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Introduction: It is well known that the graftedmultiwalled carbon nanotubes (MWCNTs) have

antibacterial activity and lower cytotoxicity. Moreover, pyrazole derivatives have a broad

spectrum of biological activity due to their fertile template for many medicinal drugs. On view

of these findings we report herein the hybridization between MWCNTs and some pyrazole

derivatives as antibacterial agents.

Materials and methods: Pyrazole and pyrazolone derivatives were grafted onto the sur-

face of carboxylated MWCNTs via the reaction of carboxylated MWCNTs and the diazo-

nium salts of pyrazoles and pyrazolones using mixed acid treatment. The insertion of the

pyrazole and pyrazolone moieties was characterized by Fourier transform infrared (FTIR)

spectroscopy, energy dispersion spectroscopy, transmission electron microscopy, X-ray dif-

fraction and thermogravimetric (TGA).

Results: The results indicate that pyrazole and pyrazolone moieties successfully attached on

carboxylated MWCNTs surface. The neat pyrazole and pyrazolone derivatives and their corre-

sponding carbon nanotubes were tested against Staphylococcus aureus, Bacillus subtilus,

Escherichia coli, and Candida albicans bacteria, and Aspergillusniger fungi. The results showed

that the grafted carbon nanotubes of pyrazole and pyrazolone derivatives have better antimicro-

bial activity than the neat pyrazole and pyrazolone derivatives. The molecular docking studies

were performed on the most potent antimicrobial compounds to investigate the existence of the

interactions between the most active inhibitors and Farnesyl pyrophosphate synthase (FPPS).

Conclusion: The surface of the carboxylated MWCNTs was successfully grafted with some

pyrazole derivatives. The antibacterial activity was investigated for the newly synthesized

compounds and indicated that the grafted MWCNTs have good antibacterial activity toward

some pathogenic types of bacteria.

Keywords: carbon nanotubes, pyrazoles, pyrazolones, grafting, antimicrobial activity, zeta-

potential, molecular docking study

Introduction
Recently, carbon nanotubes (CNTs) and their based materials have gained considerable

attention due to their unique physical properties and potential for numerous biological

applications.1–4 Both single-walled and multi-walled carbon nanotubes (MWCNTs)

have been found to possess antimicrobial activity.5,6 However, the MWCNTs have

lower cytotoxicity and therefore are more friendly to the environment.7

Several toxicity mechanisms have been proposed for CNTs’ antimicrobial activity.

These mechanisms include cell membrane perturbation, direct oxidation of cellular
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components, and secondary oxidation of cellular lipid bilayer

by reactive oxygen species.8–11

The functionalized products of CNTs area less-toxic

alternative for both in vitro and in vivo.12,13 Covalent

functionalizations14–19 and non-covalent functionalizations

of the CNTs20–22 are two main approaches to extend the

range of their potential applications. Covalent functionaliza-

tions include the oxidation of the defective carbon atoms by

strong oxidants on the sidewall or at the end of CNTs to

generate carboxylic acid groups or carboxylated fractions,

which can be chemically modified via amidation or esterifi-

cation. Various polymers,18 metals23,24 and biological

molecules25–27 can be grafted to the surface of carboxylated

CNTs. While the non-covalent functionalization involves the

adsorption of the modified molecules onto the outer surface

of the CNTs, the adsorption is carried out by 1) hydrophobic

interactions, 2) π–π interactions, 3) electrostatic interactions

between ionic adsorbates.28–30

In particular, CNTs-based nanomaterials have

revealed efficacious bactericidal properties against differ-

ent pathogenic microorganisms. Previous results exhib-

ited that the modification of MWCNTs with dapsone drug

demonstrated significant antibacterial activity than oxi-

dized MWCNTs.31 In another study, Zhu et al.31 depos-

ited carbon nanotubes/chitosan composites onto Ti

surface via electrophoretic deposition. Subsequently, the

Ti surface was coated with different contents of ZnO via

atomic layer deposition. The results showed that this

coating enhanced the medical implants against

Escherichia coli (EC) of over 73% and Staphylococcus

aureus (SA) of over 98%.32 Another study by Mocan

et al revealed that the covalent functionalization of

MWCNTs with different concentrations of immunoglo-

bulin G enhanced the apoptosis rates of the immunoglo-

bulin G-MWCNTs against (SA) compared to non-

functionalized MWCNTs.33 More recently, Wenyi Wang

et al have examined the effect of sodium lignosulfonate-

CNT/hybrid polyethersulfone ultrafiltration membranes

on bacterial properties with and without applying a

weak electric field. Results showed that all the fabricated

membranes did not affect bacteria without applying an

electric field, the antibacterial influence was only

achieved by using an electric field. In conclusion, the

application of electric field showed significant antibacter-

ial properties for the prepared membranes.34

On the other hand, the ring of pyrazole is essential

for biological activity because it is a fertile template for

medicinal agents such as antibacterial,35 antifungal,36

anti-inflammatory,37 analgesic,38 and others. Moreover,

pyrazole derivatives have been the building block for

various drugs. For example, rimonabant serves as a

cannabinoid receptor and is used to treat obesity and

fomepizole inhibits alcohol dehydrogenase. Some of the

pyrazole derivatives have significant applications in

material liquid crystals39 and electroluminescence40

properties. Besides, pyrazole rings not only used as

synthetic reagents in multicomponent reactions41 and

chiral auxiliaries,42 butit is also used as extraction

reagents for many metal ions.43 In addition, some dif-

ferent companies successfully developed many pyrazole

derivatives. These derivatives are used in various fields

such as chlorantraniliproleas insecticides, pyraclostrobin

as fungicides and antipyrine which is used in medicinal

chemistry.

