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Abstract: The second foremost cause of mortality around the word is cancer. Conventional

therapies, such as radiation, surgery, and chemotherapy have limited accessibility owing to

secondary resistance. Therefore, convenient, safe, and nonresistant drugs are urgently

needed. Plant-derived natural products have attracted considerable interest owing to their

high efficacy, low toxicity, and convenience. Gypenosides (Gyp) inhibit invasion, migration,

metastasis, and proliferation and induce apoptosis in different cancers, including oral, lung,

colorectal, hepatocellular, and leukemic cancers through different molecular pathways. This

review summarizes Gyp studies on cancer to serve as a reference for further research and

clinical trials.
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Introduction
According to the WHO, cancer causes more deaths than stroke or any coronary

heart disease.1 Cancer cases increase because of numerous risk factors, aging, and

population growth.2 The continuous global epidemiologic and demographic transi-

tion signal shows that cancer will increase in the next decades, particularly in low-

and middle-income countries and is expected to have an annual record of 20 million

new cases in 2025.3 In a 2012 cancer report, approximately 14.1 million new cases

and 8.2 million deaths were recorded from 20 large areas of the world, and lung

cancer was the most common (1.82 million), followed by breast cancer

(1.67 million), and colorectal cancer (1.36 million). The major cause of death

was also lung cancer (1.36 million), followed by liver cancer (0.745 million) and

stomach cancer (0.723 million).4 Available clinical treatment for cancer includes

surgery, chemotherapy, and radiotherapy.5 Furthermore, radiotherapy and che-

motherapy can develop gradual resistance against therapy in cancer cells.6

Therefore, novel, affordable, and effective anticancer drugs must be developed.7

Medicinal plants provide a common alternative treatment for cancer in various

countries.8,9 Numerous natural products (NPs) were approved by the Food and

Drug Administration for the treatment of cancer.10 Many researchers reported new

antitumor NPs, but their main molecular mechanisms remain incompletely under-

stood. NP function contains different natural compounds and thus function through

different pathways.11 Systematic biology is an emerging approach that focuses on

molecular interactions in biological systems.12 Cancer is subject to complicated cell

transformation processes that result in changes at the genetic, epigenetic, and
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cellular levels.13 Therefore, systematic biology can help us

understand the molecular mechanisms of NPs and ulti-

mately uncover the new window to cancer treatment.

Gynostemma pentaphyllum (GpM)-derived extracts

and fractions and its derivative compounds show antic-

ancer activity in vivo and in vitro. Several clinical trials

showed that GpM has a potential curative effect on

cancer.14 GpM (Thunb) Makino, known in China as

Jiaogulan, belongs to the plant family Cucurbitaceae that

abundantly grows in Korea, Japan, and southern China. It

is a well-known folk medicine in China; in fact, it was

reported for the first time as a vegetable in a book named

“Herbs for Famine,” which was published in

1368–1644 AD during the Ming Dynasty.15 Various dam-

marane-type gypenosides (Gyp; >170 types), which have

been isolated from GpM since 1976, have attracted interest

because of its potential in treating wheeze, cough, hepati-

tis, bronchitis, and cancer.16–18 The major component of

the GpM Makino extract is Gyp, which is a popular folk

medicine in China and is often used for treating several

diseases, including hyperlipoproteinemia,19 cardiovascular

diseases,20 and hepatitis.21 Moreover, the extract has

antioxidative,22 anti-inflammatory,22 and anticancer

properties.14,23,24 Recently, its anticancer activities against

different cancer cell lines, including esophageal cancer

Eca-109 cells, human colon cancer SW620,25 oral cancer

SAS cells,26 and cervical epidermoid carcinoma cells,

have been reported.27 However, further investigation is

needed for the satisfactory definition of antitumor mechan-

isms of GpM28 and its derivative (Gyp). Li et al reviewed

the anticancer studies on the entire plant of GpM

(Thunb);14 however, they did not explain the anticancer

effect of the compound they extracted from GpM. Gyp

derived from GpM is an active compound for cancer

treatment. Therefore, in this review, we summarize avail-

able studies on Gyp to provide a comprehensive reference

for further research and clinical trials.

