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Abstract: Chronic obstructive pulmonary disease (COPD) is a common and deadly disease. 

One of the hallmarks of COPD is an accelerated decline in lung function, as measured by 

 spirometry. Inflammation, oxidative stress and other pathways are hypothesized to be important 

in this deterioration. Because progressive airflow obstruction is associated with considerable 

 morbidity and mortality, a major goal of COPD treatment has been to slow or prevent the 

accelerated decline in lung function. Until recently, the only known effective intervention was 

smoking cessation. However, newly reported large clinical trials have shown that commonly 

used medications may help slow the rate of lung function decline. The effect of these medica-

tions is modest (and thus required such large, expensive trials) and to be of clinical benefit, 

therapy would likely need to start early in the course of disease and be prolonged. Such a 

treatment strategy aimed at preservation of lung function would need to be balanced against 

the side effects and costs of prolonged therapy. A variety of newer classes of medications may 

help target other pathophysiologically important pathways, and could be used in the future to 

prevent lung function decline in COPD.

Keywords: COPD, emphysema, pulmonary function, beta-agonist, anti-inflammatory, 

 pharmacotherapy in COPD

Introduction
Chronic obstructive pulmonary disease (COPD) is a deadly and costly disease, both in the 

United States and around the world. Approximately 20 million Americans are affected, 

and there is likely a similar worldwide prevalence. COPD is increasingly recognized as a 

systemic disease with extra-pulmonary manifestations such as skeletal muscle myopathy, 

osteoporosis, anemia, and depression.1–3 It is also linked with cardiovascular co-morbidities 

and various malignancies.4,5 As a result, COPD is associated with major morbidity and 

mortality. In the United States, COPD is the fourth leading cause of death (behind heart 

disease, cancer and stroke) accounting for more than 119,000 deaths per year; however, 

the number of deaths due to COPD is increasing while most others causes decline.6 

Furthermore, the prevalence and mortality of COPD has been increasing faster over the 

last two decades in women compared to men, so that mortality due to COPD is now equal 

among men and women. Thus, COPD is projected to overtake stroke as the third most 

common cause of death in the US by 2020. The estimated direct cost of COPD in the US 

is substantial, and a portion of this money is spent toward medications designed not only 

to alleviate symptoms, but also ideally to slow disease progression and reduce mortality. 

By 2012, COPD drug costs are expected to reach almost 6 billion dollars per year in 

the US, Japan, and part of Western Europe alone.7 This estimate excludes many large 
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and populous areas, such as India and China, where COPD is 

becoming an increasingly recognized and prevalent condition, 

both due to smoking and other sources of air pollution.8,9

While greater emphasis is now placed on extra-pulmonary 

disease, the definition of COPD still rests upon airflow 

obstruction. Airflow obstruction, usually measured using 

spirometry, is a useful marker of disease since testing is 

reasonably reproducible and widely available. The Global 

Initiative for Chronic Obstructive Lung disease (GOLD) 

has proposed spirometric criteria for diagnosis and severity 

assessment of COPD using the forced expiratory volume 

in one second (FEV
1
) and the ratio of the FEV

1
 over the 

forced vital capacity (FVC) after bronchodilator.10 When 

incorporated with other clinical information, spirometry can 

also be used to predict survival in COPD.11 Progression of 

airflow obstruction, another hallmark of COPD, can also be 

determined by serial spirometry measurements over time. 

Sustained improvements in spirometry, or at least a reduction 

in the rate of FEV
1
 decline, should reflect reduced morbidity 

and mortality.

Until recently, the only known intervention to slow 

disease progression was cigarette smoking cessation.12,13 

However, greater understanding of disease pathogenesis has 

provided new targets for intervention. Furthermore, large 

clinical trials have recently been reported in the literature 

to help assess whether commonly used medications slow 

disease progression. This review will focus on COPD 

 pathogenesis, review recent clinical trial results, and highlight 

other potential therapeutic options.