The heterocyclic compounds with amide groups are exhi-

biting extensive biological activities, such as herbicidal,44,45

anticancer,46 plant growth regulation47 and others. Recently,

benzovindiflupyr and sedaxane fungicides had been intro-

duced for the treatment of fruit and vegetable crops.

In this work, some pyrazole derivatives were grafted

on the surface of the MWCNTs via diazonium salts. The

prepared samples were characterized by Fourier transform

infrared (FTIR) spectroscopy, transmission electron micro-

scopy (TEM), X-ray diffraction and thermogravimetric

(TGA) analysis. The synthesized compounds were inves-

tigated against three various bacteria (Staphylococcus

Aureus, Bacillus subtilus and Escherichia coli) and two

fungal (Candida Albicans and Aspergillusniger). Also, the

molecular docking study was used to examine the binding

mode of the pyrazole derivatives inside the binding site of

Farnesyl pyrophosphate synthase (FPPS) which represents

the efficient target of antimicrobial chemotherapy.48

Experimental
Materials and solvents
Concentrated sulfuric acid (H2SO4), concentrated nitric acid

(HNO3), sodium nitrite (NaNO2), ethanol andN,N-dimethyl-

formamide (DMF) are obtained from Sigma Chemical

Company. All other reagents and solvents were purchased

from Aldrich and used as received without purification.

Staphylococcus aureus (SA,ATCC 29213), Bacillus

subtilus (BS, RCMB 010067) as gram-positive bacteria

and Escherichia coli (EC, RCMB 010052) as Gram-nega-

tive bacterium and Candida Albicans (CA, ATCC 10231)

and Aspergillusniger (AS, ATCC16404) as fungi, were
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provided by the regional center for mycology and biotech-

nology, Azhar University, Egypt.

Synthesis of 2-arylazomalononitriles (B)
2-Arylazomalononitriles (B) were prepared according to the

method described previously49 as shown in (Scheme 1). As

a general route, aromatic amines (A) (10 mmol) were dis-

solved in 10 ml of 33% HCl with stirring and cooled in an

ice-salt bath to 0 °C. A cold sodium nitrite solution

(10 mmol) was dropwise added with stirring at temperature

2–5 °C to the resulting solution. After completing the addi-

tion, the cold mixture was dropwise added to an ice-cold

solution of malononitrile (10 mmol) in 10 ml of ethanol

with 0.5 gm of sodium acetate. The reaction mixture was

further stirred at 0–5 °C for 2 h, and then the precipitated

product was filtered. Lastly, the final product was washed

with water, and then recrystallized from ethanol.

Synthesis 4-arylazo-3,5-diamino-1-

phenylpyrazoles 1a-c
A mixture of 2-arylazomalononitriles B (3 mmol) and

phenylhydrazine (0.5 g, 3 mmol) in 30 ml ethanol was

refluxed for 6 h with continuous stirring (Scheme 1). The

formed solid was filtered off and recrystallized from abso-

lute ethanol.50

1-Phenyl-4-(phenyldiazenyl)-1H-pyrazole-3,5-dia-

mine (1a)

Orange crystals, yield 90%, m.p 175 °C [176 °C],50 IR

(KBr, cm−1)ν: 3428 (N-H), 2930 (=CH), 1620 (C=C), 3050

(Ar-CH).Anal.calcd forC15H14N6 (278.32): C, 64.73;H, 5.07;

N, 30.20. Found: C, 64.88; H, 5.18; N, 30.40.

4-[(4-Nitrophenyl)diazenyl]-1-phenyl-1H-pyrazole-

3,5-diamine (1b)

Yellow crystals, yield 85%, m.p 165 °C[166 °C],50 IR

(KBr, cm−1)ν: 3423 (N-H), 2940 (=CH), 1608 (C=C),

1558 (NO2), (Ar-CH). Anal.calcd for C15H13N7O2

(323.32): C, 55.72; H, 4.05; N, 30.33. Found: C, 55.87;

H, 4.22; N, 30.54.