Targeting cancer with Gyp through
oxidative stress
In biological systems, oxidative stress refers to the phy-

siological disbalance in ROS level, such as H2O2 or O2, as

well as the capability of the body to remove it.

Furthermore, oxidative stress can be defined as the distur-

bance in redox signaling and control.29 ROS produced

throughout the body are the by-products of cellular aerobic

metabolism, ongoing stress, and exposure to UV light or

X-ray.30 It plays an important role in cell signaling and in

the regulation of cytokine, growth factor, hormone action,

transcription, ion transport, neuromodulation, immunomo-

dulation, and apoptosis.30,31 Furthermore, ROS has

a fundamental role in different types of cellular processes,

such as gene expression, cell survival, differentiation, pro-

liferation, enzyme regulation, and elimination of foreign

particles and pathogens.32,33 Multiple studies showed that

oxidative stress in cancer cells is high, which increases cell

proliferation, survival, metastasis, and angiogenesis and

disrupts cell death signaling and drug resistance.34–36

ROS promotes tumor proliferation, although a recent

research confirms that ROS is useful in cancer treatment.

The phytochemical induces ROS generation in cancer cells

above a threshold level, thereby killing these cells.34,36–38

Gyp induces ROS generation in various types of cancers.

In SW-480, oesophageal cancer Eca-109, SW-620, Caco2,

WEHI-3, SAS, human hepatoma HepG-2, and Huh-7

cells, Gyp can induce apoptosis and inhibit cell growth

and proliferation through oxidative stress and by increas-

ing ROS generation and mitochondrial membrane poten-

tial (MMP) depolarization. Furthermore, the ROS

generation can be reversed through N-acetyl-Lc-cysteine

pre-treatment.24,25,39–45 However, the exact molecular

mechanism is unexplored in cancer cells and needs further

clarification. Once the oxidative stress is generated, it

activates several apoptotic pathways, including mitochon-

drial-dependent pathways (MDPs).

Targeting cancer with Gyp through
intrinsic apoptosis pathway
Mitochondrial-dependent apoptosis is an important path-

way for the induction of apoptosis, and disturbance in this

pathway can inhibit apoptosis. The intrinsic pathway is

controlled through B-cell lymphoma 2 (Bcl-2) family

protein, which either increases or decreases the mitochon-

drial membrane permeability for the release of cyto-

chrome-c (Cyt-c) and other apoptotic proteins.46 A group

of antiapoptotic proteins, including Bcl-2, B-cell

lymphoma-extra-large (BclxL), Bcl-w, Bcl-2 related pro-

tein A1, and myeloid cell leukemia 1, possess sequence

similarity in its all Bcl2-homology 1–4 domains and

increase cell survival. Proapoptotic proteins include multi-

domain Bcl-2-associated X (BAX), Bcl-2 homologous

killer (BAK), and BH3-only protein. These proteins func-

tion as receptor mediators that induce endoplasmic reticu-

lum (ER) or mitochondrial stress-dependent apoptosis.47
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BH3-only proteins have two subclasses, one of which one

