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Background: Neuroblastoma, mainly affecting children, is a lethal malignancy arising from the

developing sympathetic nervous system. The genetic etiology of neuroblastoma remains mostly

obscure. High mobility group AT-hook 2 (HMGA2), an oncogenic gene, is up-regulated in many

tumors. Single nucleotide polymorphisms (SNPs) often modify cancer susceptibility. However, no

studies are investigating the association between HMGA2 SNPs and neuroblastoma susceptibility.

Methods: We conducted a four-center case-control study to evaluate the association

between three HMGA2 polymorphisms (rs6581658 A>G, rs8756 A>C and rs968697 T>C)

and neuroblastoma susceptibility in a Chinese population with 505 cases and 1070 controls.

Logistic regression was performed to evaluate the strength of the association.

Results: We found that the rs8756 AC/CC genotypes were associated with a reduced

neuroblastoma risk when compared to rs8756 AA genotype [Adjusted odds ratio (OR)

=0.74, 95% confidence interval (CI)=0.56–0.99, P=0.039]. Carriers with 3 protective geno-

types have lower neuroblastoma susceptibility than those without or with 0–2 protective

genotypes. The stratified analysis revealed that the protective effects of rs8756 AC/CC

genotypes were more predominant among children of age > 18 months, males, and sub-

groups with the tumor in the mediastinum. Furthermore, haplotype analysis uncovered that

haplotype ACC significantly reduced neuroblastoma risk.

Conclusion: Our study indicated HMGA2 rs8756 A>C polymorphism is significantly

associated with decreased neuroblastoma risk.
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Introduction
Neuroblastoma is one of themost common pediatric extracranial solid tumors, which is

derived from primordial sympathetic neural precursors.1 The incidence of neuroblas-

toma is approximately 1/7000 in the USA2 and 1/13,000 in China.3,4 It is the third

leading cause of tumor-related death in children, account for 15% of all cases.5,6

Neuroblastoma is a highly heterogeneous disorder characterized by diverse clinical

symptoms. For instance, most of the low-risk patients have spontaneous regression

without chemotherapy.7 However, high- risk patients, constituting near 50% of neuro-

blastoma, have widely disseminated disease at diagnosis and have survival rates of less

than 40% despite intensive therapies.8 Moreover, the lifelong serious co-existing health

issues often affect survivors’ social life, including marriage and employment.9

Therefore, neuroblastoma remains a great burden for affected families and public

health.10
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The pathogenesis of neuroblastoma is not fully under-

stood. Approximately 1–2% of neuroblastoma cases are

familial,11 which was reported to associate with the muta-

tion of PHOX2B12 and ALK13 genes. Sporadic neuroblas-

toma is the primary form of neuroblastoma. Environmental

factors such as radiation sources, wood dust, and

hydrocarbons14,15 have been thought to predispose indivi-

duals to neuroblastoma. However, not all offsprings of

exposed parents develop neuroblastoma.16 It suggests

that genetic factors may play a role in the occurrence of

neuroblastoma. Increasing evidence indicates that the

genetic polymorphisms may somehow contribute to the

neuroblastoma susceptibility.17–19

Genome-wide association study (GWAS) has shed more

light on the genetic etiology of human diseases including

cancers.20 It now is a powerful tool to study the genetic

mechanisms of neuroblastoma. To date, six neuroblastoma

GWASs have been performed and several inherited common

variants in susceptibility genes were identified. CASC15 was

the first variant discovered to predispose to neuroblastoma by

Maris et al in 2008.21 Later on, the same group found that

several common variants in BARD1 gene22 were related to

high-risk neuroblastoma; moreover, the polymorphisms

within DUSP12, DDX4, IL31RA, and HSD17B12 contribu-

ted to the low-risk neuroblastoma.23 In 2011, Wang et al

demonstrated that single nucleotide polymorphisms (SNPs)

