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Abstract: Cancer cell plasticity is the ability of cancer cells to reversibly interchange between

distinct cell status, which plays a key role in cancer progression. Cancer cell plasticity is now

known to be shaped by the secreted nanoparticles termed exosomes which transport proteins and

lipids as well as nucleic acids. These aspects have emerged as key determinants of tumor

progression and targeting, with approaches such as immunotherapy showing promise in the

clinic. While significant strides have been made in this research area, some very interesting

questions still warrant more and deeper investigation. We provide a review of the interplay

between exosomes and breast cancer cell plasticity, and the potential implication in metastases

and drug-resistance.
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Introduction
Cancer cell plasticity refers to the ability to reversibly interchange between distinct cell

status. It includes interconversion of different subtypes of cancer cell pools, activation

of facultative cancer stem cells (CSCs), transdifferentiation or dedifferentiation, phe-

notypic transition of differentiated cells within a tumor to meet the challenges imposed

by new microenvironments that accompany metastasis and by therapeutic interven-

tions, and the dramatic habitat changes that accompanymetastasis.1 Breast cancer is the

most commonly diagnosed cancer in women worldwide, also the second leading cause

of cancer death among women after lung cancer, and accounts for more than 500,000

deaths annually worldwide.2 It is also a complex heterogeneous disease which differs

greatly among different patients (intertumoral heterogeneity) and even within each

individual tumor (intratumor heterogeneity).3 Breast CSCs have differentiation and

transdifferentiation abilities. CSCs produce the original lineage cells similar to their

normal stem cell counterparts. To promote tumor growth and metastasis in some tissue

contexts, CSCs can also transdifferentiate into other lineage cells in addition to

recruiting stromal cells from local or distant tissues. Following transformation and

progression to malignancy, breast cancer cells do not remain inert but adapt to their

systemic and local environment in order to evade death, proliferate and form metas-

tases. This adaptive capacity is a property of cell plasticity. The forging of closer ties

between preclinical, translational, and clinical research, together with advances in

cancer models and single-cell technologies has revealed an unprecedented level of

intra- and inter-tumoral heterogeneity and plasticity, and has started to reveal the

pathway via which cancer cells circumvent therapeutic targeting. Cancer cell plasticity

is also shaped by the secreted nanoparticles termed exosomes which can transport

cellular contents such as proteins and lipids, as well as nucleic acids. Elements of

contents of exosomes are now known to regulate cancer progression, tumor
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heterogeneity, and therapeutic resistance. While there have

been significant strides in this research area, a lot of interest-

ing questions still warrant deeper investigation. This review

aimed to provide an in-depth viewpoint of the relations

between the exosomes and breast cancer cell plasticity so

as to better understand and defeat metastases and drug-

resistance.

Plasticity In Histopathology Of
Breast Cancer
Breast cancer varies in morphology, immunohistochemical

