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Background: The bioactive compounds glycyrrhizin (GL) and thymoquinone (TQ) have been

reported for antidiabetic activity in pure and nanoformulation (NF) form. However, the antidia-

betic effect of a combined nanoformulation of these two has not been reported in the literature.

Here, a combinational nanomedicine approach was investigated to enhance the antidiabetic

effects of the two bioactive compounds of GL and TQ (GT), in type 2 diabetic rats in reference

to metformin.

Methods: Two separately prepared NFs of GL (using polymeric nanoparticles) and TQ

(using polymeric nanocapsules) were mixed to obtain a therapeutic cargo of nanomedicine

and then characterized with respect to particle size, stability, morphology, chemical interac-

tion, and in vivo behavior. Additionally, NFs were evaluated for their cytotoxic effect on

Vero cell lines compared to the pure form. This nanomedicine was administered orally, both

independently and in combination (pure form or NF) for 21 successive days to type 2

diabetic rats and the effect assessed in term of body weight, fasting blood-glucose level,

and various biochemical parameters (such as lipid-profile parameters and HbA1c).

Results: When these nanomedicines were applied in combined rather than individual forms,

significant decreases in blood glucose and HbA1c and significant improvements in body

weight and lipid profile were observed, despite them containing lower amounts than the pure

forms. The treatment of diabetic rats with GL and TQ, when administered independently in

either pure or NF forms, did not lead to favorable trends in any studied parameters.

Conclusion: The administration of combined GT NFs exhibited significant improvement in

studied parameters. Improvements in antidiabetic activity could have been due to

a synergistic effect of combined NFs, leading to enhanced absorption of NFs and lesser

cytotoxic effects compared to pure bioactive compounds. Therefore, GT NFs demonstrated

potential as a new medicinal agent for the management of diabetes.

Keywords: glycyrrhizin, thymoquinone, nanoformulation, antidiabetic, lipid profile,

glycated hemoglobin

Introduction
Diabetes mellitus, a major chronic disease that is prevalent worldwide, is charac-

terized by increased blood glucose (BG), metabolic disturbances, and alteration in

insulin secretion. This insulin-deficient action is due to shortage of insulin secretion

(type 1 diabetes) and/or decline in cell response toward insulin (type 2 diabetes).1

Symptoms of hyperglycemia include polyuria, polydipsia, polyphagia, weight loss,
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ketonemia, and ketonuria. The number of people with