4-[(4-Methoxyphenyl]diazenyl)-1-phenyl-1H-pyrazole-

3,5-diamine (1c)

Brown crystals, yield 92%, m.p 185 °C[186 °C],50IR

(KBr, cm−1)ν: 3428 (N-H), 2930 (=CH), 1620 (C=C), 1246

(O-CH3), (Ar-CH). Anal.calcd for C16H16N6O (308.34): C,

62.32; H, 5.23; N, 27.26. Found: C, 62.49; H, 5.39; N, 27.45.

Synthesis of ethyl-2-cyano-3-(substituted)

phenylacrylates (C)
Ethylcyanoacetate (5mmol) in 10 ml ethanol was dropwise

added to the appropriate aldehyde (5mmol) (benzaldehyde,

4-methoxybenzaldehyde and 4-chlorobenzaldehyde) in the

presence of few drops of piperidine (Scheme 2). The reac-

tion mixture was stirred for 4–6 h at room temperature. The

obtained solidwas then filtered off and washed with cold

water. Subsequently, the obtained product was recrystallized

from ethanol. The product was TLC pure and gave melting

temperatures as reported previously.51

Scheme 1 Synthesis of 4-phenyldiazenyl-1H-pyrazole-3,5-diamine 1a-c.

(2a-c)

O

O piperidine

EtOH Ar CN

O
EtO
C

EtOH NH2NH2 .H2O

Ar

H2N

N NH

O

Ar
O

CN

a, Ar = C6H5
b, Ar = 4-CIC6H4
c, Ar = 4-OMeC6H4

Scheme 2 Synthesis of 5-amino-4-benzylidene-2,4-dihydro-3H-pyrazol-3-ones 2a-c.
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Synthesis of 5-amino-4-benzylidene-2,4-

dihydro-3H-pyrazol-3-one (2a-c)
A mixture of ethyl-2-cyano-3-phenylacrylate (C) (10mmol)

and hydrazine hydrate (20 mmol) in the presence of ethanol

(6 ml) was heated under reflux for 3 h (Scheme 2); then cooled

up to the room temperature. Subsequently, the solid products-

were separated upon dilution of cooled waterand filtered off,

washed several times by distilledwater and dried. The obtained

products were recrystallized from ethanol.51

3-Amino-4-[(phenyl)methylene]-1H-pyrazol-5(4H)-

one (2a)

Yellow crystals, yield 68%, m.p 109 °C [108 °C],51 IR

(KBr, cm−1)ν: 3428 (N-H), 2930 (=CH), 1682 (C=O),

1620 (C=C). Anal. calcd for C10H9N3O (187.20): C,

64.16; H, 4.85; N, 22.45. Found: C, 64.34; H, 4.70; N,

22.65%.

3-Amino-4-[(4-chlorophenyl)methylene]-1H-pyrazol-5

(4H)-one (2b)

Yellow crystals, yield 70%, m.p 97 °C [98 °C],51 IR

(KBr, cm−1)ν: 3209 (N-H), 2940 (=CH), 1683 (C=O),

1619 (C=C), 780 (C-Cl). Anal. calcd for C10H8N3OCl

(221.64): C, 54.19; H, 3.64; Cl, 15.99; N, 18.96. Found:

C, 54.37; H, 3.80; Cl, 15.84; N, 18.77%.

3-Amino-4-[(4-methoxyphenyl)methylene]-1H-pyra-

zol-5(4H)-one (2c)

Yellow crystals, yield 65%, m.p 99 °C[100 °C],51 IR

(KBr, cm−1)ν: 3361 (N-H), 2959

(=CH), 1620 (C=O), 1612 (C=C), 1355 (CH3). Anal.

calcd for C11H11N3O2 (217.23): C,

60.82;H, 5.10; N, 19.34. Found: C, 60.63; H, 5.27; N,

19.41%.

Synthesis and oxidation of MWCNTS
MWCNTs were produced via the chemical vapor deposi-

tion (CVD) method, as reported previously.52 Acetylene

and Fe/Al2O3 were used as precursor and catalyst, respec-

tively. The MWCNTs were washed with concentrated HCl

to remove the catalyst and its support and then were

purified with concentrated HNO3 to remove the amor-

phous carbon particles.

To produce MWCNTs-COOH, (1.0 g) from the neat

MWCNTs were sonicated with a 80 ml mixture of HNO3

and H2SO4 (3:1) for 24 h at 90 °C. The reaction mixture

was diluted in 250 ml of distilled water, after cooling, and

then vacuum-filtered through a 3 μm porosity filter paper.

Subsequently, the obtained product was washed several

times by distilled water until the pH of the filtrate was

7.0. The obtained product was dried under vacuum oven at

60 °C for 24 h.