in the LMO1 gene could modify the neuroblastoma

susceptibility.24 Diskin et al indicated that the polymorph-

isms in LIN28B and HACE1 genes also altered susceptibility

to neuroblastoma.25 More recent GWAS performed by

McDaniel et al revealed that common variants within the

CPZ gene at 4p16 and upstream of the MLF1 gene at 3q25

could modify neuroblastoma susceptibility.26 More impor-

tantly, the GWAS results are very useful in discovering novel

biological processes underlying themalignant transformation

of neuroblastoma. For example, Cimmino et al performed

a fine-mapping analysis of BARD1 locus (2q35) using

GWAS data from 556 high-risk neuroblastoma patients and

2575 controls of European-American ancestry recently. They

identified a potentially causative SNP rs17489363 C>T in the

canonical promoter region that associated with high-risk

neuroblastoma. They demonstrated that the risk allele T of

rs17489363 altered binding sites of the transcription factor

HSF1 and lead to low expression of full-length BARD1

mRNA and protein, and the decreased expression of full-

length BARD1 might contribute to neuroblastoma progres-

sion through promoting cell proliferation and invasion, the

full-length BARD1 may function as a tumor suppressor.27

Furthermore, candidate gene approaches also discovered

NEFL18 and CDKN1B28 gene polymorphisms could influ-

ence neuroblastoma susceptibility.

Epithelial-to-mesenchymal transition (EMT) is a critical

step in the progression of cancer.29 EMT confers cancer cells

specific mesenchymal characteristics, such as increased cell

motility, resistance to apoptosis, and resistance to therapy.30

The high mobility group AT-hook 2 (HMGA2), located in

chromosome 12q13-15, has been involved in the EMT.31,32

The HMGA2 is a member of the high motility group (HMG)

protein family and abundantly expressed in the undifferen-

tiated mesenchymal tissues.33 One AT-hook basic domain in

HMGA2 binds to DNA minor groove at sequences abundant

with A and T nucleotides, which helps to install transcriptional

or enhancer complexes on chromatin.34 Furthermore,HMGA2

functions as a transcription co-regulator by recruiting other

transcription-associated proteins.35 Apart from EMT,HMGA2

also regulates cell proliferation and differentiation, overex-

pression of which is observed in numerous human tumor

tissues. Sarhadi et al reported that intense HMGA2 expression

contributed to the metastasis and poor prognosis in lung

cancer.36 Elevated HMGA2 expression promoted metastasis

and drug resistance in gastrointestinal tumors.37,38 Up-

regulation of HMGA2 often results from genetic alterations

such as gene amplification and translocation. Besides, pre-

vious researches showed that some SNPs in genes are able

to influence the gene expression and protein structure. There

are some studies to evaluate the association between SNPs in

theHMGA2 gene and complex human diseases, such as child-

hood and adult height,39 bone mineral density,40 and

nephropathy.41 However, there are no publications regarding

the association between HMGA2 gene polymorphisms and

cancer susceptibility, including neuroblastoma. Therefore, we

performed this four-center case-control study to evaluate the

association between SNPs in theHMGA2 gene and neuroblas-

toma susceptibility in Chinese children.

Materials and Methods
Study Subjects
In total, the current study included 505 clinically and histo-

pathologically diagnosed neuroblastoma cases and 1070

cancer-free controls.42 As described previously, participants

were recruited from four centers of China: Guangzhou

Women and Children’s Medical Center, The First

Affiliated Hospital of Zhengzhou University, The Second

Affiliated Hospital, and Yuying Children’s Hospital of

Wenzhou Medical University, and the Second Affiliated
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Hospital of Xi’an Jiaotong University. The eligibility criteria

for the included subjects were described previously.43

Written informed consent was acquired before the study

from all participants or their parents. And the study proto-

cols were ratified by the Institutional Review Board of each

participating institution. This study was conducted in accor-

dance with the Declaration of Helsinki.

Polymorphism Selection and Genotyping
We searched for potentially functional HMGA2 polymorph-

isms in the dbSNP database (https://www.ncbi.nlm.nih.gov/

snp/) and SNPinfo (https://snpinfo.niehs.nih.gov/snpinfo/

snpfunc.html) using the selection criteria described in the pre-

vious publication.44 Three polymorphisms in the HMGA2

gene were ultimately selected. The rs8756 A>C, located in 3ʹ

untranslated region (UTR) of theHMGA2 gene, may affect the

microRNA binding affinity, and thereby influence the expres-

sion and stabilization of the HMGA2 gene. The rs6581658

A>G and rs968697 T>C, located in the 5ʹ near gene region,

may affect the binding of transcription factors and the tran-

scription of the HMGA2 gene. As showed in Supplemental

Figure 1, there was no significant linkage disequilibrium

(R2<0.8) among these three includedSNPs (R2=0.001between

rs6581658 and rs968697; R2=0.008 between rs6581658 and

rs8756; R2=0.001 between rs968697 and rs8756).

