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Abstract: Morphine is commonly used in clinical management to alleviate moderate-to-

severe pain. However, prolonged and repeated use of morphine leads to tolerance. Morphine

tolerance is a challenging clinical problem that limits its clinical application in pain treat-

ment. The mechanisms underlying morphine tolerance are still not completely understood.

MicroRNAs (miRNAs) are small noncoding RNAs containing 18~22 nucleotides that mod-

ulate gene expression in a post-transcriptional manner, and their dysregulation causes various

diseases. miRNAs bind to the 3ʹ-UTR (untranslated region) of target gene mRNA, inhibiting

or destabilizing translation of the transcripts. Morphine causes differential miRNA upregula-

tion or downregulation. This review will present evidence for the contribution of miRNAs to

tolerance of the antinociception effect of opioids.
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Introduction to morphine tolerance
Morphine is used extensively in clinical practice for the treatment of acute and

chronic pain as well as cancer-related pain.1 Long-term morphine treatment is

usually accompanied by morphine tolerance.2 Morphine tolerance is characterized

by a progressively decreasing pain control response, requiring increasing morphine

dosage to achieve adequate analgesia after long-term application.3 Morphine toler-

ance is the major reason for pain treatment failure, and the molecular mechanisms

of morphine tolerance are complicated.

Opioid receptors and morphine tolerance
Opioid tolerance reflects changes in how systems affected by the opioid respond

such as changes in receptor density or desensitization of receptors.4 The opioid

receptor belongs to the G protein-coupled receptor (GPCR) family and primarily

mediates the analgesic function of morphine. Morphine targets mu opioid receptor

(MOR) through adenylyl cyclase (AC) and extracellular signal-regulated kinase

(ERK) pathways as well as intracellular calcium storage and cell membrane ion

channels to form antinociceptive tolerance.5 Endocytosis of MOR through corre-

sponding kinases, including protein kinase C (PKC), protein kinase A (PKA), and

GPCR kinases (GRKs) to promote serine or threonine phosphorylation on MOR,

facilitates the development of morphine tolerance (Figure 1).6 A previous study

reported that delta opioid receptor (DOR) is a key receptor in morphine antinoci-

ceptive tolerance. MOR analgesic tolerance is reduced by blockade of DORs that

interact with MORs.7,8 Recent studies show that the MOR/DOR interaction in
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nociceptive afferent neurons in the dorsal root ganglion may

contribute tomorphine analgesic tolerance.9 Cyclin-dependent

kinase 5 (Cdk5) phosphorylated DOR at Thr-161 accelerated

the development of morphine tolerance.8 Besides, one

mechanism for the role of DOR in modulating analgesia is

through MOR–DOR heterodimerization.10 The DOR antago-

nist can increase MOR binding and signaling by occupancy of

DOR and enhance morphine-mediated analgesia.10,11

Furthermore, morphine tolerance can be blockaded by genetic

interruption of DOR system.12 In addition, co-administration

of a κ-receptor antagonist withmorphine suppressed the devel-

opment of antinociceptive tolerance to morphine.13

Synaptic connections and morphine

tolerance
Recently, most cellular studies on morphine tolerance have

focused on synaptic mechanisms. N-methyl-D-aspartic

acid receptor (NMDAR), platelet-derived growth factor

receptor β (PDGFR-β),14 and substance P precursor pro-

teins (tachykinin precursors) in the synapse were reported

indirectly participated in morphine tolerance.8,15 The presy-

naptic glutamate receptor, which is co-expressed with the

transient receptor potential vanilloid 1 (TRPV-1), promotes

glutamate release and produces long-term potentiation (LTP)

to facilitate morphine tolerance.16 Studies have demonstrated

that chronic morphine treatment leads to a reduction in post-

synaptic K+ conductance and voltage-gated calcium channels

in the periaqueductal gray (PAG).17 Besides, transcription

factors, such as cAMP-response element binding (CREB)18

and nuclear factor-κB (NF-κB),19 are also regulated by mor-

phine and participate in synaptic plasticity and the pathology

of morphine tolerance.