diabetes has steadily risen over the past few decades,

mainly due to a rise in prevalence of diabetes at all ages,

as well as population growth. Worldwide, the number of

people with diabetes increased substantially between 1980

and 2014, rising from 108 million to 422 million — an

almost four fold increase.2

Recently, plant-based therapies have become an impor-

tant mode of treatment for type 2 diabetes. Bioactive com-

pounds have gained considerable attention, as they are

regularly consumed in food and are also important sources

of safe and effective alternative pharmaceuticals. Moreover,

bioactive compounds have an effect on multiple biological

functions, including the sustained secretion of insulin and

regeneration of pancreatic islet cells.3 Similarly to pharma-

ceutical targets, bioactive compounds improve BG level

(BGL) and decrease insulin resistance and glycated hemo-

globin. However, oral administration of food-grade bioac-

tive compounds results in substantial loss in bioactivity,

diminishing the antidiabetic activity of the phytobioactive

compounds. Bioavailability and bioactivity of a drug can be

enhanced by using nanoparticle (NP) drug-delivery

systems.4 Such nanoformulations (NFs) as biodegradable

polymeric NFs (BPNs) play an important role in treatment

of different types of diseases, medical imaging, biomarkers,

biosensors, nanomachines, nanorobots, and nanoscale drug-

delivery systems.5 BPN systems enhance pharmacokinetic

properties, such as absorption, distribution, metabolism, and

excretion of various drugs used in therapeutic

applications.5,6 BPNs have several advantages, including

improved bioavailability and solubility, sustained release

of drug, targeted drug delivery, reduction in dose, and

fewer side effects.7

Various bioactive compounds singly or in combination

have shown enhanced antidiabetic activities.8

A combination therapy of rutin and silymarin in strepto-

zotocin (STZ)-induced diabetic rats for 6 weeks reduced

plasma-glucose levels and significantly increased antioxi-

dant activity in diabetic rats.9 Kaur et al10 reported the

influence of piperine and quercetin on the antidiabetic

potential of curcumin, and found that a combination of

the three had significant therapeutic potential when com-

pared with curcumin alone. Therefore, the combinational

intake of these with foods or synergistic efficacy of these

bioactive compounds will be a future research area in

diabetic disease management. The present report

explores the combined effect of glycyrrhizin (GL) and

thymoquinone (TQ), the main bioactive extracts from the

herbs Glycyrrhiza glabra (family Fabaceae) and Nigella

sativa (family Ranunculaceae), respectively, for enhanced

antidiabetic potential. Both compounds have been reported

to exhibit antihyperglycemic activity and many other phar-

macological activities.11–14 GL has been reported for its

poor/low bioavailability after oral administration, due to

slow and incomplete absorption in the gastrointestinal

tract.15 Similarly, TQ has also been reported for its poor

bioavailability.16 The hydrophilic nature of GL, hydropho-

bic nature of TQ, and poor permeability and slow absorp-

tion of both result in low plasma levels after oral

administration, which greatly limits their application.

However, a novel NP drug-delivery system can be built

to enhance the absorption and bioavailability of GL and

TQ. Our research group has previously reported the pre-

paration and evaluation of NFs of GL (20 and 40 mg/kg)

and TQ (20, 40, and 80 mg/kg) in STZ + nicotinamide–

induced diabetic rats individually, which conveyed an

enhanced antidiabetic effect through an NP approach.17,18

The present study was planned to investigate the effect of

subeffective doses in pure and combined NFs with

a standard antidiabetic drug. However, to date, no

reports have been published on the antihyperglycemic activ-

ity of their combined form, in either pure or NF composi-

tion. Therefore, in this study, a combined NF of GL and TQ

(GT) was prepared and characterized for particle size, stabi-

lity, morphology, chemical interaction, and in vitro cytotoxi-

city. Further, their dose effects were explored in various

combinations, such as individual or combined forms in

both pure and NF formulations, by administration for 21

successive days. The results were first compared to the

standard antidiabetic drug metformin, and then evaluated

for antihyperglycemic activity in STZ + nicotinamide–

induced diabetic rats. The combined formulation in both

pure form and NF showed more antidiabetic effect on dia-

betic rats compared to single formulations, either pure or NF.

Methods
Preparation of combined NF of

glycyrrhizin-loaded NPs and

thymoquinone-loaded nanocapsules
The GL-loaded NPs were prepared using ionotropic gela-

tion with the biodegradable polymers chitosan and gum

arabic.19 Aqueous GL (Sigma-Aldrich) solution (a seventh

of polymer) was first added to the chitosan (Hi-Media)

solution (prepared in 2% v:v acetic acid), followed by

addition of gum arabic (Hi-Media) solution with constant
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stirring. Polysorbate 60 (1% v:v of the whole solution; Hi-

Media) was then added to the solution.

TQ-loaded nanocapsules (NCs) were prepared by

nanoprecipitation, in which the polymer induces the pre-

cipitation of NPs when the organic phase is added to the

aqueous phase.18 The aqueous phase contained the surfac-

tants polyvinyl alcohol (0.28% w:v; Hi-Media;) and poly-

sorbate-80 (1 mL; Hi-Media). The organic phase

(dichloromethane) contained gum-rosin polymer (0.08%

w:v; Hi-Media), oleic acid (1 mL) with TQ (20 mg; MP

Biomedicals), and lecithin (0.4% w:v; Hi-Media).

TQ-loaded NCs were prepared by adding the organic

phase (pale yellow) into the aqueous phase (transparent)

with constant vigorous stirring at room temperature.

After synthesis of GL-loaded NPs and TQ-loaded NCs,

their combination (ie, GT NF) was prepared by mixing.

The combined NF was then characterized by dynamic light

scattering, ζ-potential, transmission electron microscopy

(TEM), Fourier-transform infrared (FTIR) spectroscopy,

and differential scanning calorimetry (DSC). Figure 1

depicts the scheme of present investigation.

Characterization of polymeric NFs
Particle size and ζ-potential
Dynamic light scattering was used to determine mean

particle size and polydispersity index, while electrophore-

tic mobility of NPs in aqueous suspension was used to

determine the ζ-potential of the combined GT NF using

a Zetasizer Nano ZS (Malvern Instruments, Malvern, UK).