For genotyping, the genomic DNA was purified from

venous blood of participants by a TIANamp Blood DNA Kit

(TianGen Biotech Co. Ltd., Beijing, China) and genotyped

following the standard TaqMan real-time PCR methods.44–46

To assure the authenticity of the result, 10% of the samples

were selected randomly to perform a second-time analysis. All

repeated samples obtained a 100% concordance.

Statistical Analysis
Whether the selected polymorphisms were in Hardy-

Weinberg equilibrium (HWE) in all control was assessed

by the goodness-of-fit χ2 test. And the distributions of demo-

graphics and allele frequencies between all cases and con-

trols were compared through a two-sided chi-square test.

A logistic regression analysis was conducted. Odds ratios

(ORs) and 95% confidence intervals (CIs) were used to

evaluate the association between the HMGA2 polymorph-

isms and neuroblastoma risk. Moreover, stratified analysis

was also carried out regarding age, gender, tumor origin site,

and clinical stage. All statistical analyses were conducted

using SAS software (version 9.4 SAS Institute, NC, USA).

And a result was thought to be statistically significant when

the P value < 0.05.

Results
Associations Between HMGA2
Polymorphisms and Neuroblastoma Risk
In the current case-control study, 505 cases and 1070 controls

were successfully genotyped (Supplemental Table 1). The

genotype frequencies distribution of three selected SNPs

were in accordance with HWE among the controls (P=0.365

for rs6581658A>G,P=0.811 for rs8756A>C andP=0.780 for

rs968697 T>C). The genotype frequencies of the SNPs in

neuroblastoma cases and cancer-free controls were shown in

Table 1. In single locus analysis, the rs8756 A>C was asso-

ciated with decreased neuroblastoma susceptibility; carriers

with rs8756 AC/CC genotypes had significantly reduced neu-

roblastoma risk when compared with subjects with AA geno-

type [Adjusted OR (AOR)=0.74, 95% CI=0.56–0.99,

P=0.039]. We further evaluated the combined effect of protec-

tive genotypes of HMGA2 on neuroblastoma risk. The results

showed that individuals carrying 3 protective genotypes were

at significantly lower risk of developing neuroblastoma than

those without protective genotypes (AOR=0.33, 95%

CI=0.13–0.84, P=0.020) and those with 0–2 protective geno-

types (AOR=0.35, 95% CI=0.18–0.70, P=0.003).

Stratification Analysis
We investigated the effects of rs8756 A>C polymorphism and

combined protective genotypes on the neuroblastoma risk

among different subgroups defined by age, gender, site of

tumor origin, and clinical stage. As shown in Table 2, the

rs8756 AC/CC genotypes were significantly associated with

decreased neuroblastoma risk in children older than 18months

(AOR=0.65, 95%CI=0.45–0.93, P=0.020), male (AOR=0.63,

95% CI=0.43–0.91, P=0.014) and those with tumor of med-

iastinum origin (AOR=0.58, 95% CI=0.34–0.99, P=0.044).

When the protective genotypes were combined, we observed

that subjects harboring 3 protective genotypes had a significant

lower neuroblastoma risk than those with 0–2 protective

genotypes among the following subgroup: age >18

months (AOR=0.33, 95% CI=0.14–0.78, P=0.012), male

(AOR=0.18, 95% CI=0.06–0.60, P=0.005), tumor of adrenal

gland-origin (AOR=0.31, 95% CI=0.09–0.99, P=0.048) and

early-stage tumor (AOR=0.28, 95% CI=0.10–0.79, P=0.016).

HMGA2 Haplotypes and Neuroblastoma

Risk
As shown in Table 3, eight haplotypes were observed in

the studied subjects. In comparison with the reference

haplotype GAT, a significant association was observed
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for the haplotype ACC (AOR=0.36, 95% CI=0.18–0.72,

P=0.004).

Discussion
We conducted this four-center case-control study to inves-

tigate the association between HMGA2 gene polymorph-

isms and neuroblastoma susceptibility. Here, we found that

rs8756 AC/CC genotypes could reduce the risk of neuro-

blastoma, especially among subgroups with age > 18

months, male, and subjects with the mediastinum-origin

tumor. To the best of our knowledge, the current study is

the first investigation to explore the association between

HMGA2 polymorphisms and neuroblastoma risk in the

Chinese population.