Grafting of 4-arylazo-3,5-diamino-1-phen

ylpyrazoles and 5-amino-4-benzylidene-2,4-

dihydro-3H-pyrazol-3-one onto MWCNT

s-COOH
Either 4-phenyldiazenyl-1H-pyrazole-3,5-diamine (1a-c)

or 5-amino-4 benzylidene-2,4-dihydro-3H-pyrazol-3-one

(2a-c) (4.2 mmol) were mixed with MWCNTs-COOH

(100 mg) and NaNO2 (290 mg, 4.2 mmol) then concen-

trated H2SO4 (0.18 ml, 3.4 mmol) was then added. The

mixture was sonicated and heated for 1 h at 60 °C

(Scheme 3). After cooling the reaction to room tempera-

ture, DMF was added, and the solid was filtered. The solid

product was sonicated in DMF many times to remove any

unreacted aminopyrazole derivatives from the final pro-

duct. The sample was then dried at 60 °C in a vacuum

oven for 24 h. The general route of the synthesis is out-

lined in (Scheme 3).

The obtained compounds, MWCNTs-COOH and

grafted MWCNTs-COOH, are abbreviated here as CNTs,

CNTs-1a, CNTs-1b, CNTs-1c, CNTs-2a, CNTs–2b, and

CNTs-2c.

Characterization
The FTIR spectra were recorded on a Perkin Elmer 2000

spectrophotometer in the range of 400–4000 cm−1 using

KBr pellets. All measurements were carried out with 64

scans at a resolution of 2 cm−1 at room temperature.

The morphology of the functionalized MWCNTs

was examined by a field emission scanning electron

microscope (FE-SEM)(LEO SUPRA 55, Carl Zeiss,

Germany) and a transmission electron microscopy

(TEM, LEO 912 AB electron microscope). The sam-

ples for FE-SEM analysis were prepared by taking one

drop of acetone containing the dispersed MWCNTs on

a silicon wafer and allowing it to dry in a vacuum

oven for 30 min. For TEM, the samples were sonicated

in ethanol for 10 min, and few drops of suspension

were spread onto a silicon substrate and allowed to

evaporate to dryness.

X-ray diffractograms (XRD) of the tested samples

were obtained using an X-ray powder diffractometer (a
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Philips Xpert MPD Pro) with Ni-filter and Cu Kα
radiation source at an accelerating voltage/current of

50 kV/40 mA. The relative intensity was recorded in

the scattering range 2θ, varying from 3 °C to 60 °C at

scanning rate 2°/min.

Thermogravematric analysis and their derivatives (TGA

and DTAG) curves of the functionalized MWCNTs were

conducted using Shimadzu TGA-50 H Thermal Analyzer

under nitrogen with a dynamic heating rate of 10 °C/min.

All experiments were conducted from room temperature to

800 °C, and the reference material was alumina. The sample

weights in all experiments were taken around 2.0 mg.

Zeta potential measurements were carried out using

Malvern Zetasizer Nano ZS (UK). The measurements

were performed at a temperature of 25 °C in triplicate.

Samples were sonicated in distilled water and appropri-

ately diluted prior to measurement.

Biological activity
The synthesized pyrazole, pyrazolone derivatives and the

grafted MWCNTs were tested against two Gram-positive

bacteria (SA,ATCC 29213), (BS, RCMB 010067),(EC,

RCMB 010052), as Gram-negative bacterium, and (CA,

ATCC 10231) and (AS, ATCC 16404), as fungi using

Sabouraud Dextrose Agar medium. Ampicillin, gentami-

cin and amphotericin B were used as standard drugs for

Gram-positive, Gram-negative, and antifungal activity,

respectively. In brief, 5 mL of the sterilized media (pre-

pared by dissolving 10g tryptone, 5 g yeast extract and

10 g sodium chloride in 1000 mL deionizedwater) were

poured onto the sterilized Petri dishes (20–25 mL, each

Petri dish) and allowed to solidify. In the solidified media,

wells (of 6 mm in diameter) were made in the agar med-

ium by using a sterile steel borer. A sterile swab was

applied to spread microbial suspension over the surface

H2N N N Ar
N N Ar

N
N N

N

O

OH

NHN
NHN

O

O

O

Ar

NaNO2/H2SO4
60°C

2a-c

H2N
MWCNTs-COOH (CNTs)neat MWCNTs

HNO3

heat

O

OH

OH

Ar

1a-c

NH2 NH2

NaNO2/H2SO4
60°C

CNTs-1(a-c)

a, Ar = C6H5
b, Ar = 4-NO2C6H4
c, Ar = 4-OMeC6H4

a, Ar = C6H5

CNTs-2(a-c)

b, Ar = 4-CIC6H4
c, Ar = 4-OMeC6H4

Ph Ph

Scheme 3 Grafting of 4-phenyldiazenyl-1H-pyrazole-3,5-diamine, 1(a-c), and 5-amino-4-benzylidene-2,4-dihydro-3H-pyrazol-3-one, 2(a-c), onto MWCNTs-COOH.
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of solidified media evenly, and 0.1 mL of dispersed mod-

ified MWCNTs suspensions (0.1 mg/ml) was added to

each well with the help of micropipette. The plates were

incubated at 37 °C for 24 h in case of antibacterial activity

and 48 h at 25 °C for antifungal activity. A blank without

the tested materials was prepared for comparison. Zones of

inhibition were estimated by measuring the diameter of the

bacterial or fungal growth inhibition zone. The values

were averaged from three independent experiments

(Table 1).