profiles, and histopathological subtypes which have

their unique clinical characteristics and individual

outcomes. Morphologic plasticity in breast cancer is the

representation of the histopathologic heterogeneity.4 Breast

cancer includes multiple histologic types, most are adenocar-

cinoma and invasive ductal cancer of no special type.5,6

WHO classification defined 21 distinct histological special

types which include invasive lobular carcinoma, apocrine

carcinoma, medullary carcinoma, adenoid cystic carcinoma,

metaplastic carcinoma, micropapillary carcinoma, mucinous

carcinoma, infiltrating ductal carcinoma with osteoclastic

giant cells, neuroendocrine carcinoma, tubular carcinoma,

invasive cribriform carcinoma, secretory carcinoma, lipid-

rich carcinoma, glycogen-rich clear cell carcinoma, and so

on. Different pathologic types have different prognosis and

outcome following routine systemic therapy. Tubular, muci-

nous, medullary carcinoma and papillary carcinoma have

favorable prognosis and better outcome than classic invasive

ductal carcinoma.6,7 However, histological typing is not

enough in clinical management decisions. Histological

grade can provide complementary prognostic information

which is based on the degree of differentiation, which also

highlights the plasticity of breast cancer heterogeneity. The

grade is divided into low, intermediate or high based on the

morphological parameters, namely the percentage of the

tumor arranged in glandular and tubular structures, the

degree of nuclear pleomorphism, and the mitotic rate.8 For

decades, the histologic grade has been an important predictor

of breast cancer outcome and helped to figure out what

treatments might work best.9,10 In the last decade, gene

expression profiling classified breast cancer into 5 intrinsic

subtypes (Luminal A, Luminal B, Claudin-low, HER2-

enriched, Basal-like) and a Normal Breast-like group.11–13

Different subtypes of breast cancer differ in incidence, sur-

vival and response to treatment.14–18 The molecular subtype

information is complementary to classical clinical-

pathological stage, and together can influence patients' out-

come and response to the treatment.19 For example, Luminal

A subtype is associated with a low risk of local or regional

recurrence,1,20 basal-like and triple-negative non-basal sub-

type have higher frequencies of relapse in lung, brain, and

distant nodal metastasis than other subtypes.21 Recent mole-

cular research provides personalized treatment options which

are based on significant numbers of publications in genomic

profiling of breast cancer. Most molecular studies of breast

cancer focuses on just one or two high information content

platforms. Actually, breast cancer is a heterogeneous disease

which is comprised of multiple distinct subtypes of cells that

differ genetically, pathologically, and clinically. Plasticity

also means “One tumor, different entities”.

The Biological Characteristics Of
Exosome In Breast Cancer
An important “cross-talk” between cancer cells and its

surrounding microenvironment is fundamental, just like

“inter-sectional crosstalk of seed and soil”. Cells secrete

extracellular vesicles (EVs) into their local environment or

body fluids such as saliva, urine, serum, as well as cerebrosp-

inal fluid, and so on. Exosomes are small EVs (30–100 nm in

diameter) compared with microvesicles (50–1000 nm in dia-

meter) and apoptotic bodies (1–5 μm in diameter).22 The

exosomes have pleiotropic functions in pathological and

physiological processes, are novel mediators of cell-cell or

cell-environment communication and activate signaling

pathways in cells when they fuse or interact.23,24 Exosomes

can fuse with multivesicular bodies through the plasma

membrane after being secreted into the extracellular environ-

ment. Exosomes can be isolated by techniques such as ultra-

centrifugation, ultrafiltration and immunoprecipitation

technologies which all exploit the characteristics of exo-

somes, such as their size, density, shape, and surface proteins,

to aid their isolation.25–27 The contents of exosomes may

vary depending on cell of origin, status of activation and

cell fate, but they have some particular contents, especially

those involving vesicle biogenesis and intracellular sorting.

They contain the proteins which are involved in membrane

transport and fusion (flotillin, GTPases, annexins), tetraspa-

nins family proteins (CD9, CD63, CD81 and CD82), heat-

shock proteins (Hsp 60, Hsp70, Hsp90, HSPA5 and CCT2),

proteins involved in biogenesis of multivesicular bodies such

as TSG101 or ALIX, and lipid-bound proteins which account

in part for the increased membrane rigidity relative to parent

cell membranes.28–35 Previous proteomic research indicated

Mao and Jin Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2019:129818

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


the exosomal proteome from MDA-MB-231 cells is distinct

compared with MCF7. Periostin, integrin-β1, β-catenin, and
N-Cadherin were enriched in the MDA-MB-231-derived

exosomes compared with MCF7.36 The tetraspanins family

members (CD9, CD63, CD81 and Tetraspanin-14 antigens)

are increased in the exosomes from MCF-7 compared with

those from MDA-MB-231.37

The Effect Of Exosome On The
Dialog Between Breast Cancer Cells
And Stromal Cells
The cancer surrounding stroma is the tumor-nourishing com-