Inflammatory factors and morphine

tolerance
A large number of researchers have found that long-term

morphine application results in neuroinflammatory

responses, especially those mediated by toll-like recep-

tor-4 (TLR4), in the brain and spinal cord, which are

a very important cause of morphine tolerance.20 TLR4 is

Figure 1 Schematic showing mechanisms underlying morphine tolerance. Schematic model showing how MOR/β-arrestin 2 and NMDAR/CaMKⅡγ-dependent signaling in
neuron plays a crucial role in the promotion of morphine tolerance. Morphine induces activation of glial cells and upregulates proinflammatory cytokines via the TLR4/NF-κB
pathway to facilitate morphine tolerance.

Abbreviations: MAPK, mitogen-activated protein kinase; ERK1/2, extracellular signal-regulated kinase 1/2; NeuroD 1, neurogenic differentiation factor 1; TRAF6, tumor necrosis

factor receptor-associated factor 6; P2X4R, purinergic P2X4 receptors; ATP, adenosine 5'-diphosphate; NLRP3, NACHT, LRR and PYD domains-containing protein 3 inflammasome.
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a key innate immune receptor, and morphine bound to

myeloid differentiation factor 2 (MD-2) activates TLR4

signaling facilitating morphine tolerance.21 Recently,

increasing evidence indicates that morphine tolerance is

accompanied by increased glial cell activation.22 The

number of inflammation-associated astrocytes and micro-

glia was significantly increased by morphine in the

spinal cord of rats; moreover, these increased cell num-

bers were accompanied by morphological changes.23

Pentoxifylline inhibits astrocyte activation and releases

neuroinflammatory factors, such as tumor necrosis factor

alpha (TNF-α), IL–1β, and IL–6), effectively reversing

the development of morphine tolerance.24 Morphine acti-

vates microglial cells, upregulates microglia marker

(CD-11b or Iba1) expression, acts on TLR4 and activates

proinflammatory signaling to facilitate morphine

tolerance.25 In addition, P2X4 and P2X7,26,27 ATP

receptors, were upregulated in microglia of the spinal

cord by morphine, and its antagonists prevented the

development of morphine tolerance (Figure 1).

The mechanisms underlying morphine tolerance are not

completely understood, and effective prevention and treatment

measures are lacking. In recent years, some studies have stated

that many of the mechanisms that have been implicated in

opioid tolerance appear to be regulated by miRNA.28 This

review discusses how abnormally expressed miRNAs pro-

mote morphine tolerance by targeting its downstream genes.

MicroRNA (miRNA) synthesis and
function
miRNAs are a group of noncoding, single-stranded small

RNAs approximately 18～22 nucleotides (nt) in length.

When pri-miRNAs are synthesized in the cell nucleus, dicer

enzymes process the pre-miRNAs into mature miRNAs,

which are rapidly transferred to the cytoplasm. miRNAs

guide Argonaute (AGO) proteins and recruit miRNA-

induced silencing complex (miRISC) to mRNA targets.29

Negative miRNA regulation functions include direct degrada-

tion of target gene mRNA and modulation of target gene

mRNA stability to indirectly inhibit target gene translation.30

When multiple 3ʹ-UTR-binding sites are present, the negative

regulatory function of target genes is more obvious.31

miRNAs have also been reported to bind to mRNA-coding

regions. However, the inhibitory effect of binding to the cod-

ing regions is lower than of binding to the 3ʹ-UTRs.32

Recent studies have clearly demonstrated that miRNAs

are essential and critical players in mammalian development

and closely associated with human genetic diseases, nervous

system development, and the development and progression

of certain major diseases.33–35 In opioid analgesic efficiency

research, we found that miRNAs play an indispensable role

in morphine tolerance, drug addiction, and opioid receptor

expression.36

miRNAs participate in morphine
tolerance
With the gradual increase in the number of miRNA and

morphine tolerance studies, accumulating results have

demonstrated that morphine-induced antinociceptive toler-

ance is accompanied by upregulation or downregulation of

many miRNAs in vivo and in vitro and that the differen-

tially expressed miRNAs are important regulators of mor-

phine tolerance. A growing number of studies have reported

miRNA mechanisms in morphine tolerance (Table 1).

miRNAs regulate opioid receptor

expression to accelerate morphine

tolerance
let-7 is one of the earliest discovered miRNAs after lin-4. let-7

is a highly conserved miRNA. Let-7 family are encoded by 13

genomic loci in the human body37 and mainly participates in

stem cell differentiation, nerve and muscle tissue develop-

ment, and cell proliferation and differentiation.38 Under mor-

phine stimulation, let-7 expression is upregulated. Validation

with luciferase assays showed that the let-7 sequence has

many binding sites on the 3ʹ-UTR of the MOR gene.