Morphological evaluation

TEM (Tecnai 268D; FEI) was used to study the morphol-

ogy of the GT NF. A drop of nanosuspension was placed

on a copper grid. It was kept at room temperature for 5

minutes to air-dry and then mounted in agoniometer for

observation.

FTIR analysis

Samples of bioactive compounds prepared in four

forms — GL, TQ, mixture of pure GT, and GT NF —

were subjected to FTIR analysis (Alpha 12060280;

Bruker) at 4,000–400 cm–1 using the KBr-pellet method.

Pellets were formed by pressing the mixture of test sample

and KBr at a ratio of 1:98.

DSC analysis

DSC of the four types of samples was performed on DSC

equipment (Mettler). Different samples weighing 4–5 mg

were placed in an aluminum pan and scanned in the range

of 37°C–500°C at a heat-flow rate of 10°C/min under

a continuous flow of nitrogen at 50 mL/min.

In vitro analysis

MTT assays were used to check the cytotoxicity of the

pure drug and NFs on Vero cell lines. Vero cell lines were

obtained from Centre for Animal Biotechnology,

Chaudhary Charan Singh Haryana Agricultural

University, Hisar, India, and the use of these received

ethical approval from an institutional committee. the

MTT assay is based on measuring the metabolic activity

of living/viable cells by estimating the concentration of

purple formed from the resulting product formazan. Vero

cells (104/well) were cultured in a 96-well plate in DMEM

and incubated for 24 hours at 37°C with 5% CO2.

Thereafter, wells were exposed to 50 μL varying concen-

trations of samples — GL (20 and 40 ppm), GL-loaded

NPs (20 and 40 ppm), TQ (20 and 40 ppm), TQ-loaded

NCs (20 and 40 ppm), blank NPs (40 ppm) and blank NCs

(40 ppm) — for 24 hours, followed by addition of 20

μL MTT solution (5 mg/mL in PBS). After removal of

the supernatant from each well and washing twice with

PBS, 100 μL solubilizing solution was then introduced to

each well to dissolve formazan crystals. After incubation

GL NF

TQ NF

[GL+TQ] NF

Given orally

STZ+NA-induced
diabetic rat

Enhanced antidiabetic
Body weight
Blood glucose level
Lipid profile
Glycated hemoglobin

For 21 days

Figure 1 Schematic representation of evaluation of combined NFs.

Note: NFs given orally for 21 successive days to streptozotocin–nicotinamide (STZ+NA) diabetic rats for enhancement of antidiabetic parameters.

Abbreviations: NFs, nanoformulations; differential scanning calorimetry; GL, glycyrrhizin; TQ, thymoquinone.
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for another 4 hours, a dissolving agent was added to the

wells and absorbance intensity analyzed by a microplate

reader (SpectroStar Nano; BMG Labtech, Germany) at

570 nm. Cells treated with medium only served as

a negative control group. All experiments were performed

in triplicate, and percentage cytotoxicity was calculated:

%Cytotoxicity ¼ ODof negative control� ODof test sample

ODof negative control
� 100

In vivo antidiabetic studies
Animals and induction of diabetes

Wistar female albino rats weighing 140–175 g were pur-

chased from Disease-Free Small Animal House (Lala

Lajpat Rai University of Veterinary and Animal Sciences,

Hisar, India). Before the experiment, rats were acclima-

tized for at least 5 days. Rats had free access to food and

water and were maintained under standard laboratory con-

ditions with a natural light–dark cycle. The experimental

protocol was approved by the Institutional Animal Ethics

Committee, Guru Jambheshwar University of Science and

Technology, Hisar (CPCSEA/0436/PO/Re/S/2001) in its

30th meeting held on August 12, 2016. Animal care was

performed as per the guidelines of the Committee for the

Purpose of Control And Supervision of Experiments on

Animals, Ministry of Environment, Forest, and Climate

Change (New Delhi)

Rats were initially injected with a single intraperitoneal

dose of 110 mg/kg body weight nicotinamide in physiolo-

gical saline and 15 minutes later with 65 mg/kg body weight

STZ.20 After 5 days of nicotinamide + STZ injections,

fasting BGL was examined. Rats with BGL >200 mg/dL

were selected as diabetic.

