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Background: Pasture-associated severe equine asthma is a warm season, environmentally-

induced respiratory disease characterized by reversible airway obstruction, persistent and

non-specific airway hyper-responsiveness, and chronic neutrophilic airway inflammation.

During seasonal exacerbation, signs vary from mild to life-threatening episodes of wheezing,

coughing, and chronic debilitating labored breathing.

Purpose: In human asthma, neutrophilic airway inflammation is associated with more

severe and steroid-refractory asthma phenotypes, highlighting a need to decipher the

mechanistic basis of this disease characteristic. We hypothesize that the collective biological

activities of proteins in bronchoalveolar lavage fluid (BALF) of horses with pasture-asso-

ciated severe asthma predict changes in neutrophil functions that contribute to airway

neutrophilic inflammation.

Methods: Using shotgun proteomics, we identified 1,003 unique proteins in cell-free

BALF from six horses experiencing asthma exacerbation and six control herdmates.

Contributions of each protein to ten neutrophil functions were modeled using manual

biocuration to determine each protein’s net effect on the respective neutrophil

functions.

Results: A total of 417 proteins were unique to asthmatic horses, 472 proteins were

unique to control horses (p<0.05), and 114 proteins were common in both groups.

Proteins whose biological activities are responsible for increasing neutrophil migration,

chemotaxis, cell spreading, transmigration, and infiltration, which would collectively

bring neutrophils to airways, were over-represented in the BALF of asthmatic relative

to control horses. By contrast, proteins whose biological activities support neutrophil

activation, adhesion, phagocytosis, respiratory burst, and apoptosis, which would collec-

tively shorten neutrophil lifespan, were under-represented in BALF of asthmatic relative

to control horses. Interaction networks generated using Ingenuity® Pathways Analysis

further support the results of our biocuration.

Conclusion: Congruent with our hypothesis, the collective biological functions repre-

sented in differentially expressed proteins of BALF from horses with pasture-associated

severe asthma support neutrophilic airway inflammation. This illustrates the utility of

systems modeling to organize functional genomics data in a manner that characterizes

complex molecular events associated with clinically relevant disease.
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Introduction
Human asthma is a heterogenous disease with varied clin-

ical phenotypes.1 Though Th2-dominated asthma charac-

terized by eosinophilic inflammation2,3 has been well

recognized for decades, Th17-mediated neutrophilic air-

way inflammation has been increasingly recognized in a

sizeable group of asthmatic human patients.4–6 However,

neutrophilic asthma and eosinophilic asthma are not

mutually exclusive. Associations have been established

between airway neutrophilic inflammation and increased

severity of signs in severe asthma,7–9 corticosteroid-resis-

tant asthma,10–12 asthma exacerbations,13 nocturnal

asthma,14 ‘‘asthma in smokers”,15 occupational asthma,16

and “sudden onset” fatal asthma.17 These associations

between neutrophils and asthma severity in humans high-

light a need to understand how neutrophils contribute to

asthma pathophysiology in order to identify new and

effective therapeutics.18,19

Two naturally occurring, environmentally-induced

asthma syndromes affect outbred populations of animals:

severe equine asthma and feline asthma.20,21 Two forms of

severe equine asthma are recognized: a barn-associated

form, commonly referred to as “heaves”, is exacerbated

by mold and dust when horses are maintained in stalls in

continental climates,22 while a pasture-associated form

(aka recurrent airway obstruction, summer pasture asso-

ciated recurrent airway obstruction) affects horses grazing

pastures during conditions of high heat and humidity and

was originally described in the southeastern United

States.23 Airway inflammation in both barn-associated,

and pasture-associated equine asthma, may be devoid of

eosinophils, and is consistently and predominantly

neutrophilic.22,24–28 Other features shared with human

asthma include genetic linkage,25 reversible bronchocon-

striction triggered by environmental aeroallergen chal-

lenge, airway remodeling, airway hyper-responsiveness,

chronic airway inflammation, and responsiveness to β2-
adrenoceptor agonists and corticosteroids. These clinical

