating gene expression 

changes during progression of MTX-resistant CRPC are 

lacking, this study sought to identify DEGs in MTX refrac-

tory CRPC that may be exploited as specific prognostic and 

therapeutic targets.

Microarray and bioinformatics analyses revealed overex-

pression of fractalkine, also known as chemokine (C-X3-C 

motif) ligand 1 (CX3CL1), in VCaPR and CWR22R xeno-

grafts. CX3CL1 is the only member recognized so far of the 

CX3C chemokine subfamily and was reported to participate 

in the regulation of cell adhesion, migration, and survival in 

human PCa cells by interacting with its receptor CX3CR1, 

primarily expressed on macrophages, circulating monocytes, 

and natural killer cells.14,15 Importantly, CX3CL1-CX3CR1 

binding plays a crucial role in epithelial-to-mesenchymal 

transition (EMT), PCa progression, and skeletal metastasis,16 

and was proposed to inhibit the apoptosis of cancer cells 

through MAPK/ERK activation.17

The EPHA4 gene was also found to be highly upregu-

lated in MTX-resistant CRPC xenografts. This gene belongs 

to the ephrin receptor subfamily of the protein-tyrosine 

kinase family. Ephrin ligands and receptors are differen-

tially expressed on arteries and veins during development.18 

Altered expression patterns of EPHA4/ephrins have been 

correlated with tumor invasiveness, vascularization, and 

metastatic potential.19 Moreover, high levels of EPHA4 

mRNA correlate significantly with reduced overall survival 

in cancer patients.20

We also observed overexpression of ABCG2, the sub-

family G of the large human ATP-binding cassette (ABC) 

transporter superfamily, in MTX-resistant VCaPR and 

CWR22R CRPC xenografts. ABCG2 forms homodimers 

or heterodimers with other members of the ABCG subfam-

ily to function as an efflux transporter.21 ABCG2 is highly 

expressed in prostate stem cells and plays an important role 

in regulating intracellular androgen levels by mediating 

androgen efflux.22 Importantly, ABCG2 is also considered 

the main contributing factor to drug resistance in ovarian 

carcinoma xenografts.23 ABCG2 requires cellular ATP for 

transporting its substrates.24 Cytochrome c oxidase (COX) 

is a component of the respiratory chain complex involved in 

oxidative phosphorylation and ATP production.25 Accord-

ingly, the upregulation of COX6c found in MTX-resistant 

VCaPR and CWR22R tumors might contribute to supply 

the large amount of ATP required by ABCG2 to pump MTX 

out of the cells.

Deregulated AKR1C3 expression has been associated 

with squamous cell carcinoma of the head and neck and 

other human cancers.26,27 The AKR enzymes comprise a 

functionally diverse gene family, with four AKR1C iso-

forms (AKR1C1–4) presently identified.28 Although low 

levels of AKR1C3 and AKR1C1 were observed in nor-

mal prostatic epithelium,29 this study showed significant 

upregulation of AKR1C3 in MTX-resistant PCa xeno-

grafts. Knuuttila et al30 suggested that castration induces 

the upregulation of AKR1C3 and other enzymes, such 

as CYP17A1 and HSD17B6, involved in estrogen and 

androgen metabolism; activates insulin-like growth factor 

(IGF)-1 and Akt signaling; and promotes tumor angiogen-

esis and aggressiveness. In addition, AKR1C3 may also 

promote CRPC progression by activating 17β-estradiol-

mediated signaling pathways.31

Network analysis helped us obtain global and integrated 

molecular information about interactions between MTX-

related DEGs. One important gene network was identified 

around the NF-κB gene. NF-κB is found in almost all 

animal cell types and is involved in cellular responses to 

stimuli such as stress, cytokines, free radicals, and ultra-

violet irradiation.32–34 Deregulation of NF-κB signaling has 

been linked to cancer and inflammatory and autoimmune 

diseases.35,36 In relation to this network, we observed sig-

nificant downregulation of the pro-apoptotic caspase-10 

gene in MTX-treatment xenografts. Study indicated that 

caspase-10 mRNA expression decreased significantly in 

stage II colorectal cancer tissues that predict poor prog-

nosis in patients.37 Dysregulation of CYP27B1 was also 

observed in the NF-κB signaling network. A study indicated 

that repression of CYP27B1 gene expression, mediated by 

interaction of GFI1 with other proteins to form a large pro-

tein complex, leads to cancer progression.38 Another study 

demonstrated that mRNA expression of CYP27B1 in the 

malignant breast tissue was lower, compared with that in 

the normal tissue and suggested that evaluating the mRNA 

expression levels of CYP27B1 may be useful for estimat-
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ing the vitamin D anabolism and catabolism and risk of the 

progression of breast cancer. The carcinogenesis-related 

gene BCL11A, a DNA sequence-specific transcriptional 

repressor, was instead upregulated and interacted directly 

with NF-κB in the network. Overexpression of BCL11A 

may play a primary role in the pathogenesis of lymphoid 

malignancies,39 is correlated with advanced clinical N1/N2 

lymphatic metastasis in patients,40 and was shown to be a 

prognostic factor for both overall survival and disease-free 

survival.41,42 In this study, BCL11A expression was dramati-

cally higher in the MTX-treatment xenografts than in their 

parental cell lines; BCL11A was also overexpressed and 

play a positive role in several other types of human cancers 

such as NSCLC, breast cancer, squamous cell carcinoma, 

and large cell carcinoma.43–45

Conclusion
Since some gene interactions may be specific of different 

cellular/experimental conditions, clinical validation of the 

present results is warranted. Nevertheless, this exploratory 

analysis may be useful to bestow a theranostic perspective 

to the current trend of research in PCa and to help identify 

molecular targets to overcome castration and MTX chemo-

therapy resistance.
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