Morphine upregulates let-7 and downregulates MOR protein

expression in SH-SY5Y cells.39 Downregulation of let-7 in the

mouse brain partially reversed morphine tolerance.40 Further

studies showed that let-7 does not directly reduce MOR

mRNA degradation; instead, it reduces the binding between

ribosomes and mRNAs through a P-body to influence MOR

translation and decrease MOR expression.41 These results

suggest that the “star molecule” let-7 plays an important role

in MOR and participates in morphine tolerance.39 Long-term

morphine treatment increased miR23b expression in a dose-

and time-dependent manner and repressed target MOR1

mRNA with polysomes through the MOR1 3ʹ-UTR.42 After

chronic treatment of mice with μ-opioid agonists (morphine or

fentanyl), miR-339-3p was increased in the hippocampus and

inhibited MOR 3ʹ-UTR activity by binding to its target

sequence and promoting mRNA decay.43 miR-107 and miR-

103 were increased in Be(2)C cells and mouse striatum,
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mainly functioned as repressive elements on MOR1, and

participated in morphine tolerance by repressing the expres-

sion of MOR.44 Consequently, morphine regulates MOR

expression through a number of miRNAs in cell lines and in

animals to aggravate morphine tolerance (Figure 2).

miRNAs regulate β-arrestin 2 to

participate in morphine tolerance
miR-365 is present in many types of cancer cells including

colorectal cancer,45 lung cancer,46 and cholangiocarcinoma

cell.47 In gastrointestinal cancer, miR-365 inhibits cell cycle

progression through inhibition of cyclin D1 (CCND1) to

inhibit cancer development.45 miR-365 was decreased in

malignant glioma cells and functioned in phosphoinositide-

3-kinase regulatory subunit 3 (PIK3R3) to participate in

glioma progression, and overexpression of miR-365 inhibited

glioma proliferation and invasion. miR-365 was upregulated

in the ischemic brain, inhibited the target gene PAX6 (a

neurogenic fate determinant) expression, and exacerbated

ischemic brain injury.48

Arrestins are inhibitory proteins, and β-arrestin 2 is a -

subtype49 that can activate GPCRs to mediate internalization

and desensitization of MOR. Upregulated β-arrestin 2 func-

tions onMOR to attenuate the analgesic effects of opioid drugs

throughAC, ERK pathways, intracellular calcium storage, and

cell membrane ion channels. β-arrestin2-knockout mice have

been reported to represent an animal model in which the

morphine-induced desensitization of MOR has been signifi-

cantly impaired and display an enhanced and prolonged

response to morphine in pain perception.50 Our study revealed

that miR-365 was significantly decreased, accompanied by

high expression of β-arrestin 2, in the spinal cord of morphine

group rats compared with saline group rats. Luciferase assays

showed that miRNA-365 has many binding sites with the 3ʹ-

UTR of the target gene β-arrestin 2 (Figure 2).51 Our research
data suggest that morphine tolerance occurs via the miR-365/

β-arrestin 2 pathway. In addition, miR-365 targets β-arrestin2
by inhibiting ERK/CREB activation, thus reducing IL-1 and

TNF-α content, and lowering morphine analgesic tolerance.52

Therefore, miR-365 might become a potential target for pre-

vention and treatment of morphine tolerance (Figure 2).

Table 1 miRNAs and morphine tolerance

Name Change Drug
studied

Tissue Function

miR-16 Decreased Morphine CEM ×174 cell Binds to the MOR-1 mRNA 3’-UTR and suppress

OPRM1 gene expression.74

miR-103/miR-107 Increased Morphine/

fentanyl

Mouse (prefrontal cortex)/human

embryonic kidney 293(HEK293 cells)/

Be(2)C cells

Downregulates polyribosome-associated MOR-1A in

both Be(2)C cells and the striatum of a morphine-

tolerant mice.44

miR-339 Increased Morphine Mouse hippocampus/mouse neuro-

blastoma neuro2A(N2A) cell

Inhibits the production of MOR protein by destabilizing

MOR mRNA.43

miR-let-7 family Increased Morphine Mouse brain/HEK293 cells Mediates movement of MOR mRNA into P-bodies,

leading to translational repression.39

miR-23b Increased Morphine Human neuronal cell lines (NMB)/

HEK293 cells

Inhibits lysome-mRNA association with MOR (mouse

neuronal N2A cells).75

miR-365 Decreased Morphine Spinal cord (rat) Involved in morphine tolerance development and

maintenance through regulation of β-arrestin 2.51

miR-219-5p Decreased Morphine Spinal cord (rat) Alleviates morphine tolerance by inhibiting the