Normal lung function, aging,  
and smoking
Lung function has traditionally been measured using 

 pulmonary function tests, particularly spirometry. However, 

spirometry is actually a measurement of a number of 

physical and mechanical properties of the respiratory 

 system, including resistance of the airways, elasticity of the 

 respiratory system, and contractile forces of the respiratory 

muscles. True lung function may also require assessment of 

arterial oxygen or carbon dioxide tension, but spirometry 

has the advantages of being non-invasive, standardized, and 

reproducible. Normative data are also available, allowing 

appropriate matching for differences in sex, height, race 

and age. Thus, pulmonary function tests are frequently 

used for diagnosis, assessment of disease severity, disease 

 progression, response to treatment, and for prognosis in a 

variety of respiratory disorders.

Consideration of age is necessary given the myriad changes 

that occur in the respiratory system even with normal aging. 

With aging, there are changes not only in lung parenchyma 

but also in chest wall shape and in muscle forces – all of 

which affect spirometry. While the exact shape and details of 

the curve describing lung function (as assessed by FEV
1
) by 

age has yet to be determined, the general shape is shown in 

Figure 1. As might be expected, FEV
1
 rapidly increases during 

childhood and adolescence, before reaching a plateau in early 

adulthood.14,15 Interestingly, the peak of lung function appears 

to occur after maximum height has been achieved, so that the 

improvements in spirometry are not just due to increased lung 

size (and thus airway caliber). Lung function remains stable 

at this plateau (with men having a higher plateau value than 

women) until approximately age 25 to 30 years, after which 

FEV
1
 slowly declines. Although there is some controversy as 

to whether the decline in FEV
1
 is linear with age or acceler-

ates with aging,16 some of the most robust data suggest that 

lung function decreases approximately 20 mL per year during 

middle age, and then decreases more rapidly by about 38 mL 

per year after age 65.17,18

Regardless of the exact rate of decline in FEV
1
 with age, 

the decline is likely due to a combination of age-related 

changes of the parenchyma, the chest wall, and the respi-

ratory muscles, which may be difficult to separate using 

spirometry alone. The chest wall may change with aging 

due to reduced height of thoracic vertebrae, or stiffening 

or calcification of the costal joints of the rib cage. Direct 

measurements have confirmed decreased compliance of the 
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Figure 1 Normal changes in FEV1 (solid line) and FVC (dashed line) for men (M) 
and women (F). Reproduced with permission from Janssens JP, Pache JC, Nicod LP. 
Physiological changes in respiratory function associated with ageing. Eur Respir J. 
1999;13(1):197–205.14 Copyright © 1999 European Respiratory Journals Ltd.
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chest wall with aging.19,20 Respiratory muscle function also 

changes with age. Studies of diaphragm strength have shown 

a 13% to 25% drop in the maximal inspiratory force generated 

with aging.21,22 In general, skeletal muscle function, which 

predicts maximal inspiratory and expiratory pressure (MIP 

and MEP), also decreases with age.23,24 Taken together, these 

changes may limit the maximal inspiratory and expiratory 

effort that contribute to FEV
1
. Perhaps most important in 

explaining the age-related decline are changes in the lung 

parenchyma. Pathological studies have shown that beyond 

age 50 years, elastic fibers at the level of the respiratory 

bronchiole and alveolus degenerate, or rupture and appear 

coiled – although the total number of alveolar connections 

remains unchanged (in contrast to emphysema induced 

by cigarette smoking).25,26 The abnormal and presumably 

weakened connections lead to uniform airspace dilatation, 

a condition that Verbeken and colleagues called “senile 

emphysema.” The functional result of these parenchymal 

lung changes are a decrease in the elastic recoil pressure of 

the lung and a weakening of the supporting structures of the 

small airways, which more easily close, even during tidal 

breathing.27–29 All of these changes contribute to the gradual 

decline in FEV
1
 with increasing age.

The changes in lung parenchyma (decreased elastic 

recoil), chest wall (increased stiffness), and the respiratory 

muscles (decreased force generation) explain the observed 

changes in lung volume with aging. Total lung capacity 

remains relatively preserved since the increased distensibility 

of the lung is offset by the stiffer chest wall. Residual volume 

(RV) and functional residual capacity (FRC) both increase, 

but expiratory reserve volume (ERV) decreases.30,31

Changes in lung function with  
smoking and COPD
Smoking impacts all phases of lung development and 

growth, and can limit the maximal lung function attained,32,33 

shorten the duration of the plateau phase prior to the decline 

with aging,34 and accelerate the decline in lung function.13 

Although the precise numbers may vary slightly in other 

studies,35,36 the findings of Fletcher and Peto encapsulate the 

known consequences of smoking on lung function decline 

(see Figure 2).13 First, smokers show an accelerated rate of 

decline in FEV
1
 compared to those who have never smoked; 

an average loss of approximately 50 mL per year. Of note, 

while this rate may be approximately double the normal 

rate of decline, this small absolute change per year could be 

difficult to detect in short trials. Second, on average there is 

a dose-dependent loss in lung function: in general, greater 

amounts of smoking lead to greater declines in FEV
1
. Third, 

there is variable susceptibility to the effects of smoking. 