parallels have led to the recognition of equine asthma as a

unique spontaneous model of neutrophilic

asthma.22,24–27,29–32

Neutrophilic inflammation has been demonstrated to

correlate with poor outcome in other chronic human lung

diseases in addition to asthma, including bronchiolitis

obliterans in lung transplant recipients,33 and COPD,34

where the correlation is independent of viral or bacterial

infection. Neutrophil elastase also correlates with

declining lung function in cystic fibrosis.35 Neutrophilic

inflammation has been linked to poor prognosis in other

organs, for example, intracranial hemorrhage,36 alcoholic

hepatitis,37 myocardial infarction,38–42 pulmonary

embolism,43 peripheral vascular disease following angio-

plasty, tumor recurrence in hepatocellular carcinoma,44,45

colorectal tumors,46 and lung cancer.47 Accordingly, iden-

tifying proteins that contribute to neutrophilic airway

inflammation in horses with severe pasture asthma contri-

butes to the identification of molecular signatures that

herald advancing disease, and identifies targets for inves-

tigating directed therapies to moderate neutrophilic

inflammation.

In systems modeling, homeostasis within a network of

eukaryotic proteins (proteostasis) protects the body

against disease and allows for healthy cellular develop-

ment and aging.48 Disease then reflects challenges to the

integrity of this network of interacting proteins (pro-

teome) that direct the generation, maintenance, and

removal of proteins to achieve normal function. A grow-

ing area of airway research centers on the relationship

between airway stress diseases, including COPD, emphy-

sema, asthma, and disorders of proteostasis.49 Congruent

with the concept of disordered proteostasis, we hypothe-

size that changes in the protein composition of fluid in

the airways of horses with pasture-associated severe

asthma are collectively predicted to alter functional attri-

butes of neutrophils in ways that contribute to neutrophi-

lic airway inflammation.

Building upon our prior evidence that protein functions

in normal bronchoalveolar lavage fluid (BALF) are con-

served across horse, human, and mouse,50 identifying how

changes in the BALF proteome contribute to neutrophilic

airway inflammation will enable recognition of shared

regulatory events in human asthma and severe equine

pasture asthma. This in turn informs our understanding

of the similar roles of neutrophils in human asthma and

severe equine pasture asthma. Here, we employed systems

modeling of the BALF proteome of horses experiencing

exacerbation of severe pasture asthma, and that of asymp-

tomatic controls exposed to identical aeroallergen chal-

lenge and environmental conditions, to evaluate

differences in the regulation of ten neutrophil functions:

migration, activation, chemotaxis, adhesion, cell spread-

ing, transmigration, infiltration, phagocytosis, respiratory

burst, and apoptosis.
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Methods and materials
Animals and BALF sample collection
Archived BALF in this study was collected from six

horses with pasture-associated severe equine asthma, and

six clinically normal control horses of mixed breeds using

a bronchoalveolar lavage catheter (240cm, MILA

International, Inc., Florence, KY, USA) under standing

sedation. The BAL technique has been previously

described.28 Samples were immediately placed on ice,

transported to the laboratory, centrifuged (600x g for 10

minutes) to derive cell-free BALF, and aliquots of super-

nate were frozen at −80°C for subsequent proteomic

analysis.51,52 All horses were co-housed on pasture, fed

identical diets, had no medications within 7 days of sam-

pling, and were sampled in the summer months in

Louisiana. Experimental procedures were approved by

the Animal Care and Use Committee of Louisiana State

University, complying with all federal guidelines oversee-

ing the use of research animals in the United States. All

procedures utilized were considered veterinary care best

practices.