HMGA2, as one of the major nonhistone chromosomal

proteins, has been implicated in many fundamental cellular

processes, including gene regulation, cell cycle, differen-

tiation, and viral integration.47 This chromatin-associated

protein binds to AT-rich DNA sequences and potentiates

the effects of transcription factors by altering local chro-

matin structure. Monzen et al demonstrate that HMGA2

cooperated with the Smad transcription factor to induce

the expression of Nkx2.5, which encodes an important

early transcription factor for cardiac development. This is

accomplished through HMGA2’s binding to the conserved

AT-rich region in the Nkx2.5 promoter. The knockdown of

HMGA2 blocks cardiomyocyte differentiation in an

embryonal carcinoma cell line and completely abrogates

Table 1 Association Between HMGA2 Gene Polymorphisms and Neuroblastoma Risk

Genotype Cases

(N=505)

Controls

(N=1070)

P a Crude OR

(95% CI)

P Adjusted OR

(95% CI)b
P b

rs6581658 A>G (HWE=0.365)

AA 319 (63.17) 666 (62.24) 1.00 1.00

AG 158 (31.29) 350 (32.71) 0.98 (0.80–1.21) 0.860 0.98 (0.79–1.21) 0.839

GG 28 (5.54) 54 (5.05) 1.13 (0.71–1.80) 0.615 1.12 (0.71–1.79) 0.622

Additive 0.893 0.99 (0.83–1.18) 0.894 0.99 (0.83–1.18) 0.899

Dominant 186 (36.83) 404 (37.76) 0.723 0.96 (0.77–1.20) 0.724 0.96 (0.77–1.20) 0.729

Recessive 477 (94.46) 1016 (94.95) 0.678 1.10 (0.69–1.77) 0.678 1.11 (0.69–1.77) 0.676

rs8756 A>C (HWE=0.811)

AA 425 (84.16) 854 (79.81) 1.00 1.00

AC 76 (15.05) 203 (18.97) 0.79 (0.60–1.05) 0.100 0.79 (0.60–1.04) 0.093

CC 4 (0.79) 13 (1.21) 0.65 (0.21–2.00) 0.454 0.64 (0.21–1.98) 0.439

Additive 0.038 0.76 (0.58–0.99) 0.038 0.76 (0.58–0.99) 0.038

Dominant 80 (15.84) 216 (20.19) 0.039 0.74 (0.56–0.99) 0.040 0.74 (0.56–0.99) 0.039

Recessive 501 (99.21) 1057 (98.79) 0.448 0.65 (0.21–2.00) 0.452 0.65 (0.21–1.99) 0.447

rs968697 T>C (HWE=0.780)

TT 390 (77.23) 799 (74.67) 1.00 1.00

TC 107 (21.19) 250 (23.36) 0.92 (0.72–1.17) 0.488 0.92 (0.72–1.17) 0.474

CC 8 (1.58) 21 (1.96) 0.82 (0.36–1.85) 0.628 0.84 (0.37–1.90) 0.666

Additive 0.258 0.88 (0.70–1.10) 0.259 0.88 (0.70–1.10) 0.266

Dominant 115 (22.77) 271 (25.33) 0.271 0.87 (0.68–1.12) 0.272 0.87 (0.68–1.12) 0.276

Recessive 497 (98.42) 1049 (98.04) 0.602 0.80 (0.35–1.83) 0.603 0.81 (0.36–1.85) 0.622

Combined effect of protective

genotypesc

0 14 (2.77) 27 (2.52) 1.00 1.00

1 320 (63.37) 641 (59.91) 0.96 (0.50–1.86) 0.910 0.96 (0.50–1.86) 0.901

2 161 (31.88) 344 (32.15) 0.90 (0.46–1.77) 0.765 0.90 (0.46–1.77) 0.763

3 10 (1.98) 58 (5.42) 0.33 (0.13–0.84) 0.021 0.33 (0.13–0.84) 0.020

0–2 495 (98.02) 1012 (94.58) 1.00 1.00

3 10 (1.98) 58 (5.42) 0.002 0.35 (0.18–0.70) 0.003 0.35 (0.18–0.70) 0.003

Notes: The results were in bold, if the 95% CI excluded 1 or P<0.05. aχ2 test for genotype distributions between neuroblastoma patients and cancer-free controls.
bAdjusted for age and gender. cRisk genotypes were rs6581658 AA/AG, rs8756 AC/CC and rs968697 TC/CC

Abbreviations: OR, odds ratio; CI, confidence interval; HWE, Hardy-Weinberg equilibrium.