That is, for a given amount of smoking, there is a variable 

rate of decline in lung function among different subjects, 

 presumably reflecting genetic37 or other environmental 

 factors, although the rate of decline appears to be similar 

between men and women.35,38 Studies of lung function 

decline must be interpreted in terms of this “Horse Racing 

Effect” – the observation that in a race, the faster horse will 

be out in front in the middle of the race. In the context of 

 smoking and lung function decline, subjects with evident 

lung function loss and clinical COPD are likely those with 

the fastest loss of lung function. Conversely, most smokers 

will not develop clinically significant COPD.39 Finally, the 

rate of lung function decline will slow, and may return to 

normal with smoking cessation. Whether the diagnosis of 

COPD by itself (ie, after smoking cessation) causes more 

rapid decline in lung function is unknown, and is difficult 

to decipher from the effects of smoking unless there is 

adequate follow-up time, typically several years.40 Airway 

 inflammation continues to persist for many years after smok-

ing cessation, and improvements in hospitalization are not 

generally seen until years after smoking cessation.12,41 There-

fore definitive data regarding COPD alone without smoking 

are difficult to obtain.

Pathogenesis and pathology  
of COPD
Knowledge about the pathogenesis of COPD will be helpful 

in understanding the causes of and ultimately treating the 

accelerated lung function decline. COPD is now recognized as 

a systemic inflammatory disease, not just affecting the airways 

and lung parenchyma, but many other organs as well. The 
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Figure 2 The decline in lung function with age, smoking, and smoking cessation. 
Note that the decline in lung function among “susceptible” smokers will be variable. 
Reproduced with permission from Fletcher C, Peto R. The natural history of chronic 
airflow obstruction. Br Med J. 1977;1(6077):1645–1648.13 Copyright © 1977 British 
Medical Association.
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GOLD definition emphasizes that the disease has systemic 

effects due to abnormal inflammation, defining COPD as:

“a preventable and treatable disease with some signifi-

cant extra-pulmonary effects that may contribute to the 

 severity in individual patients. Its pulmonary component 

is characterized by airflow limitation that is not fully 

reversible. The airflow limitation is usually progressive and 

associated with an abnormal inflammatory response of the 

lung to noxious particles or gases.10

Two patterns of airflow obstruction are commonly 

described, which can overlap in individual patients. 

An obstructive bronchiolitis can result from structural changes 

and narrowing of small airways. Parenchymal destruction 

leads to emphysema, with loss of supporting structures 

around the airways. The loss of elastic recoil promotes airway 

 collapse during exhalation.

Inflammation, oxidation,  
and premature aging
The abnormal inflammatory response that causes these 

 patterns of injury has yet to be fully characterized, and there 

are likely multiple pathways that lead to impaired lung 

 function. Three major proposed mechanisms are: activation of 

elastolytic proteases, chronic oxidative stress, and accelerated 

aging.42–44 Cigarette smoking provides the initial stimulus 

which recruits cells into the lung parenchyma. Circulating 

monocytes become macrophages in the lung and subsequently 

recruit additional macrophages, neutrophils, and activated 

T-lymphocytes. The level of inflammation in COPD lungs is 

greater than that seen in the lungs of smokers without COPD, 

and the number of neutrophils in sputum is predictive of lung 

 function decline.45 Unlike asthma, the inflammation with 

COPD is generally resistant to the effects of corticosteroids, 

and these pathological changes are progressive. Once activated, 

the recruited cells release enzymes such as neutrophil elas-

tase and matrix metalloproteinase-9 (MMP-9) which destroy 

normal lung tissue. One of the hallmarks of COPD is this 

imbalance between proteases, which are part of the normal 

host defense to bacteria or foreign bodies, and inactivating 

anti-proteases;46 the subset of patients with genetic deficits in 

alpha-1 antitrypsin, a protease inhibitor, are a good example 

of this principle. One other clinical observation that suggests 

 protease/anti-protease imbalance is the loss of skin elasticity 

and wrinkling that also occurs in and correlates with severity 

of emphysema; this also illustrates the extra-pulmonary effects 

of COPD, although such changes could also be the direct result 

of smoking.47 Oxidative stress may also play a role, either as 

a result of oxidants present in cigarette smoke or the genera-

tion and release of reactive oxygen species from leukocytes. 