Horses in this study were a subset of those

employed by Costa et al, for which maximal change

in pleural pressure (ΔPplmax), BALF cytologic find-

ings, and clinical scores of respiratory effort (CSRE)

have been previously described.28 Asthmatic horses

ranged from 10–20 years of age (mean ± SD, 16±4.3

years, two females and four castrated males). Control

horses ranged from 7–20 years of age (mean 13.5±6.5

years, two females, three castrated males, and one

stallion). Diagnosis of pasture-associated severe

equine asthma was based on a history of seasonal

remission of clinical disease during cool seasons, fol-

lowed by episodic and reversible obstructive respira-

tory disease while grazing pasture during hot humid

conditions. Overt respiratory distress was characterized

by a CSRE ≥4.5, ΔPplmax ≥24cm H2O, audible expira-

tory wheezes in the lung fields, and neutrophilic air-

way inflammation (≥12%, mean =66%) in BALF.

Control horses lacked historical episodic pasture-asso-

ciated respiratory disease during the summer, had nor-

mal bronchovesicular sounds during lung auscultation

with a re-breathing bag, CRSE <3, ΔPplmax ≤9cm
H2O, and ≤3%–26% (mean =10%) neutrophils in

BALF. Negative bacteriologic culture of BALF was a

criterion for inclusion of asthmatic and control horses

in this investigation.

Protein isolation, tryptic digestion, and

liquid chromatography mass

spectrometry/mass spectrometry (LC

MS/MS)
Pooled samples containing 100 µg of cell-free BALF

protein were created; one from the six control horses and

another from the six asthmatic horses. For each pooled

sample, 75 µg of protein was analyzed in triplicate using

one dimensional LC nanospray ionization as previously

described,54 except that we did not perform differential

detergent fractionation. Precursor mass scans were per-

formed using repetitive MS scans immediately followed

by three MS/MS scans of the three most intense MS peaks.

Protein identification
Searches were performed using TurboSEQUESTTM

(Bioworks Browser 3.3, ThermoElectron). Mass spectra

and tandem mass spectra were searched against an in silico

trypsin-digested database of equine non-redundant RefSeq

proteins downloaded from the National Center for

Biotechnology Institute (ver 47) as well as against a

reversed decoy database. SEQUEST search results were

filtered using a decoy search-based probabilistic method,

in which only peptides with a probability <0.05 were

considered to be correct. Proteins identified with peptides

passing the filter criteria were evaluated for differential

expression using an Xcorr resampling technique.

Probability of differential expression was calculated for

each protein and those proteins with a p-value <0.05

were considered differentially expressed.55

Go-based modeling of the effects of BALF

proteins on neutrophil function
Systems modeling was performed to test the hypothesis

that proteins in the airways of horses with severe pasture

asthma are predicted to modify neutrophil functions in a

manner that contributes to neutrophilic airway inflamma-

tion. Proteins identified in BALF from affected and control

horses were biocurated as described in the following

pagragraph for their contributions to ten neutrophil func-

tions: migration, activation, chemotaxis, adhesion, cell

spreading, transmigration, infiltration, phagocytosis,

respiratory burst, and apoptosis. The definitions of these

terms are detailed in Table1.

Proteins were individually biocurated according to the

principles of the Gene Ontology (GO) consortium,56 using
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manual literature searches of each protein in PubMed to

identify their effects on the ten neutrophil function terms.

Search terms included each protein name paired with the

word “neutrophil”. An example query to PubMed would

be: “annexin A1” AND “neutrophil”. If more than 1,000

search results were found for any given protein, the search

was refined by adding each of the ten neutrophil functions

in turn (“annexin A1” AND “neutrophil”, apoptosis). Each

relevant paper was read to identify the protein’s effect on

the neutrophil term. The effect of each protein on each of

the ten neutrophil functions was scored as pro (+1), anti

(−1), or no net effect (0), as described in GoModeler.57 In

order to model these biological data, the potential of each

protein to modify the ten neutrophil functions was

approximated by multiplying its expression value by effect

(ie, −1, 0, +1), and the net effect of BALF proteins within

each functional category was tabulated; similar to the

method used for modeling effects on GO terms via

GOModeler.57 These net effects are represented graphi-

cally for asthmatic and control horses in Figure 1. A list

of proteins and their relative effects are provided in

Supplemental File 1, and a reference list is provided for

each in Supplemental File 2.