partment in the tumor microenvironment responsible for the

process of carcinogenesis and advancement. The stroma is

composed of the extracellular matrix, endothelial cells, fibro-

blasts, adipocytes, and cells of the immune system which

regulate the behavior of and co-evolve with tumor cells.38,39

The long-known “seed and soil” hypothesis for carcinogen-

esis andmetastasis postulates that the appropriate host micro-

environment (the soil) and the optimal growth of tumor cells

are reciprocal.40 The cancer cells and their microenvironment

interact reciprocally as intimate partners during the progres-

sion of breast cancer.41 Stromal cells provide matrix compo-

nents or soluble factors that increase cancer cell survival and

growth, which also promotes phenotypic plasticity in cancer

cells, helping to acquire a more aggressive phenotype and

influences treatment response.42–44 Previous research indi-

cated that RNAwithin exosomes transferred from stromal to

breast cancer cells can activate STAT1-dependent antiviral

signaling which is involved in the antiviral/NOTCH3 path-

ways in NOTCH signaling in breast cancer.44 Both Notch

pathway and antiviral/interferon signaling are known to reg-

ulate the maintenance of normal and cancer stem-like cells in

cancer therapy resistance.45 And breast cancer cells' exosome

can destroy the tight junctions of vascular endothelial cells

which are involved in the process of metastasis.46 Cancer-

associated fibroblasts (CAFs) are major stromal components

which affect all aspects of tumor evolution, they build up and

remodel the ECM structure through secretion of growth

factors, cytokines, and chemokines.47–49 The miRNA from

the breast cancer exosome has been implicated in the inter-

cellular crosstalk also. The breast-cancer-secreted, extracel-

lular-vesicle-encapsulated miR-105 can mediate metabolic

reprogramming of CAFs via MYC signaling. These CAFs

in turn promote breast cancer growth by conditioning the

shared metabolic environment. miR-105-reprogrammed

CAFs promote glutamine and glucose metabolism to nourish

adjacent breast cancer cells with sufficient nutrients, thus

detoxifying metabolites under extreme metabolic

conditions.50 The exosomal G protein-coupled receptor,

sphingosine-1-phosphate receptor 2 derived from MDA-

MB-231, can promote CAFs' proliferation via activating

ERK signaling.51 The MMP-2 and MMP-9 in cancer cell

exosomes can degrade components of the extracellular

matrix and facilitate the aggressive cancer cells to invade

surrounding tissue.52

The Metabolism Plasticity And
Exosome
An emerging hallmark of cancer is the altered metabolism,

cancer cells experience complex metabolic rearrangement to

sustain cancer growth by changes in metabolic pathways in

biosynthetic processes and energy production.53 Themetabolic

plasticity is paralleled by the metabolic interactions that occur

between distinct tumor cell populations within the tumor, as

well as between stoma and tumor.54 Cancer cells of various

origins displayed distinct metabolic strategies, and different

tumor cell subtypes within a particular type of cancer can

metabolically adapt due to distinct metabolic strategies.55–59

Themetabolic remodeling can satisfy the biosynthetic demand

to support their abnormal proliferation and dissemination in

nutrient-deprived and poorly oxygenatedmicroenvironment.60

Breast cancer metabolism heavily relies on aerobic glycolysis

and glutamine catabolism to support cancer cell growth.61–64

The different subtypes of breast cancer have different metabo-

lisms. The triple-negative breast cancers (TNBC) typically

related with the Warburg and mixed type, luminal type has

obvious reverse Warburg and metabolic null type, estrogen

receptor-positive breast cancers may rely on oxidative

phosphorylation.7,55,57–59,65 And the hormonal therapy can

abrogate oxidative phosphorylation generating self-renewal-

deficient cancer cells in luminal breast cancer.66 Notch signal-

ingwas enhanced to promote self-renewal ofCSCs that display

high glycolytic activity and aggressive hormone-independent

tumor growth in vivo.67–69 The Warburg type and the mixed

type correlated with higher Ki-67 labeling indices which

accompany high ATP synthase and glutaminase expression in

stroma.55 TNBC cells have special metabolic characteristics

manifested by high glucose uptake, increased lactate produc-

tion, and low mitochondrial respiration which is correlated

with attenuation of mTOR pathway and decreased expression

of p70S6K.65 According toWarburg’s hypothesis, cancer cells

are dominated by aerobic glycolysis asmainmode of increased

uptake of glutamine, glucose and aerobic glycolysis instead of
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more efficient oxidative phosphorylation. Cancer cells rely