Liu et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2020:13468

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


T
ab

le
2
S
tr
at
ifi
ca
ti
o
n
A
n
al
ys
is
fo
r
A
ss
o
ci
at
io
n
B
e
tw

e
e
n
H
M
G
A2

G
e
n
e
G
e
n
o
ty
p
e
s
an
d
N
e
u
ro
b
la
st
o
m
a
S
u
sc
e
p
ti
b
ili
ty

V
ar
ia
b
le
s

rs
87

56
(C

as
e/

C
o
n
tr
o
l)

O
R

(9
5%

C
I)

P
A
O
R

(9
5%

C
I)
a

Pa
P
ro

te
ct
iv
e
G
en

o
ty
p
es

(C
as
e/
C
o
n
tr
o
l)

O
R

(9
5%

C
I)

P
A
O
R

(9
5%

C
I)
a

Pa

A
A

A
C
/C

C
0–

2
3

A
ge
,
m
o
n
th

≤
1
8

1
5
5
/3
4
4

3
4
/8
1

0
.9
3
(0
.6
0
–
1
.4
5
)

0
.7
5
4

0
.9
4
(0
.6
0
–
1
.4
6
)

0
.7
7
2

1
8
5
/4
0
3

4
/2
2

0
.4
0
(0
.1
4
–
1
.1
7
)

0
.0
9
3

0
.4
0
(0
.1
4
–
1
.1
8
)

0
.0
9
7

>
1
8

2
7
0
/5
1
0

4
6
/1
3
5

0.
64

(0
.4
5–

0.
93

)
0.
01

8
0.
65

(0
.4
5–

0.
93

)
0.
02

0
3
1
0
/6
0
9

6
/3
6

0.
33

(0
.1
4–

0.
79

)
0.
01

2
0.
33

(0
.1
4–

0.
78

)
0.
01

2

G
e
n
d
e
r

F
e
m
al
e

1
7
6
/3
6
6

3
7
/8
2

0
.9
4
(0
.6
1
–
1
.4
4
)

0
.7
7
1

0
.9
4
(0
.6
1
–
1
.4
4
)

0
.7
6
7

2
0
6
/4
2
3

7
/2
5

0
.5
8
(0
.2
5
–
1
.3
5
)

0
.2
0
5

0
.5
7
(0
.2
4
–
1
.3
5
)

0
.2
0
2

M
al
e

2
4
9
/4
8
8

4
3
/1
3
4

0.
63

(0
.4
3–

0.
92

)
0.
01

6
0.
63

(0
.4
3–

0.
91

)
0.
01

4
2
8
9
/5
8
9

3
/3
3

0.
19

(0
.0
6–

0.
61

)
0.
00

6
0.
18

(0
.0
6–

0.
60

)
0.
00

5

S
it
e
s
o
f
o
ri
gi
n

A
d
re
n
al
gl
an
d

1
4
5
/8
5
4

2
8
/2
1
6

0
.7
6
(0
.5
0
–
1
.1
8
)

0
.2
2
0

0
.7
6
(0
.4
9
–
1
.1
7
)

0
.2
0
6

1
7
0
/1
0
1
2

3
/5
8

0.
31

(0
.1
0–

0.
99

)
0.
04

9
0.
31

(0
.0
9–

0.
99

)
0.
04

8

R
e
tr
o
p
e
ri
to
n
e
al

1
2
4
/8
5
4

2
3
/2
1
6

0
.7
3
(0
.4
6
–
1
.1
7
)

0
.1
9
6

0
.7
3
(0
.4
6
–
1
.1
7
)

0
.1
9
1

1
4
5
/1
0
1
2

2
/5
8

0
.2
4
(0
.0
6
–
0
.9
9
6
)

0
.0
4
9

0
.2
4
(0
.0
6
–
1
.0
1
)

0
.0
5
2

M
e
d
ia
st
in
u
m

1
1
8
/8
5
4

1
7
/2
1
6

0.
57

(0
.3
4–

0.
97

)
0.
03

7
0.
58

(0
.3
4–

0.
99

)
0.
04

4
1
3
3
/1
0
1
2

2
/5
8

0
.2
6
(0
.0
6
–
1
.0
9
)