Ingenuity® pathway analysis of the effects

of BALF proteins on neutrophil functions
To identify central molecules in small sub-networks and

support our manual biocuration findings using literature

searching in PubMed, proteins were also analyzed for their

contributions to neutrophil function using Ingenuity®

Pathway Analysis (IPA, Qiagen NV, Venlo, the

Netherlands). Neutrophil functions that were curated in

IPA included migration, activation, chemotaxis, adhesion,

infiltration, phagocytosis, and respiratory burst, and are

defined in Table1. Because IPA does not accept equine

gene products, human, mouse, and rat orthologs were first

identified for each equine protein using Ensembl

BioMart© (Ensembl 93 set)58 and then employed for ana-

lysis. Most proteins had human orthologs, but mouse, and

then rat were used to find orthologs when orthologous

human proteins could not be identified. IPA Core

Analysis (Ingenuity® Version 01–13, July 2018) was cho-

sen for analysis as all pathways, ontologies, and interac-

tions are supported by manually curated literature,

providing a robust and standardized platform for interpret-

ing biologic function from lists of differentially expressed

gene products.59

Results
Neutrophil relevant BAL proteome
We identified 1,003 proteins from horse BALF: 417 pro-

teins unique to asthmatic BALF, 472 proteins unique to

control BALF, and 114 proteins common to both groups.

A total of 108 proteins were identified as significantly

differentially expressed between asthmatic and control

groups (p<0.05). Using manual biocuration, 93 of the

1,003 proteins identified in BALF were determined to

have evidence of biological activities that regulate one or

more of ten neutrophil functions. These proteins and their

respective effects on neutrophil functions are listed in

Supplemental File 1. Manual literature searching initially

identified a total of 21,533 papers, 395 of which contained

Table 1 Definitions of neutrophil terms employed for

biocuration

Activation The change in morphology and behavior of a neu-

trophil resulting from exposure to a cytokine, che-

mokine, cellular ligand, or soluble factor.120

Adhesion The process in which neutrophils attach to vascular

endothelium as part of an event in recruitment into

acutely inflammatory lesions, or to target tissues/

cells following transmigration events.121,122

Apoptosis Regulated cell death.120

Cell spreading The morphogenetic process that results in flatten-

ing of a cell as a consequence of its adhesion to a

substrate.120

Chemotaxis The directed movement of a neutrophil cell, the

most common polymorphonuclear leukocyte found

in the blood, in response to an external stimulus,

usually an infection or wounding.120

Infiltration The diffusion or accumulation of neutrophils in

tissues or cells in response to a wide variety of

substances released at the sites of inflammatory

reactions.123

Migration The movement of a neutrophil within or between

different tissues and organs of the body.120

Phagocytosis An endocytosis process that results in the engulf-

ment of external particulate material.120

Respiratory

burst

A phase of elevated metabolic activity, during which

oxygen consumption increases; this leads to the

production, by an NADH-dependent system, of

H2O2, superoxide anions, and hydroxyl radicals.120

Transmigration The migration of a neutrophil from the blood ves-

sels into the surrounding tissue.120 Neutrophils

pass through endothelium, interstitial tissues, and

epithelium before arriving at the target location.

No differentiation of stage was made for the pur-

poses of our biocuration.
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relevant information on a specific protein and neutrophil

function.