is an “activator’’ and includes total BH3 interacting-

domain death antagonist and Bcl-2-like protein 11. This

subclass directly activates the BAX/BAK to cause MMP

depolarization. The second subclass includes “sensitizers/

derepressors,” such as Bcl-2 interacting killer,

Bcl-2-associated death promoter, Bcl-2-modifying factor,

phorbol-12-myristate-13-acetate-induced protein 1, hara-

kiri, and p53 upregulated modulator of apoptosis. This

subclass neutralizes antiapoptotic proteins instead of

directly activating BAX/BAK.48,49 Meanwhile, antiapopto-

tic proteins block death signaling by directly inhibiting the

activation of BAX/BAK or activator BH3-only proteins.50

Antiapoptotic proteins, including Bcl-2 and Bclxl, are

involved in cancer progression51 and thereby induce the

resistance of tumor cells to many types of apoptotic stimuli,

including cytotoxic anticancer drugs.49 Gyps target MDPs

through pro- and antiapoptotic protein modulation and pro-

mote apoptosis. In Colo 205, WEHI-3, HL-60 cells, SCC-4,

SAS, and human hepatoma Huh-7 and A549 cells, Gyps

induce morphological changes and apoptosis and inhibit cell

proliferation by targeting MDPs.40,41,43–45,52–54 Moreover,

Gyps inhibit Bcl-xl and Bcl-2 and upregulate BAX, thus

promoting the release of Cyt-c and Endo G from the mito-

chondria. Upon Cyt-c release, caspase-3,9 is activated, and

poly (ADP-ribose) polymerases (PARP) are subsequently

upregulated. The PARPs then enter the nucleus and cause

DNA damage, alter cell morphology, inhibit proliferation,

and induce apoptotic death.40,41,43–45,52–54

Targeting cancer with Gyp through
extrinsic apoptosis pathway
The extrinsic pathway is activated through tumor necrosis

factor (TNF) family proteins, including Fas or TNF recep-

tor-1 [TNFR1]). These proteins engage the death domain

(DD)-containing receptors and activate the death effector

domain, which contains capases. Moreover, the death

legends expressed on cytotoxic T cells, natural killer

cells (NKs), and other types of relevant cells eradicate

transforming cells.55 Fas or TNFR1 activates caspase-8

through the Fas-associated death domain protein and

forms a death-inducing signaling complex that activates

caspase-3 and promote cell death.56,57 Gyp modulates the

extrinsic apoptosis pathway. In SAS cells, Gyp activates

the extrinsic pathway and then caspase-8 through the acti-

vation of Fas/FasL. It also activates caspase-3 and PARP

and damages the DNA and induces apoptosis.44,53

Targeting cancer with Gyp through
ER stress
The ERis involved in sensing, synthesis, and signaling in

eukaryotic cells. The ER must tightly regulate oxidizing and

Ca2+-rich folding environments to perform these functions.

Protein folding and Ca2+ buffering in the ER are regulated

by several chaperones, including calreticulin, calnexin, pro-

tein disulfide isomerases, and glucose-regulated protein

GRP78 (BiP). Several pathophysiological conditions, such

as hypoxia, ER-Ca2+ depletion, hypoglycemia, viral infec-

tions, and oxidative injury affect the homeostasis of ER and

disrupt protein folding load and capacity, thereby causing

ER stress. The ER responds to these changes by activating

an integrated signal transduction pathway, and this process

is called unfolded protein response (UPR).58 The UPR

regulates ER homeostasis by coordinating the complex

processes of gene transcription, activates ER folding

machinery components, and controls ER quality and ER-

associated degradation (ERAD) pathway. However, as ER

stress intensifies, the UPR consequently changes from pro-

survival to prodeath response and usually ends in the acti-

vation of intrinsic apoptosis.59 In mammals, protein kinase

RNA-like endoplasmic reticulum kinase (PERK), activating

transcription factor-6 (ATF6), and inositol-requiring enzyme

1 are ER stress transducer proteins that activate survival and

apoptotic pathways. When the UPR exhibits prosurvival

response, it activates ER chaperones, translational attenua-

tion, and ERAD; conversely, it activates C/EBP homolo-

gous protein 10 (CHOP)/GADD153 and caspase-12 when

the response is proapoptosis.60 In cancer, ER stress apopto-

tic proteins are usually downregulated, and Gyp increases

ER stress and consequently induces cell apoptosis. In HL-

60, WEHI-3 cells Gyp ROS mediate ER stress by increas-

ing GADD153, GRP78, PERK, and ATF6-α ATF4-α levels,

thereby activating caspase-12, which in turn activates cas-

pase-3,7 and PARP; these processes instigate DNA frag-

mentation and compel the cells toward

apoptosis.39,40,41,52,54

Targeting cancer with Gyp through
the cell cycle pathway
Cell growth is regulated by a major process called the cell