Experimental protocol and subject grouping

Rats with BGL >200 mg/dL were divided into ten groups of

six rats each. Groups I and II were vehicle-treated controls

that orally received distilled water (5 mL/kg) or oleic acid

(5 mg/kg) for 21 successive days. Groups III–X were dia-

betic rats that received a single dose of nicotinamide

(110 mg/kg) and STZ (65 mg/kg) intraperitoneally. Group

III was a diabetic negative control group. Other diabetic rats

were treated with 150 mg/kg metformin (group IV, positive

control), 10 mg/kg GL (group V), 10 mg/kg TQ (group VI),

10 mg/kg GL plus 10 mg/kg TQ (group VII), 10 mg/kg GL-

loaded NPs (group VII), 10 mg/kg thymoquinone-loaded

NCs (group IX), or 10 mg/kg GL-loaded NPs plus 10 mg/kg

thymoquinone-loaded NCs (group X, combined GT NF).

Measurement of body weight, fasting BGL, and

biochemical estimation

Body weight and BGL of the rats were recorded on days 1,

7, 14, and 21. Blood samples were drawn from the tail vein

of overnight-fasted animals for determination of BGL using

blood glucometer strips (Gluco One BG03; Morepen, New

Delhi, India).

After 21 days of oral dosing, blood samples of overnight-

fasted rats were collected on day 22 from the retro-orbital

plexus under mild general anesthesia. Biochemical para-

meters (such as totalcholesterol [TC], triglyceride [TG],

and high-densitylipoprotein [HDL]) were estimated in

serum using diagnostic kits (Biosystems Reagents and

Instruments, Barcelona, Spain). Serum was separated from

blood samples by centrifugation at 2,000 rpm using a cooling

centrifuge (Remi R8C BL) for 10 minutes. HbA1c was

estimated in whole-blood samples using a NycoCard

HbA1c test kit (Alere Technologies, Oslo, Norway).

Biochemical parameters were analyzed with an autoanalyzer

(BS-200; Mindray, China). Very-low-density lipoprotein

(VLDL) and LDL levels were calculated using the

Friedewald formulas: VLDL = TG/5 and LDL =TC –(HDL

+ VLDL).21

Statistical analysis
Main experimental values (eg, body weight, BGL, various

lipid profile parameters, and glycated hemoglobin) are

expressed as means ± SEM. Experimental data were sta-

tistically analyzed using one-way ANOVA followed by

Tukey–Kramer multiple-comparison post hoc testing

(GraphPad version 3.0). P<0.05 was set as the basic cri-

terion for statistical significance of each evaluation.

Results
Synthesis and characterization of

combined NF (glycyrrhizin-loaded NPs +

thymoquinone-loaded NCs)
Figure 2, A and B shows particle-size and ζ-potential
images of the combined NF, respectively. The particle

size and polydispersity index of the combined NF were

160.7 nm and 0.166, respectively, while the particle size of

GL-loaded NPs and TQ-loaded NCs was 181.4 nm and

70.21 nm respectively. Also, the polydispersity index of

GL-loaded NPs and TQ-loaded NCs was 0.256 and 0.251,

respectively.18,19

The ζ-potential of the combined NF was settled at

–13.8 mV. The ζ-potential of GL-loaded NPs and TQ-
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loaded NCs was 31.4 and –45.3 mV, respectively.17,18

From observation of ζ-potentials, it was revealed that

differently charged particles interacted with one another.

After the interaction, they produced a –13.8 mV net

charge on the NF. Figure 2C shows TEM of the com-

bined GT NF. It was observed that the NF of these

bioactive compounds was spherical. The size of the

combined NF was <100 nm.

Figure 3A shows the FTIR spectra of GL, TQ, com-

bined pure GT, and combined GT NF. The GL spectrum

showed OH stretching at 3,436.65 cm–1 and C–H stretching

of alkanes at 2,921.74 and 2,859.60 cm–1. Peaks at

1,638.21, 1,460.16, and 1,104.16 cm–1 can be attributed to

aromatic C=C stretching, C–H deformation, and

C–O stretching vibration, respectively.19

The TQ-spectrum peak at 2,925.77 cm–1 correspondedto

the C–H stretching of tertiary carbon in the isopropyl group.

