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Introduction: Since 1956 there have been numerous scientific articles about free radical

theory of aging which both confirm and deny the theory. Due to oxygen metabolism, there

are relatively high concentrations of molecular oxygen in human cells, especially in mito-

chondria. Under normal physiological conditions, a small fraction of oxygen is constantly

converted to ROS, such as superoxide radical (O2−•), H2O2, and related metabolites.

Aim of the study: The aim of this work was to show the relation between the activity of

main antioxidative enzymes and the age of the examined patients.

Materials and methods: The analysis of antioxidant defense was performed on the blood

samples from 184 “aged“ individuals aged 65–90+ years, and compared to the blood samples

of 37 individuals just about at the beginning of aging, aged 55–59 years.

Results: The statistically significant decreases of Zn,Cu-superoxide dismutase (SOD-1),

catalase (CAT), and glutathione peroxidase (GSH-Px) activities were observed in elderly

people in comparison with the control group. Moreover, an inverse correlation between the

activities of SOD-1, CAT, and GSH-Px and the age of the examined persons was found. No

age-related changes in glutathione reductase activities and malondialdehyde concentrations

were observed.

Conclusion: Lower activities of fundamental antioxidant enzymes in the erythrocytes of

elderly people, which indicate the impairment of antioxidant defense in the aging organism

and the intensity of peroxidative lipid structures, were observed.
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Introduction
One of the main global problems is the aging of society which is supposed to be

a combined result of low fertility, low immigration, and prolonged lifespan.1,2 In

order to tackle this issue it is necessary to learn more about aging at the biochemical

and molecular levels, as well as about the biological, medical, and social conse-

quences of this process. A 30-year gain in life expectancy has been recorded in

highly developed countries during the 20th century.2–4 This tendency has also been

noticeable in Poland since 1990. According to the projection of Polish Central

Statistical Office, the life expectancy in Poland may increase from 70.0 years in

2007 to 77.1 years in 2035 for males and from 79.7–82.9 for females, respectively.

In this period of time, the percentage of Polish population at post-working age (60+

years for women and 65+ years for men) may change from 16%–26.7%.

An integral part of aerobic metabolism is ROS generation which should be

analyzed according to its two main functions. On the one hand, ROS plays an

important role in biomodulating and regulating many cellular functions, such as
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defense against pathogens, signal transduction processes

during transmission of intercellular information, and acti-

vation of specific transcription factors.5–9 On the other

hand, an excessive quantity of ROS has a deleterious

effect on cells, reacting with a variety of molecules and

thereby interfering with cellular functions.10,11 To cope

with the elevated generation of ROS, ROS-scavenging

biochemical pathways have been developed in aerobic

cells.12–16

One of the more serious objections against free radical

theory of aging are results of research performed on mtDNA

mutator mice. They have a mutation in exonucleasic catalytic

domain of mitochondrial subunit of gamma polymerases.

A consequence of this mutation is an increased expres-

sion of proteins which do not have recovery properties. This

leads to accumulation of mtDNAmutations.17 The examined

mice have a series of symptoms which resemble the natural

process of aging, such as kyphosis, anemia, alopecia, greying

of the hair, loss of hearing, cardiomyopathy, decreased ferti-

lity, loss of weight, and shortened life expectancy. Mutator

mice have lack of ROS production and oxidative damages,

even though the respiratory chain remains functioning. This

observation contradicts the concept in which ROS and

mtDNA mutation fuel one another and results in gradual

deterioration of mitochondrial function. In the examined

mice, an increased level of ROS may cause extension of

life expectancy, which is a contradiction of the free radical

theory of aging. This leads to a conclusion that the hypothesis

of this theory is incorrect.18–20 However, the results from

numerous scientific results about the increase of oxidative

stress with age suggest the unclear relation between the free

radical theory and the aging process.

Due to the peculiar metabolism, the red blood cells are

vulnerable to oxidative stress.21 The main source of free

radicals in erythrocytes is the process of auto-oxidation of

hemoglobin which results in methemoglobin. Furthermore,

it may lead to cross-reactions between globin chains which

precipitate as so-called Heinz bodies. What is observed is

the protein breakdown, creation of large protein com-

plexes, damage of glycoprotein at the surface of blood

cells, and disturbance of transport through membrane and

membrane potential.22,23 These processes lead to the loss

of function and viability of red blood cells. In erythrocytes,

there is an exhaustion of glutathione stocks which addi-

tionally causes the decrease of antioxidative enzymes'