cycle and at different checkpoints by different cyclin inter-

actions among specific cyclin-dependent kinases (CDKs)

that form active complexes. The process at each check-

point completes before the progression to the next phase of

the cell cycle.61 Moreover, different CDK inhibitors
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negatively regulate CDKs. Among CDKs, p21 regulates

cell cycle at different checkpoints.62,63 The failure of the

checkpoints induces mutation and genomic rearrange-

ments, causing genetic disturbance, and ultimately

cancer.63 Meanwhile, p53 has a key component role in

cell cycle regulation. It becomes active to a wide range

of damage and stresses.64,65 When activated by genotoxic

stress, p53 regulates the p21WAF1/CIP1/SDI1 gene

encoding CDK universal inhibitors that inhibit cell cycle

progression.66 Many studies suggest that anticancer com-

pounds arrest the cell cycle selective checkpoints and

cause death to cancer cells through apoptosis.67 Gyp

induces cell cycle arrest in different types of cancer cells.

Gyp causes DNA damage in SCC-4, SW-620, Caco2, SW-

480, and rat hepatic stellate cells. DNA damage activates

checkpoint protein 2 (Chk2), which in turn activates p53

and p21, inhibits Cdk2 and cyclin E, and promotes G1S

and G0G1 phase cell cycle arrest. Furthermore, Gyp acti-

vates p27, p21, and p16, which inhibit Cdk2, cyclin E, and

cyclin D1/3K, CDK4/6 and promote G1S and G0G1 phase

cell cycle arrest.39–42,52–54,68

Targeting cancer with Gyp through
DNA repairing pathway
Cell homeostasis is maintained through the preservation of

its genomic integrity. DNA damage response (DDR)

reverses intrinsic and extrinsic DNA damage and transmits

the genome to new dividing cells, which are required for

cell survival during replication. Genotoxic drugs and

radiations are used for treating cancer, but the DNA repair

mechanism contributes to resistance to chemotherapy and

radiotherapy. Resistance can be prevented, and the efficacy

of cancer therapies can be increased by using inhibitors

against DDR major components, including ataxia telan-

giectasia mutated (ATM), ATM and Rad-related (ATR),

DNA-dependent protein kinase, catalytic subunit (DNA-

PK), and checkpoint protein 1 and 2 to confer chemo- and

radiosensitivity in cancer cells.69 Gyp has an important

role in DNA-repairing gene regulation for overcoming

cancer. Specifically, Gyp decreases cell viability and

induces death in SAS cells and human oral cancer, and

these processes are correlated with inreased DNA migra-

tion and decreased expression levels of 14-3-3σ, DNA-PK,
ATM, ataxia-telangiectasia, p53, ATR, and breast cancer

gene 1 at mRNA. Furthermore, Gyp induces DNA damage

in SAS cells and inhibits the expression of DNA-repairing

genes.70

Targeting cancer with Gyp through
the PI3K/AKT/mTOR pathway
Phosphatidylinositol-3-kinase, protein kinase B, and the