The band at 2,856.44 cm–1 was attributed to the symmetric

stretching modes of the three methyl groups. There was an

intense band at 1,711.40 cm–1 for C=O stretching. The peaks

at 1,459.31 and 1,416.61 cm–1 can be attributed to CH3

antisymmetric bending. In contrast, the peak at

1,285.16 cm–1 was for C–O stretching vibration, while

those at 936.86 and 732.16 cm–1 can be assigned to

N–H wagging.18,22

The IR spectra of combined pure GT documented the

combined peaks of both GL and TQ, with intense peaks for

each compound detected at 2,925.29 and 2,856.83 cm–1

(C–H stretching), 1,711.04 cm–1 (C=O stretching), 1,454.79

and 1,4.21.04 cm–1 (C–H deformation), 1,285.43 cm–1

(C-O stretching), and 937.69 and 723.42 cm–1 (N–Hwagging).

Similarly, the IR spectra of combined GT NF exhib-

ited combinations of their peaks, eg, broad bands at

3,429.24 cm–1 (OH stretching), 2,923.36 and

2,859.60 cm–1 (C–H stretching), 1,715.02 cm–1 (C=O

stretching), 1,659.48 cm–1 (C=C stretching), 1,492.95

cm–1 (C–H deformation), 1, 257.56 cm–1 (C–O stretch-

ing), 1,093.61 cm–1 (C–O stretching), and 947.76 and

788.90 cm–1 (N–H wagging). The presence of these

multiple peaks confirmed that the two bioactive com-

pounds existed in the NF without any chemical

alterations.

Figure 3B shows DSC of GL, TQ, and their combi-

nation in pure and NF forms. DSC of pure GL exhib-

ited two endothermic peaks. The first endothermic

transition peak at 38.6°C was of low intensity.

The second endothermic peak at 213.9°C refers to the

melting point of GL, as decomposition starts after

219.1°C.23 Additionally, peaks were of low intensity

and not sharp, supporting an amorphous nature. The

TQ DSC graph evidenced a sharp exothermic transition

peak at 43.6°C and the first endothermic peak at 48.6°

C. Exothermic peaks were sharp in the range of 44°C–

45°C, reflecting crystallinity.24 Moreover, another

endothermic peak was observed at 162.8°C, which

may reflect the decomposition peak of TQ. The DSC

graph of the combination of pure GT documents the

combined peaks of GT at 36.8°C (endothermic peak of
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Figure 2 (A) DLS-based particle size; (B) ζ-potential; (C) TEM of the combined GL+TQ nanoformulation.

Abbreviations: DLS, differential scanning calorimetry; TEM, transmission electron microscopy; GL, glycyrrhizin; TQ, thymoquinone.
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GL), 44.1°C (exothermic peak of TQ), 146.6°C

(decomposition starting peak of TQ), and 235.5°C

(decomposition peak of GL). As such, the presence of

both bioactive compounds was identified. Moreover,

the DSC graph of the combined GT NFs showed that

no peaks were sharp, in agreement with the amorphous

nature of the NFs. Both NFs were found to be

amorphous.

Figure 3C shows the cytotoxicity profile of different

samples on Vero cell lines at different concentrations.

Two doses of GL, TQ and their NFs were evaluated for

cytotoxicity parameters. From MTT in vitro experi-

mental evaluation, it was demonstrated that cell viabi-

lity was 80%–90% in NFs compared to 75%–85% for

pure drugs). A concentration-dependent cytotoxic

effect was observed on MTT cytotoxic assays. GL-

loaded NPs (20 and 40 ppm) showed less cytotoxicity

(35.68% and 34.49%, respectively) than pure GL.

Similarly, TQ-loaded NCs (20 and 40 ppm) were less

cytotoxic (8.7% and 20.5%, respectively) than their

respective pure-TQ concentrations. Blank NPs and

blank NCs showed <5% cytotoxicity on Vero cells.

In vivo antidiabetic activity
In this study, we investigated the antidiabetic effects of

dosage administration using combined GT NFs in a type 2

diabetes model for the first time. To this end, subeffective

doses of bioactive GT components were examined in six

different forms: GL (10 mg/kg), TQ (10 mg/kg), mixture

of GL and TQ (10+10 mg/kg), GL-loaded NPs (10 mg/

kg), TQ-loaded NCs (10 mg/kg), and a mixture of GL-

loaded NPs & TQ-loaded NCs (10+10 mg/kg, GT NF.

Results were then evaluated in relation to body weight,

fasting BGL, lipid profile, and glycated hemoglobin in

nicotinamide + STZ–induced diabetic rats.