Modeling effects of BALF proteins on

neutrophil function
By modeling effects of the 93 proteins that were deter-

mined, by biocuration, to modify neutrophil functions,

increases in neutrophil migration, chemotaxis, cell spread-

ing, transmigration, and infiltration were predicted in asth-

matic relative to control horses (Figure1). We found that

proteins in control BALF exert a net negative regulation of

migration, chemotaxis, cell spreading, transmigration, and

infiltration while proteins in BALF of asthmatic horses

facilitate a partial release of the negative regulation of

these neutrophil functions, as compared to BALF proteins

from control horses. This results in a protein milieu in

BALF of asthmatic horses that is less inhibitory to migra-

tion, chemotaxis, transmigration, and infiltration than the

proteins in BALF of control horses. By contrast, a net

decrease in protein activities responsible for neutrophil

activation, adhesion, phagocytosis, respiratory burst, and

apoptosis was identified in the BALF of asthmatic relative

to control horses. For these neutrophil functions, there is a

net positive regulation of activation, phagocytosis, respira-

tory burst, and apoptosis by proteins in control BALF,

while proteins in asthmatic BALF affect an incomplete

decrease in the net positive modulation that characterizes

homeostasis. Finally, neutrophil adhesion was decreased

by the proteins in both asthmatic and control BALF,

though this net effect was comparatively greater in asth-

matic than control BALF. A summary of proteins contri-

buting to each of the neutrophil functions segregated by

increase, decrease, or no net effect is included within

Supplemental File 1. References included in the manual

biocuration are available in Supplemental File 2.

Neutrophil interactive network
The 1,003 proteins identified in BALF were also modeled

for their effects on neutrophil functions using IPA. Of the

1,003 proteins, 129 did not have human, mouse, or rat

orthologs, resulting in 874 proteins for IPA analysis.

Forty-six proteins were identified to have an influence on

neutrophil migration, activation, chemotaxis, adhesion,

infiltration, phagocytosis, and respiratory burst. An
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Figure 1 Cumulative effect of bronchoalveolar lavage fluid (BALF) proteins on neutrophil functions in asthmatic vs control horses. A total of 1,003 proteins were reviewed

to identify their effects on ten neutrophil functions. Peer-reviewed manuscripts were read and actions involving ten neutrophil functions were scored for each protein as pro

(+1), anti (−1), no effect (0), or no data. The contribution of each protein to each neutrophil function was calculated as the product of magnitude of expression multiplied by

its effect (ie, −1, 0, +1), then these values were tabulated for category of neutrophil function. Bars represent the predicted net effect of BALF proteins on the respective

neutrophil function.
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interaction network of proteins and their impact on neu-

trophil functions is presented in Figure 2. IPA modeling

predicted a net increase in neutrophil migration, adhesion,

infiltration, and respiratory burst, and a net decrease in

neutrophil activation, chemotaxis, and phagocytosis.

Differences in proteins annotated to each neutrophil func-

tion in IPA relative to manual curation are detailed in

Table 2.

Discussion
Though at least 50% of human asthmatics demonstrate

neutrophilic inflammation in BALF, which correlates to

increased clinical severity and resistance to corticosteroid

therapy,1,4,60 regulatory mechanisms responsible for neu-

trophilic asthma are poorly characterized. Complicating

this effort is the difficulty in attaining purified populations

of airway neutrophils from human asthmatics, and the fact

that bronchoscopy stimulates non-specific airway

neutrophilia,61 resulting in a predominance of investiga-

tions that employ peripheral blood neutrophils. However,

there is evidence that peripheral blood neutrophils do not

behave in the same way as airway neutrophils.62–64

Deciphering regulatory mechanisms associated with neu-

trophilic airway inflammation and the major protein effec-

tors responsible for these changes has the potential to

identify molecular events that herald advancing airway

Figure 2 Ingenuity® Pathway Analysis (IPA) predicted decreases in three and increases in four neutrophil functions. An interactive network was derived using IPA by

screening 1,003 proteins in bronchoalveolar lavage fluid (BALF) of asthmatic vs control horses for their impact on neutrophil activity. Green shades indicate relative

downregulation of proteins in asthmatic BALF (and relative upregulation in control BALF), while red shades indicate relative upregulation of proteins in asthmatic BALF (and