mammalian target of the rapamycin signaling pathway

increase cell survival and growth through different

mechanisms.71,72 In different types of human cancers, the

PI3K/AKT pathway is overexpressed through different

mechanisms.73–76 The phosphorylation of two AKT resi-

dues, including serine 473 and threonine 308, leads to

AKT activation.77 Subsequently, AKT enters the nucleus

and modulates the activities of several factors regulating

transcription. The mammalian target of rapamycin

(mTOR) becomes phosphorylated because of the PI3K/

AKT signaling, and its overexpression is associated with

poor recovery. NPs have attracted considerable interest

because they potentially kill cancer cells through different

mechanisms. For example, Gyp inhibits the proliferation

of SAS, SCC-4, and PDGF-induced rat hepatic stellate

cells through the PI3K/AKT pathway and by downregulat-

ing PI3K, AKT, and P70SK phosphorylation.26,68,78

Furthermore, in SAS cells and SCC-4 cells, Gyp targets

the PI3K pathway through downregulation of son of

sevenless (SOS), RAS, urokinase-type plasminogen acti-

vator (uPA), and focal adhesion kinase (FAK), which

further inhibit PI3K and Rho-A. As a result, they inhibit

MMP-2,7,9 and ultimately inhibit cell invasion, migration,

and metastasis, as shown in Figure 2 and Table 1.26,78

Targeting cancer with Gyp through
nuclear factor-kB (NF-kB) pathway
The NF-kB is a transcription factor complex consisting

of hetero- and homodimers of five members of a Rel

family, such as RelA (p65), RelB, c-Rel, NFkB1 (p50/

p105), and NF-kB2 (p52/p100.79 The functions of NF-

kB are mostly deregulated in cancer.80 NF-kB activa-

tion, which has been found in a variety of cancers,

including leukemia, lymphoma, colon, breast, liver,

prostate, pancreas, and ovarian cancers, is associated

with aggressiveness, tumorigenesis, poor survival, and

chemoresistance.81–83 NF-kB activation occurs in

response to DNA damage, which consequently activates

various NF-kB target genes, including COX-284 and

iNOS.85 These genes have a pivotal role in prosurvival

antiapoptosis. Therefore, NF-kB is the candidate of

therapeutic resistance in different cancers. Gyp targets

the NF-kB pathway to cure cancer. In SAS cells and

SCC-4 cells, Gyp targets NF-kB pathway through
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downregulation of SOS, RAS, uPA, and FAK. These

genes further downregulate AKT, NF-kB, iNOS, and

COX-2, which activate p53. As a result, MMP-2,7,9 is

inhibited, which decreases cell invasion, migration, and

metastasis as depicted in Figure 2 and Table 1.26,78

Targeting cancer with Gyp
through mitogen-activated protein
kinase/extracellular signal-regulated
kinase (MAPK/ERK)
(Ras-Raf-MEK-ERK) pathway
MAPK/ERK pathway, also known as the Ras-Raf-MEK-

ERK pathway, possesses several cascades and is mostly

deregulated in human cancers.86 It regulates many cell

functions, including apoptosis, differentiation, cell growth,

proliferation, senescence, and migration.87 The MAPK/

ERK pathway molecules are activated through its phos-

phorylation. When ERK is activated, it enters the nucleus

where transcription factor phosphorylation occurs due to

it. When these transcription factors phosphorylate, they

bind to the promoter region of various genes including

cytokines and growth factors. Such genes are responsible

for the reduction in apoptosis and elevation in cell

proliferation.88 When the normal signaling of this pathway

is disturbed, they cause senescence, drug resistance, and

tumorigenesis.87,89,90 In many human cancers, failure is

detected in this pathway.91,92 Therefore, targeting the

MAPK/ERK pathway, especially with NP including Gyp,

may open a new window for cancer treatment. In SAS

cells and SCC-4 cells, Gyp targets the ERK1/2 pathway

through downregulation of SOS, RAS, uPA, and FAK).

These genes further downregulate side ERK1/2, and

directly downregulate the matrix metalloproteinase-2,7,9,

thereby inhibiting cell invasion, migration, and metastasis

as illustrated in Figure 2 and Table 1.26,78

Conclusions
The studies indicated that Gyp has therapeutic potential in

the treatment of different cancers owing to its low toxicity

owing and a long history of human use. Furthermore, it

induces apoptosis through different molecular pathways

and can thus be used in combination with other drugs to

overcome resistance to available targeted drugs. More

preclinical and clinical studies are needed to design and

conduct a definite dose of Gyp for various types of cancer

and for specific pathways or genes. Available anticancerT
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information about Gyp is summarized in Table 1 and

Figures 1 and 2.