Oxidative stress can increase activity of proteases, and lead to 

inactivation of anti-proteases. Finally, the changes seen with 

COPD may be an accelerated version of “senile emphysema.” 

As described above, some of the same pathological changes 

seen with COPD also occur in elderly subjects, such as loss 

of elastic tissue and distal airspace enlargement. Several in 

vitro and animal studies support this hypothesis. For example, 

 fibroblasts from those with emphysema have reduced prolif-

erative capacity compared to control smokers,48 which may be 

related to telomere length. Telomere shortening is accelerated 

by oxidative stress and chronic inflammation. Additionally, the 

anti-aging molecule sirtuin SIRT1 is also reduced in murine 

COPD lungs. These and other changes suggest COPD could 

be a disease of premature aging.49

The inflammation that begins in the lung causes increased 

levels of a number of cytokines, chemokines and acute 

phase reactants. Whether these findings reflect “spill-over” 

of pulmonary inflammation, or a separate activation of a 

generalized inflammatory response, is unknown.3 Those 

with COPD have higher circulating levels of cytokines 

and acute phase reactants than those who smoke but do 

not have COPD. Interleukin-6, tumor necrosis factor alpha 

(TNF-α), interleukin-8, and ghrelin are all elevated in 

COPD, as are C-reactive protein and fibrinogen.3 Although 

the effects of these substances are wide ranging, they prob-

ably modulate some of the systemic effects of COPD. For 

example, circulating IL-6 has been associated with skel-

etal muscle atrophy, and TNF-α with muscle atrophy and 

cachexia. These systemic effects could also contribute to 

decrements in spirometry. Thus, all of the pathways men-

tioned above represent potential targets for therapy.

Exacerbations
Exacerbations of COPD also appear to play a role in lung 

function decline. Although the definition is imprecise 

(and sometimes controversial), exacerbations are usually 

defined clinically by worsening symptoms, and are often 

associated with worsening pulmonary function and 

increased local and systemic inflammation.50 Those with 

frequent exacerbations appear to have more rapid decline 

in lung function and increased mortality (see Figure 3).51–53 

Airway infection due to a variety of bacterial and/or viral 

pathogens is the most likely cause of exacerbations.54,55 

Environmental exposures such as air pollution may also 

play a role, however, in up to one third of cases, no clear 

precipitant for the exacerbation can be identified.10 Because 
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the same bacteria can be recovered from the lungs of 

COPD patients both before and during an exacerbation, 

bacterial infection was often dismissed as a cause for 

exacerbation. However, Sethi and colleagues found that 

exacerbations were associated with changes in the specific 

bacterial strain, suggesting that exacerbations can follow 

the acquisition of new pathological strains. Pathogens may 

more easily cause infection in the COPD lung, in which 

several normal defense mechanisms of innate immunity 

are impaired. For example, mucociliary function, alveolar 

macrophage phagocytosis and toll-like receptor expression 

are all impaired in COPD.56

A rational approach to slow lung  
function decline
Based on our current understanding of COPD pathogenesis 

outlined above, there are several targets for intervention. 

These include excessive inflammation, proteolysis, oxidative 

stress, and bacterial and viral infections that may trigger 

exacerbations.

Commonly used COPD 
medications
Bronchodilators
There are two commonly used classes of bronchodilators: 

beta-agonists and anti-cholinergics. Beta-agonists 

 stimulate β-2 adrenergic receptors, increase levels of cyclic 

AMP, and thereby inhibit bronchoconstriction. Inhaled 

forms are preferred because of rapid onset of action and 

favorable side effect profile compared to the oral form. 