relative downregulation of proteins in control BALF). Blue indicates predicted decreases in neutrophil functions, while orange shades indicate predicted increases. More

intense (darker) colors indicate greater increases or decreases. Together, this network indicated net downregulation of neutrophil activation, chemotaxis, and phagocytosis,

and upregulation of neutrophil migration, adhesion, infiltration, and respiratory burst. Broken lines indicate a relationship between the proteins and the neutrophil functions.
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disease, as well as avenues for pharmacologic interven-

tion. Systems modeling provides a unique opportunity to

translate a large amount of data from high throughput

technologies, including proteomics and transcriptomics,

into a better understanding of the mechanistic basis of

complex biological phenomena and disordered

proteostasis.

We report the predicted impact of changes in protein

expression in BALF on neutrophil functions in horses with

pasture-associated severe equine asthma. This study pro-

vides insight into the molecular events that contribute to

neutrophilic airway inflammation, a characteristic of both

equine asthma and human asthma that is not adequately

addressed by rodent models. Our results indicate that,

relative to the control BALF, proteins in BALF from

asthmatic horses are predicted to increase neutrophil

migration, chemotaxis, cell spreading, transmigration,

and infiltration. These functions favor the movement of

neutrophils into the airways, congruent with airway neu-

trophilic inflammation that is characteristic of pasture-

associated severe equine asthma. Increased neutrophil

migration,65 chemotaxis,66,67 cell spreading,68 and

infiltration60,69 have similarly been reported in human

asthma. Our findings are also consistent with increased

neutrophil migration70 and chemotaxis71,72 reported in

barn-associated equine asthma. Despite expanding knowl-

edge of how individual proteins modify neutrophil move-

ment in asthma, changes in neutrophil transmigration that

occur during neutrophilic forms of asthma are not docu-

mented and the majority of knowledge is extrapolated

from investigations of neutrophil transmigration across

other epithelial surfaces.73 In asthma, increased airway

neutrophils are considered a priori evidence of increased

neutrophil transmigration.17,74,75 Increased transmigration

of neutrophils into the airway is also a feature of several

inflammatory diseases, including bronchitis and COPD.74

Apolipoprotein A-1, polymeric immunoglobulin recep-

tor, and haptoglobin were highly expressed proteins in the

BALF of control horses. Apolipoprotein A-1 decreases

neutrophil migration and cell spreading,76,77 polymeric

immunoglobulin receptor decreases neutrophil chemotaxis

and transmigration,78 and haptoglobin decreases

infiltration.79 Accordingly, decreased expression of these

proteins in the BALF of horses with pasture-associated

severe asthma relative to expression levels in control

BALF had a strong influence on the predicted release of

inhibition for these neutrophil functions by proteins in the

BALF proteome of diseased horses. Apolipoprotein A-1

modulates lung health and contributes to protective path-

ways in lung biology, decreasing severity of respiratory

diseases including asthma.80–82 This protein has been con-

sidered as a potential novel therapeutic agent for

asthmatics.80,81,83 Congruent with our findings in the

BALF of horses with severe asthma, BALF and serum

samples from human asthmatics and murine models also

demonstrate decreased levels of apolipoprotein A-1.82,84

Further, in agreement with our findings of increased poly-

meric immunoglobulin receptor in the BALF of horses

with severe asthma, this protein, which transports dimeric

IgA across mucosal epithelial cells,85 is also decreased in

the bronchial epithelium of human asthma patients.86

Finally, haptoglobin, which was decreased in the BALF

of horses with severe asthma, is an acute phase glycopro-

tein involved in tissue repair and airway remodeling in

asthmatic patients.87 While some studies have demon-

strated decreased expression in asthmatics relative to

controls,87 others have shown expression levels that

decrease after initial allergen challenge, but then increase

24 hours post-challenge, suggesting a replenishing of the

protein over time.88

Protein expression changes in the BALF proteome of

asthmatic horses are predicted, collectively, to decrease