activity, increase peroxidation of cell membrane lipids

and oxidative damages of hemoglobin. This may lead to

hemolysis of erythrocytes and the release of heme iron and

intensification of reaction of free radical among the

endothelium.21,24–27

The oxidative stress theory is one of the most popular and

controversial explanations of aging pathomechanisms. The

free radical theory of aging, proposed in 1956 by Harman,

assumed the endogenous generation of oxygen free radicals

from normal oxygen-utilizing metabolic processes and their

essential role in the aging processes.28 Later, Harman and

other researchers modified this theory, in accordance with

the findings in this area.29,30 According to this hypothesis,

the loss of balance between pro-oxidants and antioxidants

leads to accumulation of oxidative damage inmacromolecules

with age, which results in the disturbances in functional cel-

lular processes and development of aging.31–33 In recent years

there have been a lot of studies supporting the role of ROS in

molecular aging mechanisms.34,35 The confirmation of oxida-

tive stress increase with age of diverse organisms, and the

generation of transgenic invertebrates overexpressing the anti-

oxidant enzymeswith increased lifespanwere among themost

important results of these studies.36–39 Nevertheless, there

were no alterations in the lifespan in most of the

examined mouse models, which under- or overexpressed

a wide variety of genes coding for antioxidant enzymes.40–42

Thus, the role of oxidative stress in agingmammals is not fully

understood and still demands further inquiries.43,44

Materials and methods
The study was carried out on 221 persons (100 males, 121

females), divided into seven age subgroups (55–59, 65–69,

70–74, 75–79, 80–84, 85–89, and 90+ years). The sub-

group of 55–59 year-old persons was the control group.

The participants were recruited according to a multi-stage

procedure designed for the study performed in the

Department and Clinic of Geriatrics in order to choose

a representative sample of elderly people.

The selected anthropometric parameters such as

growth, weight, and total cholesterol had a normal distri-

bution. Regarding these parameters, the results of exam-

ined patients did not show statistically significant

differences (Table 1).

Blood samples were collected in the morning (08:00

am) after 12 hours of fasting from the cubital vein in

heparinized tubes (3 mL) to obtain erythrocytes. All sam-

ples were centrifuged (2,500 g for 10 minutes). After

plasma removal, the hemolysate was prepared by threefold

freezing and thawing the washed erythrocytes, suspended in

ultrapure water. The hemolysate was used to determine the

parameters of oxidative stress and antioxidative defense.
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Malondialdehyde (MDA) concentration in erythrocytes, as

well as erythrocytic activities of Cu-Zn superoxide dismu-

tase (SOD-1; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6),

cellular glutathione peroxidase (GSH-Px; EC 1.11.1.9), and

glutathione reductase (GR; EC 1.6.4.2)) were assayed by

the methods of Placer et al, Misra and Fridovich, Beers and

Sizer, Paglia and Valentine, and Flohe and Gunzler,

respectively.45–49 MDA level was expressed as

a concentration of thiobarbituric acid reactive substances,

read at 532 nm. SOD-1 activity was determined at 37°C by

recording the increase in absorbance at 480 nm following

the auto-oxidation of adrenaline, inhibited by SOD-1. CAT

activity was measured at 25°C by recording H2O2 decom-

position at 240 nm. GSH-Px activity was determined at 25°

C by recording the decrease in absorbance at 340 nm fol-

lowing the oxidation of NADPH in the presence of tert-

butyl hydroperoxide as a substrate, GSH, yeast GR, and

NaN3 as a CAT inhibitor. GR activity was determined at 37°

C by recording the decrease in absorbance at 340 nm fol-

lowing the oxidation of NADPH in the presence of oxidized

glutathione. The hemoglobin concentration in the hemoly-

sate was estimated after conversion into cyanmethemoglo-

bin form using a commercial reagent (Biomed, Lublin,

Poland), read at 540 nm.

Statistical analysis
All results were expressed as mean ± SD. The one-way

analysis of variance followed by the Tukey post hoc test

was performed to determine the statistical significance of

differences. The Pearson’s correlation coefficient was used

to quantify the relationship between the measured para-

meters. The level of significance was set at P<0.05.

Results
All results of measured biochemical parameters of oxida-

tive stress were shown in Table 2. Figure 1–5 present

parameters in particular age groups together with the

trend line showing the tendency of change with age.

The progressive decrease of antioxidant enzymatic

defense in the erythrocytes during aging was observed in

this study. The activities of SOD-1 were lowered by 17% in

elderly subjects over 90 years of age in comparison with the

persons aged 55–59 years, whereas the activities of CAT and

GSH-Px were reduced by 20% and 27%, respectively. Only

GR activities remained unchanged during aging in this study.