Short-acting inhaled beta-agonists, such as albuterol, 

 salbutamol and levalbuterol, have a rapid onset of action 

(within minutes) and a duration of action on the order of 4 to 

6 hours. Long-acting compounds such as salmeterol (onset 

of action up to one hour) and formoterol (onset of action 

within minutes) have a duration of action of approximately 

12 hours without demonstrable tachyphylaxis with 

 regular use.57 Anticholinergics block muscarinic receptors 

(M1, M2, and M3), blocking the action of acetylcholine on 

the airway smooth muscle, which leads to airway smooth 

muscle relaxation. Short-acting anticholinergic preparations 

Smoke from tobacco and biomass fuel contains ROS,
toxins, and particulate matter
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Figure 3 The role of exacerbations in accelerating lung function decline. Exacerbations (indicated by red arrows) punctuate and hasten lung function decline. Hansel TT, 
Barnes PJ. New drugs for exacerbations of chronic obstructive pulmonary disease. Lancet. 2009;374(9691):744–755.83 Copyright © 2009 Elsevier.
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 (ipratropium, oxytropium) can have effects lasting up to 

8 hours following administration, while the long-acting 

 preparation (tiotropium) has effects that last more than 

24 hours. Inhaled anticholinergic compounds have very 

limited systemic absorption.

By their effects on smooth muscle, bronchodilators can 

acutely improve lung function, hyperinflation, dyspnea, 

exercise tolerance and lessen the degree of nocturnal 

 hypoxemia.58,59 Bronchodilator medications may also have 

other clinically relevant effects. For example, beta-agonists 

have effects on multiple components of the respiratory 

 system, including: decreased airway smooth muscle 

 proliferation; decreased neutrophil number, activity and 

 function; and increased ciliary beat frequency.60 Some 

or all of these changes could help counteract excessive 

 inflammation, restore innate immunity, or prevent airway 

remodeling. Similarly, the anti-cholinergic tiotropium 

has been shown to decrease respiratory syncytial virus 

replication (RSV) in an in vitro model, and decrease lung 

 fibroblast collagen synthesis.61,62 Thus, these commonly 

used bronchodilators may affect the progression of COPD 

through pathways unrelated to their direct effects on 

 bronchomotor tone.

Corticosteroids
Inhaled corticosteroids are frequently used in severe COPD 

to interrupt inflammatory pathways, although the effect on 

disease is less notable than the use of these medications 

in asthma. At least in moderate to severe COPD, inhaled 

 corticosteroids can decrease the number of exacerbations 

and improve quality of life.63 Unfortunately, several small 

to moderate sized trials using inhaled corticosteroids failed 

to show a consistent effect of these medications on the 

rate of decline in FEV
1
.63–66 For example, the Lung Health 

Research Study Group randomized more than 1100 sub-

jects with all stages of COPD to the inhaled corticosteroid 

 triamcinolone for 40 months: no difference was seen in the 

rate of lung function decline, the study’s primary outcome.64 

In the ISOLDE trial, 750 patients were randomized to 

inhaled fluticasone vs placebo for three years. The annual 

rate of decline in FEV
1
 was 50 mL/year in the fluticasone 

group and 59 mL/year in the placebo group, although the 

 difference did not reach statistical significance (P = 0.16).63 

A third contemporary trial by Pauwels and colleagues 

randomized over 1200 patients to budesonide or placebo 

for 3 years, and again, the rate of decline was not statisti-

cally significantly different (P = 0.39) between budesonide 

(−57 mL/year) vs placebo (−69 mL/year). A subgroup 

analysis suggested that the therapy was more effective in 

those who had less cigarette pack-year exposure. These 

studies and others have been combined via meta-analyses 

which reached conflicting conclusions about the efficacy of 

inhaled corticosteroids in ameliorating the decline in lung 

function.67,68 In the positive meta-analysis by Sutherland 

and colleagues, corticosteroids were found to reduce the 

rate of FEV
1
 decline by 7.7 mL per year compared to pla-

cebo. These moderate size trials illustrate the difficulty in 

detecting the difference in the rate of lung function decline 

between those patients with COPD not on treatment (with 

a reported FEV
1
 decline of 50 mL per year) and those 

patients with COPD on treatment (expected FEV
1
 decline 

somewhere between 25 and 50 mL per year). Such small 

differences in lung function decline per year make it dif-

ficult to discern whether treatment with inhaled cortico-

steroids truly does alter lung function decline. Trials with 

both longer periods of active treatment and follow-up will 

be required to better answer this question. In aggregate, the 

existing data support a relatively small effect of inhaled 

steroids on FEV
1
 decline in COPD.