heavily on glucose and convert it to pyruvate through glyco-

lysis rapidly. The glycolytic enzymes are commonly identified

in the content of breast cancer exosome, such as enolase,

aldolase, fructose bisphosphatase 1, triosephosphate isomer-

ase, phosphoglycerate kinase, GADPH, and so on.70,71 They

are also intrinsically associated with oncogenic switch, resis-

tance to chemotherapy and radiotherapy.72 Moreover,

microRNA (miRNA) or long noncoding RNA (lncRNA)

transferred by exosome is emerging as important regulators

of cellular metabolism. The exosomal miR-155 of breast can-

cer cells triggers cancer-associated cachexia to promotemetas-

tasis on the catabolism of adipocytes and muscle cells via

PPARγ. It promotes the beige/brown differentiation, remo-

deled resident adipocytes' metabolism through downregulating

the expression of PPARγ73 Other research indicated that can-

cer-cell-secreted exosomal miR-122 can restrain glucose utili-

zation through suppressing glycolytic enzyme pyruvate kinase

in niche cells of pre-metastatic niches, which can reprogram

energy metabolism to accommodate the massive energy needs

of cancer cells duringmetastatic growth.74 The exosomal HIF-

1α-stabilizing lncRNA from tumor-associated macrophages

inhibits glycolysis and apoptosis resistance of breast cancer

cells.75 The breast cancer cells can communicate through direct

or indirect contact, such as the secretion of exosomes, to adapt

to the shifting condition, metabolic cause lower glucose con-

centration and higher acidity subsequently suppressing infil-

trated immune cells, contributing to cancer immune evasion

and cancer aggressiveness.

Role Of Exosome In Plasticity In
CSCs Of Breast
The hallmark feature of CSCs is reported to be self-renewal,

and CSCs can differentiate into multiple subpopulations of

cells within tumors.76,77 CSCs can regenerate tumors which

recapitulate the heterogeneity of primary tumor from which

they were isolated following orthotopic transplantation into

mice. However, CSCs also induce resistance to anticancer

therapy. The plasticity of the bidirectional conversion

between non-CSCs to CSCs status is so complicated. The

plasticity of CSCs refers to both reversible mesenchymal

transitions and acquisition of stemness traits, which induce

metastatic dissemination and development of resistance to

treatments. The exosome derived from CSCs (CSC-exo)