Abbreviation list
GpM, Gynostemma pentaphyllum; Gyp, gypenosides MMP,

mitochondrial membrane potential; Bcl-2, B-cell lymphoma

2; Cyt-c, cytochrome-c; BclxL, B-cell lymphoma-extra-large;

Bfl-1/A1, Bcl-2-related protein A1; Mcl-1, myeloid cell leu-

kemia 1; BH1-Bh4, Bcl2-homology 1–4; BAX,

Bcl-2-associated X; BAK, Bcl-2 homologous killer; tBid,

total BH3 interacting domain death antagonist; Bim,

Bcl-2-like protein 11; Bik, Bcl-2 interacting killer; Bad, Bcl-

2-associated death promoter; BmF, Bcl-2-modifying factor;

Noxa, phorbol-12-myristate-13-acetate-induced protein 1;

Hrk, harakiri; Puma, p53 upregulated modulator of apoptosis;

MDP, mitochondrial-dependent pathway; PARP, poly

(ADP-Ribose) polymerases; DNA, deoxyribonucleic acid;

TNF, tumor necrosis factor; TNFR1, TNF receptor-1; ER,

endoplasmic reticulum; ; UPR, unfolded protein response;

ERAD, ER-associated degradation; PERK, protein kinase

RNA-like endoplasmic reticulum kinase; ATF6, activating

transcription factor-6; IRE1, inositol-requiring enzyme 1;

CHOP, C/EBP homologous protein 10; CDKs, cyclin-

dependent kinases; DDR, DNA damage response; ATM,

ataxia telangiectasia mutated; ATR, ATM and Rad-related;

DNA-PK, DNA-dependent protein kinase, catalytic subunit;

Chk1, Chk2, checkpoint protein 1 and 2; BRCA1, breast

cancer gene one; mTOR, mammalian target of rapamycin;

NF-kB, nuclear factor-kB; MAPK/ERK, mitogen-activated

protein kinase/extracellular signal regulated kinases; uPA,

urokinase type plasminogen activator; FAK, focal adhesion

kinase.

Figure 1 Gyp induces apoptosis, causes cell cycle arrest, and inhibits cell proliferation and DNA repair. (A). Gyp increases Ca+ and ROS generation. ROS inhibits MMP and

modulates the mitochondrial proteins directly or through the activation of ERK1/2. Consequently, the rate of cytochrome C and AIF translocation from the mitochondria to

the cytoplasm increases, and activated caspase-9, in turn, activates caspase-3,7. However, ROS generation induces endoplasmic reticulum stress by activating oxidation-

inducing proteins GADD153, PERK, ATF6, and IRE-α. Consequently, they activate caspase-12, which further activates caspase-3,7. Similarly, caspase-3,7 is activated by

activating Fas, Fasl, and caspase-8. Activated caspase-3,7 causes DNA damage in cancer cells, leads to cell apoptosis and (B) activates chk-2, p53, and p21, which inhibit

CDK2 and cyclin E. However, Gyp inhibits CDK2 and cyclin E by activating p16, p21, and p27. Then, the cells undergo S and G0G1 phase cell cycle arrest. Furthermore, the

activated p16, p21, and p27 inhibit the cyclin D1/3k and CDK4/6, leading to S phase cell cycle arrest. (C) Gyp inhibits cancer cell proliferation through two mechanisms. First,

when the cell cycle arrest occurs, cell proliferation is inhibited. Second, Gyp inhibits PI3K, AKT, and p70S6K and cell proliferation. (D). Gyp inhibits DNA-repairing genes

including MGMT, DNAPK, ATM/ATR, p53, BRCA1, and 14–3–3σ at mRNA level and inhibits DNA repair.

Abbreviations: Gyp, gypenosides; ROS, reactive oxygen species; MMP, mitochondrial membrane potential; ATF6, activating transcription factor-6; BRCA1, breast cancer

gene 1; IRE, inositol-requiring enzyme; ATM, ATM, ataxia telangiectasia mutated; ATR, ATR, ATM and Rad-related.
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