TORCH and UPLIFT
Two recent very large trials have examined the impact of 

these commonly used medications on the decline in FEV
1
. 

These trials are fundamentally different from prior work 

due to their large sample size and extended follow-up. The 

first results reported were from the Toward a Revolution in 

COPD Health (TORCH) study.69 This was a multi-center, 

 randomized, double-blind trial comparing treatment in 

 moderate to severe COPD with placebo, salmeterol, 

 fluticasone, or the combination of salmeterol and fluticasone. 

All cause mortality was the primary endpoint, although 

 spirometry and rate of lung function decline was also 

assessed. Over 6000 patients were randomized, with about 

60% of subjects completing the 3-year trial. Overall, the 

combination therapy tended (P = 0.052) to improve absolute 

all-cause mortality by about 2.5%.

A post-hoc analysis, done before treatment unblinding, 

was performed to assess the rate of decline in FEV
1
 

(see Figure 4).38 In this group of former smokers, the change 

in post-bronchodilator FEV
1
 was 55 mL per year – similar 

to prior reported values. Treatment with either fluticasone 

or salmeterol was associated with a decline in FEV
1
 of only 

42 mL per year; and the combination of drugs was 39 mL 

per year (not statistically significantly different from the 

 individual drug components). There are some legitimate 

critiques of the trial. Specifically, dropouts were not randomly 
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distributed amongst the different treatment arms, introducing 

potential bias, with significantly more dropout in the placebo 

arm (18% vs 9% in the combination therapy arm). Although 

it could be assumed that those who dropped out had a faster 

rate of lung function decline, Suissa has convincingly shown 

how this assumption could be false, since the data could be 

skewed by the phenomenon of regression to the mean.70,71 

Nevertheless the TORCH trial provides the first evidence 

that treatment of COPD can slow the accelerated decline 

in FEV
1
. Although there was a significant decrease in the 

number of exacerbations, even in patients who had no exac-

erbations during the trial there was a similar difference in the 

rate of decline between those on placebo (56 mL per year) 

and those with some form of active treatment (27 to 31 mL 

per year). Since there was improvement in both the salmeterol 

and fluticasone groups, but little added improvement in 

the combination group it suggests that there are multiple 

potential mechanisms for improvement in lung function. 

Further studies are needed to elucidate whether there may be 

a limit or ceiling effect on the total amount of improvement 

possible.

The second very large COPD treatment trial was the 

Understanding Potential Long-Term Impacts on Function 

with Tiotropium (UPLIFT) trial.72 This was also a large, 

multi-center, randomized, placebo-controlled trial in 

 moderate to severe COPD patients. Tiotropium was compared 

to placebo with the primary outcome rate of decline in FEV
1
. 

Importantly, patients were allowed to continue respiratory 

medications other than an inhaled anti-cholinergic, and the 

majority of patients were on a long-acting beta-agonist and/or 

an inhaled corticosteroid. Again, about 6000 patients were 

recruited, with 60% completing 45 months of follow-up. The 

addition of tiotropium did not slow the rate of FEV
1
 decline 

compared to placebo. In this trial, the rate of decline was 

only 38 mL per year in the treatment arm, and 40 mL per 

year in the placebo arm, only slightly greater than expected 

due to normal aging. Possible explanations of these data are 

the relatively low rate of smoking (as compared to other 

studies), which may have a much greater effect than any 

medication on the rate of lung function decline, and the high 

rate of concurrent use of other kinds of COPD medications. 

In support of this latter hypothesis, there was a difference 

in the rate of decline in post-bronchodilator FEV
1
 between 

tiotropium and placebo in those subjects not on either an 

inhaled corticosteroid or long-acting beta-agonist (40 ± 3 mL 

per year in the tiotropium group vs 47 ± 3 mL per year in the 

placebo group, P = 0.046). Subgroup analysis of this cohort 

also suggested that the use of tiotropium was also associated 

with a slower rate of decline in the group of patients with 

more mild disease [GOLD stage II (50%  FEV
1
  80% 

predicted, and FEV
1
/FVC  70%)].73

Although both TORCH and UPLIFT suggest that 

pharmacotherapy can modestly slow the rate of lung 

function decline, the different types of medications studied 

in each trial presumably work through different pathways. 