S. aureus was chosen to evaluate the quantitative test

of antibacterial activity of the grafted CNTs using spread

agar-plating method and cultured with a Luria-Bertani

(LB) culture medium according to the method reported

previously.53 Different samples were placed into a 96-

well plate, and 200 μl of the suspension of each sample

(0.1 mg/ml) was added to approximately 107 CFU·ml−1

colony of bacteria, then was inoculated with LB culture

medium (pH 7.4) at 37 °C for 24 h. The bacterial colony

on the plates was observed by a digital camera, and the

number of colonies was counted. The antibacterial efficacy

was calculated as follows:

Antibacterial efficacy %ð Þ ¼

Number of CFUs
in control group
�Number of CFUs
in expermintal group

0
BB@

1
CCA

Number of CFUs
in control group

X 100

Molecular docking study

Docking was carried out using MOE 2009.10 software, the

3D crystal structure of farnesyl pyrophosphate synthase

(FPPS) then saved as Moe file. The 2D structure of docked

compounds 1c, 2a, 1b, CNTs-1c CNTs-2a and CNTs-2b

was converted into 3D structures, and energy minimization

was carried out then saved as mol. The docking energy

was recorded for the selected compound interaction with

epidermal growth factor receptor protein (Table 2).

Results and discussion
FTIR
The FTIR spectra of CNTs, CNTs-(1a-c) and CNTs-(2a-c) are

shown in Figure 1 and Figure 2, respectively. The oxidized

MWCNTs, sample CNTs, showed peaks at 1747, 1024, 3422,

Table 1 Antimicrobial activity of the synthesized pyrazole, 1(a-c), and pyrazolone, 2(a-c) derivatives and grafted CNTs, CNTs-1(a-
c) and CNTs-2(a-c).

Samples code Gram
positive bacteria

Gram negative
bacteria

Fungi

Staphylococcus aur-
eus (SA)

Bacillus subti-
lis (BS)

Escherichia coli
(EC)

Aspergillusniger
(AS)

Candida albi-
cans (CA)

1a 8 11 NA NA 9

CNTs-1a NA NA NA NA NA

1b NA NA NA NA 11

CNTs-1b 9 NA 19 NA 16

1c 14 8 NA NA 11

CNTs-1c 23 9 18 NA 18

2a 11 8 NA NA 12

CNTs-2a 12 8 13 6 12

2b NA 10 8 NA 10

CNTs-2b 12 20 12 7 NA

2c 14 9 8 NA NA

CNTs-2c 14 9 8 NA NA

CNTs NA NA NA NA NA

Trimethoprim/

sulphamethoxazole

20 21 19 26 18

Chloramphenicol 30 24 29 29 25

DMSO NA NA NA NA NA

Abbreviations: CNTs, carbon nanotubes; DMSO, dimethyl sulfoxide; NA, not detected.
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2832 and 2922 cm−1 which can be assigned to C=O stretching

C–O, OH stretching of the carboxylic acid group, asymmetric

and symmetric H-C stretching of H-C=O in the carboxyl

group, respectively,54 formed on the side wall of the

MWCNTs. The above results propose that MWCNTs have

been oxidized successfully. As can be seen from Figures 1 and

2, new peaks appeared in the spectra of CNTs-(1a-c) and

CNTs-(2a-c) at 1260–1345 cm−1, 1602–1645, 3100–

3500 cm−1 are due to C-N bond stretching, N-H in-plane and

N-H stretching which overlapped with the OH stretching,

respectively.55 These results indicate that the surface of

MWCNTs has been grafted with 3,5-diamine-4-arylazo-pyr-

azole as well as an aminopyrazolone moiety.

EDX spectrum
Further evidence for the grafting of the oxidized MWCNTs

was provided by energy dispersive X-ray spectroscopy (EDX)

analysis.56,57 A typical EDX spectrum of CNTs graftedwith 5-

amino-4-benzylidene-2,4-dihydro-3H-pyrazol-3-one 2a. The

(CNTs-2a) compound is displayed in Figure 3, and the ele-

mental compositions of the elements in a chosen region are

listed in Table inserted in Figure 3B. It is evident that the

sample contains carbon (C), nitrogen (N) and oxygen (O)

elements with atomic percentage ratio of C:N:O

(89.49:4.43:4.96) which confirms the oxidation and grafting

of CNTs.