CaMKIIγ/NMDA receptor pathway.55

miR-190 Decreased Morphine/

fentanyl

Hippocampus (mouse) A key post-transcriptional repressor of neurogenic dif-

ferentiation factor NeuroD.76

miR-338 Decreased Morphine Spinal cord (rat) Regulated by miR-338, CXCR4 was significantly

increased, and play an important role in morphine

tolerance.77

miR-223-3p Increased Morphine Spinal cord (rat) Upregulates the expression of NLRP3 to facilitate

morphine analgesic tolerance.64

miR-375 Increased Morphine Dorsal root ganglia (DRG:mouse) Ameliorates morphine tolerance by downregulating

JAK2/STAT3 expression.78
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miRNAs aggravate morphine tolerance

through CaMKII/NMDAR
Calmodulin-dependent protein kinase II (CaMKII) is a serine/

threonine protein kinase composed of α, β, γ, and δ subunits.
CaMKII is extensively distributed in the central and peripheral

nervous systems to regulate synaptic transmission and neuro-

nal functions. Immunofluorescence experiments have demon-

strated that MOR and CaMKIIγ are co-expressed and are

mainly present in neural pathways that conduct pain.

Previous research showed that morphine increased the expres-

sion of CaMKII in the dorsal root ganglia (DRG) directly

influencing the expression of calcition gene-related peptide

(CGRP) required for the development of tolerance to mor-

phine-induced analgesia.53 CaMKII downregulation inhibited

both CREB activation induced by morphine and phosphoryla-

tion of opioid receptor and attenuated the development of

morphine tolerance.54 The expression of miR-219-5p was

downregulated in the spinal cords of morphine tolerance rats

and acted on the downstream target gene CaMKIIγ.55 CaMKII

activates CREB to promote NR1 synthesis. NMDAR activa-

tion causes calcium influx to increase calcium concentrations

in the cytoplasm and recruit CaMKII to increase the Ca/

CaMKII complex concentration and mediate the conduction

of neuronal activity.56

NMDA participates in morphine tolerance develop-

ment and neuronal plasticity within the central nervous

system. NMDAR is one of the receptors that transmit

excitatory neuronal signals. NMDAR primarily mediates

calcium influx and transduction of downstream signaling

to induce cellular internal cascade amplification and

causes internalization of MOR.57 NR1 is a subunit of

endogenous NMDA receptors.58 In the mouse brain

chronic morphine treatment alters the expression level of

NR1, which plays an important role in morphine

tolerance.59 Animal studies have shown that the mRNA

levels of NR1 in the striatum are significantly upregulated

in morphine tolerance models to accelerate morphine tol-

erance development. Our group showed that morphine

Figure 2 Schematic diagram showing the mechanism of morphine tolerance regulation by miRNAs. Morphine induces many miRNAs. Pri-miRNAs are synthesized in the

nucleus and transferred to the cytoplasm, Dicer makes pre-miRNA into mature miRNA. Differentially expressed miRNAs regulate neuroplasticity-related target protein

expression and thereby participate in the development of morphine tolerance. miR-365 was significantly downregulated after morphine administration, along with its target

gene β-arrestin 2, and acted indirectly on MOR to participate in morphine tolerance. In addition, morphine induced low miR-219-5p expression in the spinal cord and

further upregulates CaMKIIγ to promote morphine tolerance. MOR is the primary opioid receptor and the target of miR-134/miR-339/miR-236, which are involved in

morphine tolerance. Mature let-7 is exported from the nucleus into the cytosol and incorporated into RISC, a protein composed of translational machinery that recruits

target mRNA to P-bodies and effectively reduces polysome-bound mRNA, resulting in translation repression. In glial cells, morphine administration altered the expression of

miR-124 or miR-223, along with their target gene, which participated in morphine tolerance.