Indirect evidence for this comes from the INSPIRE trial, 

which compared the rate of exacerbations in severe COPD 

using combination salmeterol/fluticasone or tiotropium.74 

Although the drugs were equally efficacious at preventing 

exacerbations, when an exacerbation did occur, antibiotics 

were used more frequently in the salmeterol/fluticasone arm 

and steroids more often in the tiotropium arm, suggesting 

that the exacerbations were qualitatively different depending 

on the treatment arm. In clinical practice, all three types of 

medications are often combined, and probably offer addi-

tional benefits in terms of acute changes in FEV
1
, symptom 

scores and quality of life, but as of yet there are minimal 

long term data to assess the impact of this combination 

therapy on the rate of FEV
1
 decline since such trials have 

typically only run for 12 months or less.75,76

To summarize: commonly used medications appear to 

modestly slow the accelerated decline in lung function in 

COPD. Inhaled corticosteroids have an anti-inflammatory 

effect, which presumably explains their benefit. In contrast, 

the mechanism by which bronchodilators slow lung function 

decline is unknown. When combined, the effects of different 

classes of medications could be additive. Given the small 

absolute amount of lung function benefit, any clinically 

meaningful preservation of lung function would likely 

require years of daily medication use (as well as very long 
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clinical trials to detect), probably in patients with less severe 

COPD. The lung function preservation benefits would need 

to be weighed against the adverse effects and the costs of 

these medications. While beyond the scope of this review, 

several reported side effects might be important. The inhaled 

corticosteroids have been implicated in greater rates of 

osteoporosis in some,64 but not all,77 trials. In the TORCH 

trial (and some other trials of inhaled corticosteroids78), 

there was a higher rate of pneumonia in the treatment arms 

receiving high-dose fluticasone. For tiotropium specifically, 

there is wide disparity with regard to its reported effects on 

cardiovascular mortality.79

Other COPD medications
Besides the commonly used medications above, other 

pharmacotherapies have been tried based on pathways that 

might be important in COPD pathogenesis and lung func-

tion decline. Most of the work to date is preliminary or of 

limited applicability, but has been interesting and hypothesis 

generating.

Anti-oxidants
Oxidative stress is thought to play a role in COPD patho-

genesis. A number of trials sought to investigate the role 

of antioxidant therapy on exacerbations and lung function 

decline.80 The recently completed BRONCUS trial was 

a 3-year, randomized, placebo controlled trial of 600 mg 

N-acetylcysteine and its effect on exacerbations and the 

rate of decline in FEV
1
.81 The trial was negative for both 

endpoints, although subgroup analysis suggested that the 

therapy might reduce exacerbations in those not taking 

inhaled corticosteroids (perhaps similar to UPLIFT?). 

Another anti-oxidant, carbocisteine, was recently reported 

in the PEACE trial to decrease exacerbations during 1 year 

of active treatment compared to placebo.82 Carbocisteine 

also has mucolytic and anti-inflammatory properties, so the 

exact mechanism of any benefit is unknown. Nevertheless, 

anti-oxidant therapy is an area of active research for COPD 

treatment and exacerbation prevention.83

Antibiotics
Given the role of exacerbations in COPD pathogenesis, 

morbidity and mortality, many researchers have used 

 antibiotic therapy to prevent exacerbations. As well 

 summarized by Kunisaki and Niewoehner, there is a long 

history of antibiotic use in COPD, but this was mostly 

 abandoned after relatively disappointing trials in the 1950s 

and 1960s.84 Recently, Seemungal and colleagues revived 

the idea in a year-long, randomized, placebo-controlled 

trial of erythromycin.85 In this study, treatment with the 

antibiotic significantly reduced exacerbations in moderate 

to severe COPD. Although macrolides may have other 

anti-inflammatory properties86 there was no evidence of 

an anti-inflammatory effect; that is, the benefits seemed 

to accrue only due to the antimicrobial properties of the 

drug. No difference in lung function decline was seen in 

this (relatively short) 12-month trial. While such a strategy 

focuses on preventing exacerbations, even prompt reporting 

of exacerbations and rapid treatment with antibiotics could 

also influence lung function decline, as well as other COPD 

outcomes.87

Alpha-1-antitrypsin augmentation therapy
Alpha-1-antitrypsin (AAT) deficiency provides a unique 