Moreover, the strong negative correlations between age

and SOD-1, CAT, and GSH-Px activities in the erythrocytes

were observed.

Table 1 Anthropometric parameters of the examined groups (mean ± SD)

Parameter 55–59
years

65–69
years

70–74
years

75–79
years

80–84
years

85–89
years

90+
years

Body mass index 24.2±4.2 24.1±3,1 24.8±2.5 22.30±2.5 24.70±3.7 22.4±2.1 21.1±2.3

Body mass (kg) 72.2±7.5 73.1±4.5 75.4±6.5 74.7±4.5 69.8±5.5 71.2±3.5 69.2±7.5

Body height (cm) 170±4.3 172±3.3 173±4.3 169±5.3 168±2.3 169±5.3 167±6.3

Total cholesterol (mg/dL) 175±8 182±4.8 168±5.2 164±3.1 172±6.2 161+7.1 171±3.8

Table 2 Selected parameters of pro- and antioxidant balance in the blood of the examined groups (mean ± SD)

Age groups
(years)

Number of
subjects
(male/female)

Malondialdehyde
[µmol/g Hb]

Zn,Cu-
superoxide dis-
mutase [U/g
Hb]

Catalase
[BU/g
Hb]

Glutathione
peroxidase
[U/g Hb]

Glutathione
reductase
[U/g Hb]

55–59 (control) 37 (17/20) 0.249±0.031 2578±170.8* 24.54

±1.76*

14.95±3.17* 58.55±7.13

65–69 28 (13/15) 0.240±0.026 2490±220.0 24.17±2.11 13.36±2.29 59.89±12.76

70–74 29 (12/17) 0.229±0.0350 2440 ±206.2 24.37±2.46 14.10±2.39 56.51±12.71

75–79 29 (14/15) 0.235±0.0329 2520±203.3 23.10±1.86 13.18±2.57 57.87±10.69

80–84 32 (16/16) 0.239±0.036 2310±192.7 23.09±2.12 12.86±2.56 54.75±15.89

85–89 32 (12/20) 0.239±0.0327 2275±169.9 22.39±2.29 13.09±2.14 62.97±12.27

90+ 34 (16/18) 0.261±0.0346 2155±156.8 20.47±1.27 11.01±1.71 58.42±18.41

Note: *Statistically significant differences between control group (55–59 years) and elderly persons, P<0.001.
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The statistically significant decreases of erythrocytic

SOD-1 (P<0.00001), CAT (P<0.00001), and GSH-Px

(P<0.001) activities were observed in elderly groups in

comparison with the control group. Moreover, strong

negative correlations between the activities of SOD-1

(r= –0,6341; Figure 6A), CAT (r= –0,6316; Figure 6B),

and GSH-Px (r= –0,4475; Figure 6C) and the age of the

examined persons were found. No age-related changes in

GR activities and MDA concentrations were noticed.

Discussion
ROS is not only a toxic side product of aerobic metabolism

but it may also play an important role as signaling molecules.

The most current research confirms the possibility that ROS

takes part in different physiological processes as signaling

molecules of stress in response to cellular damage.50

Therefore, the physiological level of ROS is most probably

the main important issue for maintaining cellular homeostasis,

whereas the increased production of ROS at a certain level has

a detrimental influence on physiology of the cells. Among

model organisms not showing an increase in the level of

oxidative damage or cases of life extension among organisms

with a high level of oxidative stress, suggest that the free

radical theory of aging may be incorrect.51,52 Undoubtedly,

mitochondria play an important role in the aging process and

the accumulation of mutations and decreasing with age
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Figure 2 Superoxide dismutase (SOD) activity with the trend line showing the tendency of change with age.
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mitochondrial function irreversibly leads to cellular dysfunc-

tion. In the context of increasing research on the role of ROS

in signaling and cellular regulation, one should not completely

reject the role of free radicals in the process of aging.53

These pathways involve a complex antioxidant defense

system that is composed of both low molecular weight

antioxidants (reduced glutathione [GSH], ascorbic acid,

tocopherols, etc) and antioxidant enzymes. The first line

in enzymatic antioxidant defense is SOD, which catalyses

dismutation of O2
−·into H2O2. Subsequently, H2O2 may be

dismutated into H2O by CAT. Differently from CAT, GSH-

Px may catalyse the reduction of both H2O2 and organic

peroxides, using GSH as a hydrogen donor whereby GSH

is oxidized to glutathione disulfide (GSSG). GR can

reduce GSSG into GSH, just providing with this molecule

for antioxidant actions. The activities of antioxidant

enzymes, as well as the levels of low molecular weight

antioxidants have been observed to be altered in old organ-

isms, which may lead to the intensification of oxidative

stress and in this way to the development of aging. Several
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Figure 6 The correlations between the erythrocytic Zn-Cu superoxide dismutase (SOD-1) (A), catalase (CAT) (B), and glutathione peroxidase (GSH-Px) (C) activities and