Induction of diabetes has been reported to cause loss or

degradation of structural proteins, leading to

decreased body weight.25 Benderand Mayes26 also

reported that insulin deficiency results in decreased pro-

duction of protein in all tissues, ultimately lowering body

weight. Figure 4 shows the effects of various treatments on

body weight of diabetic rats. There was no significant

effect on body weight of diabetic rats on days 1 and 7.

However, the weight of diabetic control rats (group III)

decreased significantly on days 14 (P<0.01) and 21
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(P<0.001) compared to oleic acid vehicle–treated control

rats (group II). Moreover, there was a significant decrease

in body weight of diabetic rats on day 21 (P<0.01) com-

pared to distilled-water vehicle-treated control rats (group

I). Diabetic rats treated with metformin (150 mg/kg),

combined pure GT (10+10 mg/kg), and combined GT

NF (10+10 mg/kg) significantly (P<0.05) showed reversed

diabetes-induced decrease in body weight on day 14 com-

pared to diabetic control rats. Moreover, diabetic rats

treated with metformin (150 mg/kg), combined pure

GT (10+10 mg/kg), and combined GT NF (10+10 mg/

kg) (P<0.001, 0.001, and 0.01, respectively) showed sig-

nificantly reversed diabetes-induced decrease in body

weight on day 21 compared to diabetic control rats,

while oral administration of GL (group V), TQ (group

VI), and their NFs (group VIII and IX) had no effect on

body weight on days 1, 7, 14, or 21 in diabetic rats

compared to diabetic control rats.

Type 2 diabetes increases BGL through a decrease in

the insulin secretion needed for carbohydrate metabolism.

Figure 5 depicts the effects of various treatments on fast-

ing BGL in rats. Treatment with nicotinamide + STZ

significantly increased fasting BGL in rats of groups

III–X on day 1 compared to the distilled-water vehicle-

treated control (group I) and oleic acid vehicle–treated

control (group II). BGL of diabetic rats increased signifi-

cantly (P<0.001) on days 1, 7, 14, and 21 compared to

vehicle-treated control rats (groups I and II). Metformin

significantly (P<0.001) decreased the fasting BGL of dia-

betic rats compared to diabetic control rats on days 7, 14,

and 21. GL, TQ, and their NFs, when applied indepen-

dently, exerted no significant effect on BGL of diabetic

rats compared to diabetic control rats. However, when

bioactive compounds administered in a combined dose

(GT: 10+10 mg/kg), fasting BGLs of diabetic rats were

significantly decreased compared to diabetic control rats.
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Figure 4 Effects of various treatments on body weight of diabetic rats.

Notes: Values presented as means ± SEM, n=6 in each group. Groups 3–10 were diabetic rats. Data were analyzed by one-way ANOVA followed by Tukey–Kramer multiple

comparison, where “a” and “b” indicate significant differences compared to vehicle-treated control-distilled water and oleic acid. respectively, and “c” indicates significant

differences compared to diabetic control. *P<0.001; #P<0.01; ^P<0.05.
Abbreviations: NPs, nanoparticles; NCs, nanocapsules.
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Note that such patterns were apparent only on days 14

(P<0.05) and 21 (P<0.001), while no effect was observed

on day 7. Moreover, combined GT NF dosage (10+10 mg/

kg: actually containing 2.1 and 5 mg/kg, respectively)

showed significantly decreased BGL in diabetic rats

on day 7 (P<0.05), followed by day 14 (P<0.01)

and day 21 (P<0.001) compared to diabetic control rats.

Although the amount of each drug in the NF was lower

(only 7.1 mg compared to 20 mg), it showed a better effect

on BGL in diabetic rats.

Figure 6 shows the effects of various treatments on

lipid profiles and glycated hemoglobin of diabetic rats

on day 22. Type 2 diabetes can increase BGL through

a decrease in insulin secretion, which is needed for car-

bohydrate metabolism. The decrease in fasting BGL of

diabetic rats by GL and TQ observed in this study is also

supported by the literature.13,27 HbA1c is an interactive

product of BG and hemoglobin. In this study, rats in the

diabetic control group showed an increase in HbA1c due

to the interaction between large amounts of BG and

hemoglobin, as supported by the literature.28 Rats in the

diabetic control group showed significant (P<0.001)