model of COPD, due to the loss of a protease inhibitor 

in affected individuals. The protease/anti-protease 

 imbalance can be restored by intravenous augmentation 

of AAT. Several non-randomized studies have shown that 

 progression of disease can be slowed by therapy, though 

the effect may be modest and may not be evident for many 

years.88–90 While this specific therapy is not applicable to 

most with COPD,91 these results suggest that anti-protease 

therapy in general could have a role in slowing the decline 

in lung function.

Other anti-inflammatory therapies
Non-steroidal anti-inflammatory therapies have also 

been investigated. Among the most intriguing are the 

results from non-randomized trials looking at statin use 

in COPD. Statins, 3-hydroxy 3-methylglutaryl coenzyme 

A reductase inhibitors, are used extensively to prevent 

cardiovascular disease. In addition to their lipid lowering 

effects, it is clear that they also have anti-inflammatory 

properties.92 Observational trials have suggested that 

statins reduce mortality in COPD, a finding that may not be 

surprising given the risk of cardiovascular disease in this 

 population.93 However, statins have also been reported to 

reduce exacerbations, and in one retrospective observational 

trial statin use was associated with a markedly reduced 

decline in FEV1.94 Because patients who use statins may be 

 fundamentally different from those who do not,95 particularly 

for other medication use and habits, such results will need 

to be supported by randomized trials.

Phosphodiesterases (PDEs) are a family of enzymes that 

inactivate intracellular messengers cyclic AMP and cyclic 

GMP, which play important roles in the activity of many 
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 different cell types. PDE-4 has been of interest in COPD since 

this specific enzyme is found in immune and inflammatory 

cells as well as airway smooth muscle cells. PDE-4 inhibition 

can decrease airway inflammation in COPD, as assessed by 

sputum neutrophil and eosinophil counts.96 In addition, one 

small trial showed that tissue inflammation was reduced with 

PDE-4 inhibition, which may suggest a role for these drugs in 

preventing airway and parenchyma remodeling in COPD.97 

Recent trials have shown that in select populations of COPD 

patients, the PDE-4 inhibitor roflumilast can improve lung 

function and reduce exacerbations when administered for 

12 months.98,99 What role, if any, this class of medications 

has in prevention of long-term lung function decline has not 

yet been determined.

Other anti-inflammatory medications have been used, 

such as anti-TNF-α agents. Although a large trial was 

 negative,100 other pathways will no doubt be targeted in the 

future, and perhaps in earlier stages of disease.101

Patient education and patient–physician 
partnership
Although only recently a focus of rigorous investigation, 

patient education and partnership programs between 

patients and healthcare providers are likely to be important 

in COPD management and treatment.102,103 All medications 

require proper administration and dosing to achieve the 

desired effect. Similarly, early intervention in the course 

of an exacerbation may be crucial. Thus, education efforts 

should focus on several important areas including instruction 

on proper use of inhaled medications (particularly those 

 supplied via unique delivery systems), early recognition of 

exacerbations, and avoidance of known precipitants. Patient 

guides are available from several sources, including www.

goldcopd.org and www.internationalcopd.org. At each visit, 

proper compliance with maintenance medications should 

be emphasized. Practitioners should strive for a partnership 

with their patients (and ensure that the necessary systems 

are in place) that would allow for rapid notification and 

treatment of exacerbations. Although not within the realm 

of pharmacotherapy, we welcome further research efforts 

assessing these types of interventions on the rate of lung 

function decline.

Summary
COPD is an inflammatory disease associated with accel-

erated lung function decline. Data from trials with large 

numbers of participants and multi-year follow-up suggest 

that commonly used pharmacotherapy can modestly improve 

the decline in lung function in COPD. Given that the ben-

efit is small, it may be beneficial to start treatment early in 

the course of disease to preserve lung function over time. 

However, such a lung preservation strategy would need 

to be balanced against the potential side effects and costs 

associated with prolonged therapy. Alternatively, other more 

targeted therapies currently under investigation may offer 

greater benefit in the future.
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