age of examined persons (P<0.05).
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reports, as well as our own previous results, confirm the

weakening of the enzymatic antioxidant defense during the

organism's aging.54,55

There are diverse assumptions about the causes of

observed age-dependent decline in antioxidant enzymatic

defense. The oxidative modifications of enzymatic proteins

caused byROS are supposed to be one of the possiblemechan-

isms of this phenomenon.56 Malnutrition in elderly people,

resulting from poor nutritional habits, loss of appetite, or

intestinal malabsorption in this group of people, may be the

other probable explanation. As a result of malnutrition, defi-

ciencies of some trace elements may occur, such as Zn2+ ions,

essential for SOD-1 activity or selenium, essential for the

synthesis of selenoenzyme GSH-Px.57,58 Taking into account

this explanation, the unchanged activity of GR during aging in

this studymay point to the sufficient supply of riboflavin in the

diet of examined elderly subjects. Nevertheless, among the

most interesting hypotheses, there is a possible link between

the age-dependent decrease of antioxidant enzymes' activities

and the lowered levels of pineal hormone melatonin, which is

observed in elderly people. Melatonin may both regulate the

expression of genes coding for antioxidant enzymes such as

SOD, GSH-Px, and GR and directly influence their

activities.59 The amplitude of melatonin production declines

with aging until almost total disappearance of its specific day-

night cycle in many persons over 65 years of age.60,61 Thus,

the decrease of antioxidant enzymes' activities during aging

may be at least partly due to the failure of melatonin secretion

in elderly subjects.

On the contrary, some authors found an increase of differ-

ent antioxidant enzymes' activities in elderly subjects, which

may implicate the compensatory effect of augmented oxida-

tive stress in aging organisms.62–64 Among the most interest-

ing studies, there are results obtained by Kłapcińska et al, in
the examination of oxidative stress parameters in healthy

Polish centenarians.65 There were significantly higher erythro-

cytic CAT and GR activities found in centenarians as com-

pared to young healthy adults in Kłapcińska et al's study.

These results indicate that increased capacity for antioxidant

defense may contribute to human longevity.

It is still not fully understood whether the augmentation of

oxidative stress with advancing age is due to a decrease of

antioxidant defense system or an increase in endogenous

reactive oxygen production. The oxidative stress intensity

may be approximately estimated by the measurement of ery-

throcytic concentrations of MDA formed from the breakdown

of lipid hydroperoxides. Several authors demonstrated the

increased MDA concentrations in elderly subjects.54,55 The

elevatedMDA levels correspond to the intensified rate of lipid

peroxidation during aging. Lipid peroxidation processes result

in impaired membrane fluidity, increased non-specific mem-

brane permeability, and inactivation of membrane enzymes,

which may contribute to the damage occurring in aging

organisms.66–70 Surprisingly, there were no age-dependent

changes in MDA levels during aging in the present study. It

is worth mentioning that some authors found decreased MDA

concentrations in healthy centenarians as compared to the aged

subjects or even to younger adults.65,68,71 These results may

support the hypothesis that reduced oxidative stress may be

related to the increase in lifespan of human beings.

Conclusion
Summing up, there are many reports supporting the role of

oxidative stress in development of aging processes in human

organisms. However, these data are still not consistent and

further studies are necessary to confirm the existing hypoth-

eses. Our preliminary study revealed some interesting links

between antioxidant enzymatic defense capacity and aging.

The subsequent investigations in the framework of this study

may lead us to some answers for the questions about the role of

oxidative stress in aging processes.

The obtained results clearly show the decrease of cru-

cial activity of antioxidative enzymes with the simulta-

neous intensity of peroxidative lipids. In this context, it

makes sense to continue the research aiming at thoroughly

explaining the role of this phenomenon in the aging pro-

cess. Based on the results of research on mice, it may be

stated that free radical reactions may not be the only

reason for intensity of the aging process but they certainly

have an influence on it.
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