TEM microscopy
The surface morphology of CNTs after grafting was

observed using TEM. The TEM images of CNTs and

grafted CNTs; namely CNTs-1a and CNTs-2a, as

representative examples, are shown in Figure 4. The

remaining samples are given in supplementary

Table 2 The results obtained from docking study of 1c, 2b, CNTs-1c and CNTs-2b using MOE 2009 software

Sample
code

Docking energy
kcal/mol

Amino acids residue involved in docking
interaction

No of
hydrogen
bond

Length of
hydrοgen
bonds
Å

1c −9.0211 Thr181 2 3.52 Å H-acceptor

Ser113 1.91 Å H-acceptor

2b −6.5027 Thr181 1 2.15 Å H-acceptor

CNTs-1c −32.2912 Tyr 218 3 2.54 Å H-acceptor

Lys 214 2.47 Å H-acceptor

Arg 74 1.84 Å H-acceptor

CNTs-2b −25.3870 Lys 214 2 2.09 Å H-acceptor

Gln 254 1.87 Å H-acceptor

Abbreviation: CNTs, carbon nanotubes.
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information (Figure S1). As shown in Figure 4A, the

oxidized MWCNs sample (CNTs) exhibited a lower

degree of entanglement because of the presence of

carboxyl groups. On the other hand, grafted samples

(Figure 4B and 4C) had lower interspaces between

nanotubes than oxidized MWCNTs due to the presence

of aminopyrazolone moiety. Besides, the tubular struc-

ture of the grafted CNTs that observed in the TEM

images suggesting the immobilization of the aminopyr-

azolone moiety onto CNTs surface via a covalent

bondwhichdid not deteriorate the structural integrity

of MWCNTs.

X-ray diffraction study
Figures 5 and 6 show the XRD pattern of the grafted CNTs

(1a-c) and CNTs(2a-c). For the sake of comparison, these

figures included the XRD spectrum of CNTs. The XRD

patterns of the oxidized MWCNTs (CNTs) revealed the

presence of two peaks at 26.40° and 43.33°, corresponding

to (002) and (100) planes of the carbon atoms,

respectively.58 Interestingly, it is obvious that there is no

pronounced shift in the position of characteristic peaks of

grafted CNTs(1b) and CNTs(1c) samples compared with

CNTs, suggesting that MWCNTs are kept with their origi-

nal structure after grafting. In contrast, the diffraction

peaks around 26.40° and 43.33° are almost disappeared

in the spectra of the sample CNTs(1a), indicating that the

CNTs(1a) exhibits lower crystallinity compared with

CNTs(1b) and CNTs(1c) samples. For CNTs(2a), the
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Figure 3 (A) The selected region of scanning electron microscope (SEM) image of

CNTs grafted with 5-amino-4-benzylidene-2,4-dihydro-3H-pyrazol-3-one (CNTs-

2a); (B) the corresponding EDX spectrum of CNTs-2a.

Abbreviation: CNTs, carbon nanotubes.
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Figure 4 TEM micrographs of (A) CNTs, (B) CNTs-1aand (C) CNTs-2a.
Abbreviations: CNTs, carbon nanotubes; TEM, transmission electron microscopy.
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peak in the vicinity of 26.40° was weakened, and the one

at 43.33° became broader and high intensity. In addition,

other peaks are observed around 19.04°and 31.97°. For

sample CNTs(2b), the diffraction peaks around 26.40°,

and 43.33° are almost disappeared. In the spectra of the

sample CNTs(2c), the diffraction peaks around 26.40°

became broader. This indicates that CNTs(2b) processes

lower crystallinity compared with CNTs(2a) and

CNTs(2c).

Thermogravimetric analysis
The thermogravematric analysis (TGA) provide a quantita-

tive evaluation of the extent of grafting. Figures 7 and 8 show

the TGA thermograms and their derivatives (DTGA) of the

CNTs and CNTs grafted samples. As can be seen, CNTs is

thermally stable up to 550 °C. For CNTs grafted with the

pyrazole as well as pyrazolone derivatives, all the the rmo-

grams, except CNTs-2a, exhibit three steps of weight losses.

The first one ends below 120 °C is related to the evaporation

of the moisture water. This step is followed by a significant

degradation step which occurs between 120–410 °C. This

weight loss step is probably due to the decomposition of the

grafted pyrazole as well as pyrazolone derivatives and car-

boxylic functional groups on the CNTs surface. The weight

losses are found to be 7.1, 24.1, 16.9, 16.3, 22.0, 14.4 and

14.2% for CNTs, CTNs-1a CNTs-1b, CNT-1c, CNT-2a,

CNTs-2b and CNTs-2c, respectively. The weight difference

between the CNTs and grafted samples can be attributed to

the introduction of the grafted pyrazole as well as pyrazolone

onto the surfaces of CNTs. The difference in the percentage

of weight losses is probably due to the difference in the

molecular weight of the grafted pyrazole as well as pyrazo-

lone derivatives and their reactivity toward reaction with

CNTs.