neutrophil activation, adhesion, phagocytosis, respiratory

burst, and apoptosis. Similar decreases in neutrophil pha-

gocytosis and apoptosis have been identified in asthmatic

patients,89–93 and decreased apoptosis of airway neutro-

phils has been identified in horses with the barn-associated

form of severe equine asthma.94,95 Decreased apoptosis

contributes to airway neutrophilic inflammation that char-

acterizes human and equine asthma by increasing neutro-

phil persistence in the airway. Similarly, neutrophil

activation and phagocytosis program neutrophils for

death,96–98 such that decreasing these activities contributes

to neutrophil persistence and neutrophilic airway inflam-

mation. In general, neutrophil adhesion is increased in

asthmatic patients, primarily due to an increase in cellular

adhesion molecules.99 Our findings, which indicate that

the BALF proteome of asthmatic horses would reduce

adhesion in asthmatic relative to control horses, contradict

these findings in human asthma, but are congruent with the

airway neutrophilic inflammation that characterizes equine

pasture asthma. This difference may reflect changes in the

neutrophilic phenotype induced by ex vivo manipulations

or could reflect a compensatory mechanism in the BALF

proteome designed to moderate increases in neutrophil

adhesion that lead to tissue damage. Significantly,
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differences may reflect the relatively small sample size of

horses included in this study.

While the proteins in BALF of asthmatic horses were

predicted to decrease neutrophil activation relative to pro-

teins in the BALF of controls, measures of neutrophil

activation are reported to increase in asthma.100–104

However, neutrophil activation is a complex and multi-

faceted neutrophil function. For example, respiratory burst

is one component of neutrophil activation. We identified

BALF proteins that both increase and decrease respiratory

burst, predicting a net negative effect on this neutrophil

function in asthmatic relative to control horses. While

characterization of the respiratory burst of airway neutro-

phils in asthma has been poorly characterized, our findings

are congruent with those of Lacy et al (2003), which

identified decreased respiratory burst activity in neutro-

phils from induced sputum of asthmatics relative to

controls.63 However, this finding must be considered

with the knowledge that ß2-agonists and corticosteroid

therapy were not withheld from the asthmatic group,

whereas our horses with asthma were not medicated.

Other authors have demonstrated that respiratory burst of

blood-derived neutrophils from asthmatics exceeds that

from non-asthmatics.62,105,106 However, Marcal et al

(2004) clarified that significant differences in measures

of respiratory burst are influenced by disease severity

and are not immediately evident in ex vivo neutrophils,

occurring only in more severe asthmatics following ex

vivo incubation periods of 25 minutes.62 Despite evidence

that selected measures of neutrophil activation are

increased in asthma,100–104 our modeling indicated that

BALF proteome changes in asthmatic horses favor

decreased neutrophil activation, which is consistent with

neutrophil persistence in the airways and the airway neu-

trophilic inflammation that characterizes pasture-asso-

ciated severe equine asthma. However, based upon

aforementioned evidence that neutrophils are activated in

human asthma, and that the net decrease in neutrophil

activation was the most robust of the predicted effects of

BALF proteins on neutrophil functions, we reason that

proteins in BALF may work collectively to mitigate neu-

trophil activation that is driven by exogenous factors in

neutrophilic asthma.

We identified four proteins, serotransferrin precursor,

polymeric immunoglobulin receptor, surfactant protein A,

and cytochrome C, which had strong contributions to the

decreases in neutrophil activation, phagocytosis, respira-

tory burst, and apoptosis predicted by our modeling.

Serotransferrin precursor and polymeric immunoglobulin

receptor increase neutrophil activation,107,108 surfactant

protein A increases neutrophil phagocytosis and respira-

tory burst,109 and cytochrome C increases apoptosis.110–112

In each case, these proteins demonstrated decreased

expression in the BALF of asthmatic relative to control

horses. Accordingly, decreases in expression of these four

proteins had large effects on decreasing these neutrophil

functions in association with asthma in our modeling.