0
.0
6
5

0
.2
6
(0
.0
6
–
1
.0
8
)

0
.0
6
3

O
th
e
rs

3
2
/8
5
4

1
0
/2
1
6

1
.2
4
(0
.6
0
–
2
.5
5
)

0
.5
6
8

1
.2
5
(0
.6
0
–
2
.5
8
)

0
.5
5
4

4
1
/1
0
1
2

1
/5
8

0
.4
3
(0
.0
6
–
3
.1
5
)

0
.4
0
3

0
.4
3
(0
.0
6
–
3
.1
8
)

0
.4
0
8

C
lin
ic
al
st
ag
e

I+
II
+
4
s

2
0
8
/8
5
4

4
2
/2
1
6

0
.8
0
(0
.5
6
–
1
.1
5
)

0
.2
2
5

0
.8
1
(0
.5
6
–
1
.1
6
)

0
.2
4
8

2
4
6
/1
0
1
2

4
/5
8

0.
28

(0
.1
0–

0.
79

)
0.
01

6
0.
28

(0
.1
0–

0.
79

)
0.
01

6

II
I+
IV

1
9
5
/8
5
4

3
7
/2
1
6

0
.7
5
(0
.5
1
–
1
.1
0
)

0
.1
4
0

0
.7
4
(0
.5
1
–
1
.0
9
)

0
.1
2
8

2
2
6
/1
0
1
2

6
/5
8

0
.4
6
(0
.2
0
–
1
.0
9
)

0
.0
7
7

0
.4
6
(0
.2
0
–
1
.0
9
)

0
.0
7
7

N
o
te
s:

T
h
e
re
su
lt
s
w
e
re

in
b
o
ld
,
if
th
e
9
5
%

C
I
e
x
cl
u
d
e
d
1
o
r
P<

0
.0
5
.
a
A
d
ju
st
e
d
fo
r
ag
e
an
d
ge
n
d
e
r,
o
m
it
ti
n
g
th
e
co
rr
e
sp
o
n
d
in
g
st
ra
ti
fy

fa
ct
o
r.

A
b
b
re
vi
at
io
n
s:

A
O
R
,
ad
ju
st
e
d
o
d
d
s
ra
ti
o
;
C
I,
co
n
fi
d
e
n
ce

in
te
rv
al
.

Dovepress Liu et al

OncoTargets and Therapy 2020:13 submit your manuscript | www.dovepress.com

DovePress
469

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


in vivo cardiogenesis in embryos of the frog Xenopus

laevis.48 Dong et al proved that the interaction between

HMGA2 and pRb facilitated the transcriptional activation

of FOXL2 by E2F1, which exert critical effects on the

metastases and EMT of chemo-resistant gastric cancer.49

Further studies confirmed that HMGA2 could also modify

the expression of Bcl-2, EMT-associated proteins, and

caspase activity, indicating that HMGA2 plays a direct

role in regulating cell apoptosis and EMT.50

Here, our research data showed that rs8756 A>C, one

SNP located at 3ʹ untranslated region (UTR) of the

HMGA2 gene, was related to the reduced susceptibility

of neuroblastoma. It should be noted that HMGA2 is

a functional target of several microRNAs, which target

the 3ʹUTR of genes for degradation. Yu et al found that

miRNA let-7 could reduce breast carcinoma cells prolif-

eration and self-renewal partly by posttranscriptional reg-

ulation of HMGA2.51 And one research performed by

Kang et al indicated miR-490-3p could act on the 3ʹ

UTR of HMGA2 and inhibit its expression, then inhibit

the proliferation, invasion, migration, and EMT of esopha-

geal squamous cell carcinoma cells.52 A recent study con-

firmed that miR-495 could be directly associated with the

3ʹ UTR of HMGA2. Upregulated expression of miR-495

significantly downregulated the mRNA and protein

expression levels of HMGA2 in A549 cells, and then

suppressed the proliferation of lung cancer cells.53 These

above studies all indicated that miRNA is an important

regulatory mechanism for the expression of HMGA2. It is

reasonable to speculate that the rs8756 A>C in the 3ʹ UTR

of the HMGA2 gene may affect some miRNA’s binding to

HMGA2, thereby alternating gene expression level.