Biological activity
The synthesized pyrazoles (1a-c), pyrazolone derivatives (2a-

c) and CNTs grafted samples were evaluated for their in vitro

antibacterial activity against (SA) and (BS) as examples of

Gram-positive bacteria and (EC) as examples of Gram-nega-

tive bacteria. The investigated samples were also evaluated for

their in vitro antifungal potential against a representative panel

of fungal strains such as (AS) and (CA). The sensitivity of the

tested organisms was assayed against the action of suspension

solutions (at 1 mg/mL concentration) using inhibition zone

diameter in mm as a criterion for the antimicrobial activity

(agar well diffusion method). As shown from the results listed

in Table 1, the synthesized compounds 1a-c, CNTs(1a-c), 2a-c

and CNTs(2a-c) showed no antifungal activity in vitro against

fungus (AS) under the screening conditions except the
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Figure 6 XRD patterns of CNTs and grafted CNTs with pyrazolone derivaties,

CNTs-2(a-c).
Abbreviations: CNTs, carbon nanotubes; XRD, X-ray diffractogram.
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compounds CNTs(2a,b) showed weak activity. On the other

hand, compound CNTs(1c) showed activity against the patho-

genic yeast (CA) well as a reference drug trimethoprim/sul-

phamethoxazole. The order of the activity against the

filamentous fungus yeast (CA) as the following CNTs(1c)

>CNTs(1b)>2a>CNTs(2a)>1c >1b>2b >1a. However, it can

be seen that compound CNTs(1c), also showed the highest

activity against Gram-positive bacterium (SA) compared to

trimethoprim/sulphamethoxazole as reference drugs, followed

by compounds 1c, 2c, CNTs(2c), CNTs(2a), CNTs(2b), 2a,

CNTs(1b) and 1a, respectively. Moreover, compound CNTs

(2b) showed the highest activity against Gram-positive bacter-

ium (BS), as well as a reference drug followed by compounds

1a, 2b, CNTs(1c), 2c, CNTs(2c), 2a, CNTs(2a) and 1c.

Additionally, the compound CNTs(1b) showed a higher activ-

ity against (EC) as well as standard reference drugs, followed

by compounds CNTs(1c), CNTs(2a), 2b, 2c and CNTs(2c).

Comparison between the biological neat pyrazoles, pyrazo-

lones and their corresponding grafted CNTs revealed that the

grafted samples have better antibacterial and antifungal activ-

ity except for compound 2c and its grafted CNTs(2c) which

showed the same activity against three types of bacteria (SA),

(BS), and (EC). Generally, the antimicrobial activity depends

on many factors such as hydrophobic/hydrophilic interactions,

interactions between functional groups localized on the surface

of CNTs and bacterial cells, the extent ofmodification of CNTs

and dispersion of modified CNTs in the culture medium.

Another factor that is an essential role in the microbial balance

and resistance to antimicrobials is the charge of the cell sur-

faces. Zeta potential (ξ) measurements are carried out to exam-

ine the charge on the surface of the tested materials.

Representative examples are displayed in the supplementary

information (Figure S2). The results showed that the surface

charge ofCNTswas negative, and it changes after graftingwith

pyrazole and pyrazolone derivatives. The ξ of CNTswas about
−60.3 mV while for CTNs(1a), CNTs(1b), CNTs(2a), CNTs

(2b) and CNTs(2c), were found to be −32.6, −36.2, −25.5,
−36.0 and −39.8, respectively. Unexpected, CNTs(1c) sample

exhibited +29.5mV. The data asmentioned earlier suggest that

CNTs sample does not affect demonstrated microorganisms,

while CNTs grafted with CNTs grated with pyrazole ring

bearing methoxy group is more effective compared to other

grafted CNTs pyrazole derivatives, except AS fungus. For

CNTs(2a) with unsubstituted pyrazolone moiety, which pos-

sessed less negative charge (ξ = −25.3 mV), showed a broad

spectrum against gram-positive, gram-negative as well as

fungi.

Similarly, grafted CNTs with pyrazolone bearing p-

chloro (ξ = −36.0 mV) atom exhibited antimicrobial activity,

except CA fungus. For CNTs(2c) grafted with pyrazolone

bearing p-methoxy group (ξ = −39.8 mV) had relatively

moderate antimicrobial activity towards tested bacteria and

had no activity against fungi. These results inferred that the

surface charge of investigated samples do not play a domi-

nant rule of interaction with the bacterial membrane to kill

microorganisms [references], but there other factors such as

functionality of the CNTs surface, the extent of surface

grafting of CNTs and dispersive quality, which participate

in different ratios, affect the antimicrobial activity.

The antibacterial activities of the prepared grafted CNTs

were also analyzed via the spread plate method (CFU). We

focused on S. aureus as this Gram-positive bacterium is one

of the most widespread pathogens which responsible on a

wide range of human diseases like skin, bone, joint and

respiratory infections, and endovascular disorders. The cal-

culated antibacterial efficacy of CNTs(1b), CTNs(1c),

CNTs(2a), CNTs(2b) and CNTs(2c) were found to be

74.6, 95.2, 17.5, 20.6 and 30.2%. CNTs(1a) has no visible

difference for the control group. These results are consistent
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with the inhibition zone. Similarly, grafted CNTs with pyr-

azolone bearing p-chloro (ξ = −36.0 mV) atom exhibited

antimicrobial activity, except CA fungus. For CNTs(2c)

grafted with pyrazolone bearing p-methoxy group

(ξ = −39.8 mV) had relatively moderate antimicrobial activ-

ity towards tested bacteria and had no activity against fungi.