Increased expression of thioredoxin in the BALF of dis-

eased horses, which is a negative regulator of neutrophil

adhesion,113 was the largest contributor to the net decrease

in neutrophil adhesion predicted by our modeling. While

cytochrome C levels have not been specifically examined

with regards to asthma, both serotransferrin and pulmon-

ary surfactant-associated protein are decreased in the

serum of asthmatic patients relative to controls, which is

congruent with our equine findings.114–116 Pulmonary sur-

factant proteins have also been demonstrated to inhibit

histamine release during allergen challenge and decrease

lymphocyte proliferation in asthmatic children, providing

a protective role against the pathogenesis of asthma.117

Thioredoxin, a redox-regulating protein with antioxidant

activity, has been observed to be increased in human asth-

matics, congruent with findings in asthmatic horses in this

investigation.118,119

Functional analysis, performed using IPA, revealed 46

proteins with a known relationship with neutrophil func-

tions (Figure 2). These proteins were predicted by IPA to

cause an increase in neutrophil migration and infiltration,

and a decrease in neutrophil activation and phagocytosis –

predictions which directly corroborate our PubMed man-

ual biocuration predictions. In contrast, IPA predicted an

increase in neutrophil adhesion and respiratory burst, and a

decrease in chemotaxis, while our manual biocuration

findings predicted opposite trends for these functions. As

previously indicated, chemotaxis is well documented to be

increased in human asthma,66,67 while respiratory burst

has been found to be decreased.63 These findings indicate

that increased chemotaxis and decreased respiratory burst

identified by the manual curation and associated data

modeling in our approach are congruent with findings in

human asthma. The IPA-predicted increase in neutrophil

adhesion contradicts our manual biocuration findings but

is congruent with human asthma literature.99 Several dif-

ferences between the databases that support IPA vs our

manual effort are likely relevant to these disparities. First,

IPA identified only 46 proteins as relevant to modifying
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neutrophil functions, while 93 proteins were identified as

relevant in our manual curation. Whereas IPA maintains an

internal proprietary biocuration effort, our manual biocura-

tion, which was limited to PubMed citations, identified

more references that implicated BALF proteins in each

neutrophil function, as demonstrated in Table2. Also, IPA

relies upon the identification of orthologous human,

mouse, or rat proteins from the equine proteins. In our

case, 129 proteins that contributed to our curation effort

did not, at the time of analysis, have identifiable human,

mouse, or rat orthologs, so they were not included in IPA

analysis. Of those 129 proteins without an ortholog, our

manual biocuration found that eight of them affected neu-

trophil functions.

Conclusion
Changes in the protein composition of BALF from horses

with pasture-associated severe asthma are predicted to

increase neutrophil migration, chemotaxis, cell spreading,

transmigration, and infiltration, and to decrease neutrophil

activation, adhesion, phagocytosis, respiratory burst, and

apoptosis. With the exception of adhesion and activation,

these predictions mirror changes in neutrophil functions

described in both human asthma and barn-associated

equine asthma, suggesting that BALF proteins may have

a role in moderating the neutrophil activation and adhesion

that are reported in human asthma. This investigation

confirms our hypothesis that changes in the protein com-

position of fluid in the airways of horses with pasture-

associated severe equine asthma predict functional attri-

butes of neutrophils in the airways of asthmatic horses that

contribute to neutrophilic airway inflammation. These data

also support the value of pasture-associated severe equine

asthma as an animal model of neutrophilic asthma, while

demonstrating utility of systems modeling to identify com-

plex molecular events associated with clinical disease in

genome scale datasets.

Highlights
Pasture-associated severe equine asthma is characterized

by neutrophilic airway inflammation.

Modeling differentially expressed protein functions in

BALF from asthmatic horses identifies biologic events that

account for neutrophilic airway inflammation.

Systems modeling can organize high throughput data

from clinical disease processes in a manner that defines a

biologically relevant phenomenon.
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