contained self-renewal promoting regulatory miRNAs, stem-

ness specific proteins, and survival factors which can

regulate tumor microenvironment and maintain tumor

heterogeneity.78 The CSCs reside in CSCs niches, which is

a distinct protective microenvironment which regulates stem-

ness, proliferation, and therapeutic resistance.79,80 The exo-

somal miRNAs of breast CSCs can promote the

aggressiveness of cancer cells through nearby immune cells

via interactionwith toll-like receptors to up-regulate secretion

of TNFα and IL-6 secretion.81 And the dietary chemopreven-

tive compound sulforaphane could promote exosomal miR-

140 secretion of breast CSCs which prevents stemness in

recipient cells in in vivo rat breast cancer models. The breast

cancer stem cell exosome can modulate CSCs niche which is

a vital aspect of exosome signaling in cancer. Lee et al

revealed that exosome of osteogenic differentiating human

adipose-derived stem cells can promote the drug resistance of

breast CSCs by reprogramming of tumorigenic CSCs into

non-tumorigenic cells, increasing the expression of osteo-

genic-related genes and decreasing the expression of drug-

resistance genes such as ATP binding cassette transporter, the

breast cancer gene family and the ErbB gene family.82

Stemness-related molecules can be transferred from breast

CSCs to non-CSCs by exosome, which leads non-CSCs to

regain stemness phenotype. CSC-exo induced dynamic or

transient tumor plasticity in the tumor microenvironment.83

It has also been investigated as potential therapeutic agents,

so targeting the CSC-exosome transfer may have great poten-

tial for breast cancer therapy. The transcription factor ZEB1

and H3K27me3 histone modifications involved in the plasti-

city that the normal andCSC-like cells can arise de novo from

more differentiated cell types and that hierarchical models of

mammary stem cell biology should encompass bidirectional

interconversions between stemand nonstem compartments.84

The poised chromatin at ZEB1 promoter enables breast can-

cer cell plasticity and enhances tumorigenicity; the therapies

targeting non-CSCs-to-CSCs plasticity should offer

improved clinical outcome for breast cancer patients.30,85,86

The interactions of CSCs and their surrounding microenvir-

onment affect breast cancer cell malignancy directly and

leads to tumor initiation, epithelial-to-mesenchymal transi-

tion (EMT), mesenchymal-to-epithelial transition (MET),

metastasis, and therapeutic resistance. Recent single-cell stu-

dies in breast cancer have suggested that metastases derive

from CSCs accompanied with increased MYC expression

and CDK inhibition, which differentiate and undergo

a switch from dormancy into proliferation as they colonize

and produce more advanced metastatic tumors.87 The stem-

ness of hybrid epithelial/mesenchymal state in breast cancer

is associated with poor survival; the plasticity to transition

between EMT and MET can be the target to improve breast
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cancer patient survival independent of breast cancer-

subtype.88,89 Due to most of current CSCs surface markers

of breast appear to be present on embryonic or adult stem

cells, and they are rarely expressed on normal breast tissue

cells, e.g., CD10 and CXCR4.90 In the future, multiple-

antibody coated exosomes will need to be engineered to

improve their CSCs targeting efficiency and to eradicate the

CSCs and tumor plasticity, ideally.

Effects Of Exosome In EMT/MET
Plasticity Of Breast Cancer Cells
EMT is a biologic process defined as the loss of epithelial

characteristics and the acquisition of mesenchymal phenotype.

Epithelial cells undergo multiple biochemical changes such as

a loss of the epithelial traits of tight cell-cell adhesion and

apico-basal polarization and a gain of invasiveness, enhanced

migratory capacity, elevated resistance to apoptosis, and

greatly increased production of ECM components. The

reverse process of EMT is the transition from motile, multi-

polar or spindle-shaped mesenchymal cells to the epithelial

cells, i.e., MET. The EMT/MET plasticity has been observed

preclinically and clinically, whether any of these phenotypic

transitions are indispensable for metastatic outgrowth remains

unclear. It is involved in various pathophysiological processes

including migration, treatment resistance and metastasis of

breast cancer. Breast cancer cells acquire the increasedmotility

and invasiveness along with EMT and re-epithelialize to form

a metastatic solid mass under MET.91,92 Under EMT, cancer

cells lose their polarity and cell-cell junctions and turn into

a low proliferation state with increased migratory and invasion

capabilities which are strongly associated with activation of

Zeb (zinc finger and homeodomain proteins Zeb 1 and 2),

Snail (zinc finger proteins Snail and Slug), and Twist (basic

helix-loop-helix proteins E12, E47, Twist1, Twist 2 and Id)