increases in plasma TC, TG, LDL, VLDL, and HbA1c,

but a significant (P<0.001) decrease in plasma HDL

(Figure 6D) compared to vehicle-treated control rats

(groups I and II). GL, TQ, and their NFs had no signifi-

cant effect on lipid profile or HbA1c of diabetic rats

compared to diabetic control rats. The combined dose

of pure GT (10+10 mg/kg) significantly decreased

(P<0.01) the plasma TG and VLDL only, with no effect

on plasma TC, LDL, HDL, or HbA1c in diabetic rats

compared to diabetic control rats. However, oral admin-

istration of metformin to group IV rats and combined GT

NFs (10+10 mg/kg, actually containing 2.1 and 5 mg/kg,

respectively) to group X rats significantly decreased

(P<0.001) TC, TG, LDL, VLDL, and HbA1c and signifi-

cantly increased (P<0.001) HDL in diabetic rats on day

22 compared to diabetic control rats.
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Discussion
Biodegradable polymeric NFs exist in the form of micelles,

emulsions, particulates, liposomes, nanogel, and dendrimers,

which are all used as drug-delivery vehicles.29 GL-loaded

NPs were prepared via ionotropic gelation using chitosan and

gum arabic as encapsulation polymers. Synthesis of NPs was

achieved by electrostatic interaction of a positively charged

amine group (–NH2) of chitosan with negatively charged

carboxylic groups (–COO) of gum arabic.30 TQ-loaded

NCs were prepared by nanoprecipitation , also called solvent
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Figure 6 Effects of various treatments on lipid profiles and glycated hemoglobin in diabetic rats on day 22.

Notes: Values presented as means ± SEM, n=6 in each group. Groups 3–10 were diabetic rats. Data analyzed by one-way ANOVA followed by Tukey–Kramer multiple

comparison, where “a” and “b” indicate significant difference compared to vehicle-treated control-distilled water and oleic acid respectively, and “c” indicates significant

differences compared to diabetic control. *P<0.001; #P<0.01; ^P<0.05.
Abbreviations: TC, total cholesterol; HDL, high-density lipoprotein; VLDL, very-low-density lipoprotein; NPs, nanoparticles; NCs, nanocapsules.
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displacement or interfacial deposition. NC synthesis requires

both organic (solvent) and aqueous (non solvent) phases. In

this study, the solvent phase consisted of dichloromethane,

which contained a film-forming polymer (gum rosin), the

active substance (TQ), an oil core for dissolving the active

substance (oleic acid), and a tensioactive species (lecithin).

The nonsolvent phase consisted of a mixture of two surfac-

tants (polyvinyl alcohol and polysorbate 80) in distilled

water. The aqueous phase has high surface tension, while

the organic phase has low surface tension. Since a liquid with

high surface tension pulls more strongly on the surrounding

liquid than one with low surface tension, this difference

causes interfacial turbulence and thermal inequalities in the

system. This creates a continuous formation of whirls of

solvent at the interface of the aqueous and organic phases.

This mutual miscibility causes violent spreading between the

solvents to displace the solvent from regions of low surface

tension. In the meantime, the polymer aggregates on the oil

surface, resulting in formation of NCs.31

The particle shape and size of the combined NF was

spherical and <100 nm, as predicted from TEM analysis.

For in vivo studies, particles <200 nm are preferable,

because particles of such size are not recognized by the

reticuloendothelial system.32 Therefore, they have pro-

longed circulation and yield greater pharmacological

effects. Additionally, the ζ-potential of the combined NF

was –13.8 mV, which might have been an interactive out-

come of two NFs (GL-loaded NPs [31.4 mV] and TQ-

loaded NCs [–45.3 mV]), which might have had a chance

of aggregation/agglomeration. In general, aggregation

indicates strongly bonded or fused particles and agglom-

eration indicates more weakly bonded particles. In the

present study, it may have been that the two different

NFs did not have enough energy for the particles to get

fused. Moreover, both the NP systems had high stability,

thereby preventing them from aggregating, even though

some agglomerates may exist in solutions, thereby affect-

ing particle size to a smaller extent. Moreover, the com-

bined NF with the two different type of NF having

contrasting ζ-potentials was observed for some partial

interactions, as supported by the literature.33 Moreover,

negative ζ-potentials showed higher cellular uptake com-

pared to positive ζ-potentials.34 FTIR and DSC analysis

confirmed the presence of bioactive compounds in the

combined NF without any chemical interaction and amor-

phous nature of combined NF respectively. Moreover, the

present study revealed that the NFs were less toxic to cell

lines than pure drugs, as supported by the literature.35,36 In

the present investigation, single NF doses showed less

cytotoxicity compared to pure bioactive compounds.