These results inferred that the surface charge of investigated

samples does not play a dominant rule of interaction with

the bacterial membrane to kill microorganisms,59–61 but

there other factors such as functionality of the CNTs sur-

face, the extent of surface grafting of CNTs and dispersive

quality, which participate in different ratios, affect the anti-

microbial activity.

The antibacterial activities of the prepared grafted

CNTs were also analyzed via the spread plate method

(CFU). We focused on S. aureus as this Gram-positive

bacterium is one of the most widespread pathogens which

responsible on a wide range of human diseases like skin,

bone, joint and respiratory infections, and endovascular

disorders. The calculated antibacterial efficacy of CNTs

(1b), CTNs(1c), CNTs(2a), CNTs(2b) and CNTs(2c)

were found to be 74.6, 95.2, 17.5, 20.6 and 30.2%.

CNTs(1a) has no visible difference for the control

group. These results are consistent with the inhibition

zone.

Molecular docking study
We performed docking against Farnesyl pyrophosphate

synthase (FPPS) which considered as a precursor for the

biosynthesis of essential isoprenoids like carotenoids,

ubiquinones, dolichols, sterols, among others and also

helps in farnesylation and geranylation of proteins. Also,

(FPPS) plays a central role in metabolism through the

enzymatic generation of FPP. In addition, FPP, initially

used for protein prenylation, synthesis of sterols, doli-

chols, heme a, and ubiquinone, is potently inhibited by

bisphosphonates.62–67 Compounds 1c, 2b, CNTs-1c and

CNTs-2b were docked against (FPPS) to investigate if

these compounds have a similar mechanism as (FPPS)

inhibitors. The protein used obtained from a protein data

bank (pdb, code: 1UBY) saved as Moe file.

Docking study was achieved to explore the binding

mode of the most active synthesized pyrazole derivatives

1c, 2b, CNTs-1c and CNTs-2b inside the binding cavity

of (FPPS) and metal complexes as the potential target for

antibacterial and antifungal agents. The binding of the

most potent conformer of pyrazole CNTs-1c inside the

binding pocket of target enzyme illustrated by Figure 12,

while Table 2 point out the molecular docking parameters

of compounds 1c, 2b, CNTs-1c and CNTs-2b. The bind-

ing energy of the generated conformers for the potent

discovered pyrazole derivative CNTs-1c was −32.2912
kcal/mol for the best conformer compared to the pyrazole

derivative 1c with binding energy −9.0211kcal/mol. The

best potent conformer CNTs-1c fits the binding pocket

residues of the enzyme with three hydrogen bonds. The

residues were Tyr218, Lys214 and Arg74, with bond

lengths 2.54 Å (11%), 2.47 Å(12%) and 1.84 Å (27%),

respectively, as depicted from Table 2, in addition to

arene-arene bonds between phenyl, pyrazole and carbon

nanotube carbons with Lys214, Arg126, Gln254 and

Arg127, respectively.Also, CNTs-2b fits the binding

pocket residues of the enzyme with two hydrogen

bonds. The residues were Lys214 with bond lengths

2.09 Å (29%) and Gln254 with bond length 1.87 Å

(17%), respectively, as shown from Table 2. The ligands

CNTs-1c, and CNTs-2b showed more interaction with

pocket residues of enzyme 1UBY compared with that of

the parent pyrazoles1c, 2b, and neat CNTs as shown in

the Figures 9–13. The results obtained from molecular

docking study have matched the results obtained from the

antimicrobial activity. Binding of the synthesized com-

pounds with the active site of (FPPS) enzyme may sup-

port the postulation that these compounds have the same

mechanism of (FPPS).

Conclusion
The surface of the carboxylated multi-walled carbon nano-

tubes (MWCNTs) was successfully grafted with pyrazole

and pyrazolone moieties using diazonium salts of pyra-

zoles and pyrazolones. The grafted MWCTs were
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confirmed by FTIR, EDX, TEM, X-ray, and TGA analysis

and the results indicated the attachment of pyrazole and

pyrazolone moieties onto the surface of the MWCNTs.

The study of the biological activity demonstrated that the

grafted MWCNTs (samples CNTs-1b, CNTs-1c, and

CNTs-2a-c) have significant antibacterial activity against

various bacteria (SA, BS, and EC) and (CA) fungus com-

pared with that of neat pyrazole and pyrazolone deriva-

tives. The results of the zeta potential (ξ) vlaues may be

inferred that the surface charges of the grafted CNTs and

microorganisms did not play the main rule for antimicro-

bial activity. The functionality of pyrazole and pyrazolone

moieties, the extent of grafting and dispersive quality seem
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additional factors that influence the biological activity of

the tested materials.

The molecular docking study was performed for the

potent pyrazole derivatives and their grafted MWCNTs

to show interactions between the most active inhibitors

and Farnesyl pyrophosphate synthase (FPPS).
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