pathways.93,94 Once the cancer cells have reached the distant

premetastatic niche, the reverse process takes place. It is a

process called MErT (mesenchymal to epithelial reverting

transition) which can return tumor cells to a high proliferative

state and enables formation of macrometastases.30,86 The phe-

notypic plasticity that enables the crossover of EMT/MErT is

necessary for tumor metastasis. EMT/MET plasticity

implies switching on/off a set of genes which is mainly orche-

strated by specific “master” transcription factors,95,96 miRNAs

and lncRNAs. Twist1, ZEB1, ZEB2, Snail1 and Slug, as key

EMT-inducing transcription factors, are involved in breast

cancer metastasis through different signaling cascades such

as serine/threonine-specific protein kinase (Akt), wingless-

related integration site (Wnt), signal transducer and activator

of transcription 3 (STAT3), and mitogen-activated protein

kinase (MAPK) pathways, by repressing epithelial-related

genes.97–100 Exosomes contain active proteases capable of

ECM degradation and remodeling by selectively and directly

binding to the ECM-binding motif present on exosomal sur-

face adhesion proteins.101 Exosome biogenesis is enhanced by

invadopodia and drives invasive behavior in cancer cells

including breast cancer.102 The exosomal miRNA secreted

by breast cancer cells can enhance cell motility of normal

fibroblasts and in turn is able to stimulate tumor cell migration

by modulating its direct target, E-cadherin.103 The normal

hepatic niche-derived exosome can modulate MET process

during seeding and suppression of tumor growth once the

breast cancer cells have reached the liver.104 Previous results

indicated that the plasticity of EMT/MET phenotypes of breast

cancer cells can be modulated by exosomes; primary cancer

cells preserved their own niche and gave cells with aggressive

traits necessary to colonize other free niches by exosome.96

The communication resulted in relevant plasticity changes

of gene expression of recipient cells in addition to microenvir-

onment alterations. Exosome biogenesis is observed in

immune cells, mesenchymal stem cells, neurons, fibroblasts,

endothelial cells (ECs), and epithelial cells. Breast cancer cells

secrete exosomes with specific capacity for cell-independent

miRNA biogenesis, while normal cells lack this ability.

Exosomes derived from cancer cells and serum from patients

with breast cancer contain the RISC loading complex proteins,

TRBP,Dicer andAGO2,which process precursormicroRNAs

into mature miRNAs.105 The exosomes transferred from stro-

mal to breast cancer cells can expand therapy-resistant breast

cancer cells; RNA within exosomes stimulates the pattern

recognition receptor RIG-I to activate STAT1-dependent anti-

viral signaling.30

Plasticity-Based And Exosome
Therapy For Breast Cancer
Breast cancer treatment includes surgery, chemotherapy, hor-

mone therapy, radiation therapy, and targeted therapy. Plasticity

in breast cancer cells within the same tumor is a reason for

therapeutic resistance or later relapse because of genetic

change, environmental differences, and reversible changes in

cell properties. Some strategies target the tumorigenic cells as

a result of minority populations of CSCs as they contribute to

tumor growth and disease progression, while most other cancer

cells have little or no capacity to drive tumor growth.106,107

A key question raised regarding the plasticity within the same
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tumor or among breast cancer patients is whether multiple

pathways are important and whether they should be targeted

simultaneously. Therapy failure may also contribute to tumor

cell plasticity. The exosome has a close relationship with cancer

cells' plasticity, so how can wemake full use of plasticity-based

and exosome therapy for breast cancer? First, CD47, HER-2,

miR-21 and miR-1246 breast cancer patients' exosomal bio-

markers, exosome-carrying TRPC5 andGSTP1 correlatedwith

chemotherapy resistance, TRPC5, NEUROD1, HTR7,

NANOG, HOXC and KISS1R in exosome were related with

PFS, DFS or OS of breast cancer.108 Second, the

proposed targeting of the phenotypic plasticity will prove ben-

eficial and to eradicate the exosome induced the key transcrip-

tion factors involved in the alternation of EMT-MErT and non-

CSCs-to-CSCs is providing new potential avenues for targeting

the properties associated with cancer cell plasticity. Currently,

post-translational modifications such as Ubiquitin and

Ubiquitin-like modifiers in exosome were proposed to alter

exosomal protein in cancer therapy.109 Strategies to destroy

the release of exosomes and exosome-mediated plasticity can

potentially be exploited therapeutically in the future, including

ESCRT (endosomal sorting complexes required for transport)-

dependent and independent systems, tetraspanins and lipid-

dependent mechanisms.110 Third, as exosomes can mediate

cell-to-cell communication, exosomes may be exploited as

drug delivery vehicles with long-term safety and natural ability

to carry intercellular nucleic acids and therapeutic molecules

across membranes difficult to cross, such as BBB.111 More

research is needed.
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