From this, it can be concluded that the combined NF at

sub effective dose would have less cytotoxic effect.

Moreover, the preparation of NFs is very easy and requires

only inexpensive chemicals. Therefore, the NP-product

formulation would be in the economic range.

GL and TQ have been reported for their antihypergly-

cemic potential in diabetic rats. Improvements in body

weight and lipid profile and reductions in BGL and HbA1c

in diabetic rats by administration of GL and TQ has been

reported.13,27 Moreover, the NFs of GL (20 and 40 mg/kg)

and TQ (20, 40, and 80 mg/kg) have also been evaluated by

our research group for antidiabetic activity in STZ + nico-

tinamide–induced diabetic rats.17,18 In our previous work,

we observed very noticeable patterns: reversed diabetes-

induced decrease in body weight, improvement in lipid

profile, reduction in BG, and decrease in HbA1c in diabetic

rats treated with GL-loaded NPs (20 and 40 mg/kg, actually

containing 4.2 and 8.4 mg GL, respectively).17 Also, near-

identical results were observed in diabetic rats treated with

TQ-loaded NCs (20, 40, and 80 mg/kg, actually containing

10, 20, and 40 mg TQ, respectively).18

In this research, subeffective doses of two bioactive

compounds in NF form were investigated independently

(10 mg/kg) and in combination (after mixing) for their

antidiabetic effect on STZ + nicotinamide–induced dia-

betic rats. Individual treatment showed no noticeable

effect on some important parameters (eg, body weight,

BG, HbA1c, and lipid profile), which might reflect insuffi-

ciency of the drugs in circulation. However, the combined

GT doses, when administered in both pure and NF forms,

exhibited noticeable improvements. Results between the

two types of combined administration (pure vs NF) were

dissimilar when compared in relation to all eight variables

examined in this study. In the case of the pure forms,

a significant effect was found on four parameters (body

weight, BGL, TG level, and VLDL), while there was no

significant effect on the other four variables (glycated

hemoglobin, TC, LDL, and LDL). However, the adminis-

tration of GT NF showed significant results in all eight

parameters. In addition, the administration of combined

NFs led to noticeable reversal trends in diabetes-induced

reduction of body weight for diabetic rats. Further, com-

bined NF dosage also significantly improved lipid profiles

while reducing the BG and HbA1c of diabetic rats. In

addition, it should be noted that the actual drug-loading

amounts of GL and TQ in their combined NF dose were
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lower by four and two times, respectively, relative to those

administered in pure forms. Nonetheless, they still pro-

duced effects comparable to metformin, a standard anti-

diabetic drug. The order of significance based on P- and

Q-values for various treatments on different diabetic para-

meters examined in this study is shown in Table 1.

This effect could be due to increased absorption of

bioactive compounds in the blood, leading to enhancement

of bioavailability in the NFs.37,38 From this observation, it

can be stated that subeffective NF doses of bioactive

compounds had no apparent effect on the antidiabetic

parameters studied, while combined NF doses exhibited

significant antidiabetic effects, possibly due to enhanced

absorption of NFs in the circulation. Another reason for

improved antidiabetic activity is the synergistic effect of

two NFs, which ultimately enhanced pharmacological

activity, as supported by the literature.9,10

Conclusion
A combined dose of NFs, made as a mixture of GL-loaded

NPs and TQ-loaded NCs, was administered to evaluate the

effects of different treatment options of bioactive compo-

nents of drugs, eg, between pure and NF forms and between

individual and combined applications. Oral administration

of combined GT NFs for 21 successive days to diabetic rats

significantly decreased fasting BGL and glycated hemoglo-

bin while improving lipid-profile parameters and body

weight compared to their NFs individually. It is noteworthy

that despite the lower amounts of the pure-drug compo-

nents, the combined dosages of NFs still exerted

a significant effect on type 2 diabetic rats compared to the

diabetic control group. The performance of the combined

GT NF was superior among all tested conditions, as evi-

denced by favorable responses in all eight studied para-

meters. Based on this study, we conclude that

a combination NF of bioactive compounds is more effective

than a single NF, even at a reduced drug load. Moreover,

the NFs showed lower cytotoxicity than the respective pure

drug/bioactive compound. Further research should elucidate

the combined effect of NFs of GL and TQ as a new med-

icinal option for the management of diabetes.
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