Abbreviations: RISC, RNA-induced silencing complex; miR, microRNA.
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induces low miR-219-5p expression in the spinal cord to

further upregulate the expression of target proteins,

CaMKIIγ, and NR1 (Figure 2). These results suggest that

morphine tolerance development is associated with the

miR-219-5p/CaMKIIγ pathway.55

miRNAs alleviate morphine tolerance by

controlling the expression of

inflammatory factors
Chronic morphine exposure often results in increased expres-

sion of various proinflammatory cytokines such as IL-1β, IL-6,
and TNF-α, in vitro and in vivo and elevates lipopolysacchar-
ide (LPS)-induced immune response.60 Inhibition of the func-

tion of glial cells, including astrocytes and microglia, can

attenuate the development of morphine analgesic tolerance.61

The ventrolateral periaqueductal gray glial contributes to mor-

phine tolerance by activating the innate immune receptor

TLR4.62 TLR4 signaling increased the expression of the

NLRP3 inflammasome in microglia through NF-κB within

a period of morphine-induced sensitization.63 miR-223 nega-

tively regulated NLRP3 inflammasome expression to relieve

morphine analgesic tolerance.64 Furthermore, TLR4-mediated

NF-κB activation in the spinal cord is involved in the devel-

opment and maintenance of morphine tolerance.65 Morphine-

induced upregulation of miR-124, which directly inhibits its

downstream targets NF-κB and TRAF6, plays a critical role in

morphine-mediated microglia immunity suppression

(Figure 2).66

Studies in miRNA clinical trials
A lot of studies involving miRNA treatments have been

conducted over the years, and a small number of miRNA

composites have moved into clinical application. The locked

nucleic acid (LNA) drug miravirsen67,68 and a GalNAc-

conjugated antimiR against miR-122, both designed to treat

hepatitis C virus (HCV) infection by suppressing the function

of miR-122, have undergone PhaseⅠ trials in HCV-infected

patients.69 A miR-29 mimic for patients with scleroderma

and an LNA-based antimiR-155 for patients with cutaneous

T-cell lymphoma are in PhaseⅠ clinical trials.70 A growing

number of studies have shown that miRNAs are involved in

morphine tolerance, but potential miRNA therapeutic rarely

move into clinical development. One of the challenges is that

clinical drugs mainly target drug enrichment sites through

target proteins, andmiRNAs have diverse downstream action

sites and do not have specific target proteins. Second,

miRNAs are exogenous small RNAs and thus, for further

clinical application, it is very important to increase miRNA

lipophilicity or use specific technologies to allow miRNA to

rapidly enter cells through cell membranes and exert regula-

tory functions. Third, potential immune-related adverse reac-

tions and jaundice should be taken into consideration.

Conclusions
The human genome generates approximately 1,500

miRNAs. Biomedically oriented miRNA studies have gen-

erated a large amount of miRNAs information including

pathway, disease, organs, and target analysis.

This information can be searched on the website of

miEAA miRase, miRWalk, and miRTarbase.71 Several

binding bases are required between a miRNA and its target

gene mRNA, and thus the association between miRNAs

and target genes is a network-like relationship. One

miRNA can act on many target genes to negatively reg-

ulate target protein expression and thus can participate in

many pathophysiological processes in human diseases.

Recently, many studies have revealed molecular mechan-

isms of miRNAs and target genes in morphine tolerance,

differentiation, and cancer, but the biological effects of

miRNAs have not been completely determined.72

Additional miRNAs, such as miR-873a-5p, will likely be

found to further elucidate the mechanisms underlying the

development and progression of morphine tolerance.

Increasing research has revealed that miRNAs participate

in morphine tolerance development, and interference with

certain miRNAs has been shown to inhibit morphine toler-

ance development in rodents. let-7 and miR-365, involved in

the MOR and β-arrestin2 pathway, may have therapeutic

potential that may be explored in future clinical trials.

Researchers have reported that there are two application

routes, intravenous injection and subcutaneous injection,

for miRNA treatment and that miRNAs would form the

basis of a new treatment approach.73 Additionally, more

studies need to be carried out to examine the mechanisms

by which miRNAs participate in morphine tolerance.

Currently, there is a huge gap between preclinical and

clinical studies regarding the role of miRNAs in opioid

tolerance and the potential implications in human subjects.

Therefore, with further in-depth miRNA-related translational

studies, miRNAs may become targets for drug development

for the prevention and treatment of morphine tolerance.
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