This was the first research to investigate the association

between SNPs in the HMGA2 gene and neuroblastoma

susceptibility. However, the relationship between HMGA2

polymorphisms and other complex human diseases has been

explored, such as nanism. Bouatia-Naji et al showed that

rs1042725 in the 3ʹ UTR of the HMGA2 gene contributed

to height variability in European populations.54 Kuipers et al

further demonstrated thatHMGA2 polymorphism rs1042725

may be involved in bone metabolism; A novel association

between rs1042725 and trabecular bone mineral density in

ethnically diverse older men was suggested.40 Further study

by Hendriks et al indicated that rs1042725 is not only asso-

ciated with height variation in the general population but also

plays an important role in one of the extremes of the height

distribution.55 Alkayyali et al found HMGA2 rs1531343

polymorphism was associated with increased risk of devel-

oping nephropathy in patients with type 2 diabetes.41

Moreover, another 3ʹ UTR polymorphism in HMGA2,

rs8756 was shown to be associated with human stature in

an Icelandic population.56 Our results showed that rs8756

A>C polymorphism was associated with neuroblastoma sus-

ceptibility. The rs8756 C allele exerted protective effects

against neuroblastoma. However, the other two SNPs

rs6581658 A>G and rs968697 T>C were not associated

with neuroblastoma risk. These results should be further

validated by the well-designed studies with larger sample

size.

Limitations of the current study should be notified.

First, selection bias is inevitable as it is a hospital-based

case-control study. Second, even we enrolled participants

from four independent hospitals, the sample size is still

relatively small, especially for the stratified analysis. The

statistical power might be compromised. Third, only three

SNPs in the HMGA2 gene were investigated; more poten-

tially functional polymorphisms in the HMGA2 gene

should be assessed in the future study. Fourth, impacts of

Table 3 The Frequency of Inferred Haplotypes of HMGA2 Gene Based on Observed Genotypes and Their Association with the

Neuroblastoma Susceptibility

Haplotypesa Cases (n=1010) Controls (n=2140) Crude OR (95% CI) P Adjusted ORb (95% CI) Pb

GAT 199 (19.70) 416 (19.44) 1.00 1.00

GAC 6 (0.59) 12 (0.56) 1.05 (0.39–2.84) 0.923 1.06 (0.39–2.86) 0.911

GCT 8 (0.79) 28 (1.31) 0.60 (0.27–1.34) 0.213 0.60 (0.27–1.34) 0.210

GCC 1 (0.10) 2 (0.09) 1.05 (0.10–11.65) 0.968 1.07 (0.10–11.92) 0.954

AAT 615 (60.89) 1263 (59.02) 1.02 (0.84–1.24) 0.820 1.02 (0.84–1.24) 0.824

AAC 106 (10.50) 220 (10.28) 1.01 (0.76–1.35) 0.935 1.01 (0.76–1.35) 0.927

ACT 65 (6.44) 141 (6.59) 0.97 (0.69–1.36) 0.852 0.97 (0.69–1.36) 0.849

ACC 10 (0.99) 58 (2.71) 0.36 (0.18–0.72) 0.004 0.36 (0.18–0.72) 0.004

Notes: The results were in bold, if the 95% CI excluded 1 or P<0.05. aThe haplotypes order were rs6581658, rs8756 and rs968697. bObtained in logistic regression models

with adjustment for age and gender.

Abbreviations: OR, odds ratio; CI, confidence interval.
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some environmental factors such as living environment,

dietary intake, and childhood or parental exposure should

be taken into account, as neuroblastoma is a heterogeneous

disease with complex etiology. Such information was not

available due to the nature of the retrospective investiga-

tion. Fifth, the conclusions obtained from this study may

not be directly applied to other ethnicities, as only Chinese

Han ethnicity was included in this study. In the last, func-

tional experiments should be performed to further eluci-

date the role of HMGA2 gene polymorphisms and the

underlying mechanisms in neuroblastoma carcinogenesis.

Conclusions
In summary, we firstly provide evidence that polymorph-

ism in the HMGA2 gene could affect neuroblastoma risk.

The HMGA2 rs8756 AC/CC genotypes are associated with

decreased neuroblastoma susceptibility. It suggests that

HMGA2 gene polymorphisms might be potential biomar-

kers for neuroblastoma susceptibility.
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