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Abstract: Ultrasound-mediated targeted delivery (UMTD), a novel delivery modality of

therapeutic materials based on ultrasound, shows great potential in biomedical applications.

By coupling ultrasound contrast agents with therapeutic materials, UMTD combines the

advantages of ultrasound imaging and carrier, which benefit deep tissue penetration and high

concentration aggregation. In this paper we introduced recent advances in ultrasound contrast

agents and applications in tumor therapy. Ultrasound contrast agents were categorized by

their functions, mainly including thermosensitive, pH-sensitive and photosensitive ultrasound

contrast agents. The various applications of UMTD in tumor treatment were summarized as

follows: drug therapy, transfection of anti-oncogene, RNA interference, vaccine immunother-

apy, monoclonal antibody immunotherapy, adoptive cellular immunotherapy, cytokine immu-

notherapy, and so on. In the end, we elaborated on the current challenges and provided

perspectives of UMTD for clinical applications.
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Introduction
Cancer has traditionally been one of the world’s most lethal diseases. Surgery, che-

motherapy, and radiotherapy are commonly used treatments. In spite of significant

progress, these treatments are limited in efficacy. Although chemotherapy is still one of

the main treatments, traditional chemotherapy can also damage normal tissue while

treating the tumor, and exhibit systemic toxicity. Therefore more effective delivery

strategies are urgently being sought. Therapeutic materials carriers that have recently

emerged include microemulsions, liposomes, lipoplexes, and nanoparticles.1,2 Some of

them have been reported in clinical trials.3 Among efforts to seek ideal carriers,

microbubbles have been considered as a promising approach for therapeutic materials

delivery. They cannot only deliver therapeutic materials but also serve as ultrasound

contrast agents. Compared to other carriers, the advantage of microbubbles in combi-

nation with ultrasound is the ability to release a given therapeutic material precisely at

the tumor site. After ultrasound irradiation, microbubbles rupture and precisely release

large amounts of loaded drugs at tumor sites, maximizing the drug efficacy and

simultaneously minimizing the drug toxicity. Ultrasound-mediated microbubble

destruction leads to pore formation in the cell membranes, thus promoting the ther-

apeutic materials deposition.4 Compared to drugs alone, this greatly reduces the

amount of drugs used, thus decreasing the drug toxicity.

A recent study proved that there are three principal effects of ultrasound that

can be useful in the process of targeted delivery: cavitational, thermal, and
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acoustic radiation force effects.5 The cavitation effect is

emerged by the response of the microbubbles to the

acoustic excitation.6–9 In cavitation, the cell membrane

is penetrated to generate a reversible pore with

a diameter of hundreds of nanometers.10–12 Also,

the cavitation effect can produce shear pressure to

change the morphology of the cell membrane,

promoting substance to enter cells via endocytosis

(Figure 1).9,13–17 Cavitation effect has been extensively

utilized to facilitate the targeted delivery. For example,

it was reported that microbubbles combining with ultra-

sound induce acoustic cavitation. The results manifest

that cavitation improves the permeability of curcumin

and its anti-tumor effect.18

Figure 1 Biological effects of cavitating microbubbles. After ultrasound exposure, microbubbles rupture near the cell membrane, leading to the formation of sonoporation.

This allows the therapeutic substance to diffuse passively into cells. The shear stress generated by microbubble cavitation results in cytoskeletal rearrangements, altering the

membrane tension. The change of cell membrane tension can be sensed by mechanosensors, thus modulating the process of endocytosis.
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In addition to the cavitation effect, another important

mechanism for ultrasound-mediated targeted delivery is the

thermal effect. The partial ultrasonic energy is absorbed by

the tissue. Thus converted into heat and caused thermal

effects; therefore tumor cells can be killed through high

intensity focused ultrasound irradiation.19 Xia et al20 found

that owing to the thermal effects of ultrasound, tumor-

specific cytotoxic T lymphocytes were activated, thus indu-

cing the immune response of anti-tumor cells. Also, Deng

et al21 have suggested that drug delivery from temperature-

sensitive liposomes under high intensity focused ultrasound

can significantly increase the anti-tumor efficacy. Under

ultrasonic irradiation, Au-nanoparticle coated mesoporous

silica nanocapsules can enhance the temperature of tissues,

thus increasing the delivery of drug.22

Acoustic radiation force (ARF) also plays an important

role in ultrasound-mediated targeted delivery, as ARF can

promote the movement of microbubbles to the wall

of blood vessels,23 thus effectively increasing the concen-

tration of microbubbles at localized lesion sites

(Figure 2).24–27 Furthermore, the shearing force generated

by acoustic radiation can increase the permeability of

capillaries. ARF and ultrasound targeted microbubble

destruction (UTMD) have a synergistic effect of targeted

delivery while reducing the damage to normal tissue.28,29

In brief, ultrasound-mediated targeted delivery (UMTD)

system is a promising method for therapeutic materials

delivery in the treatment of cancer.

Ultrasound Contrast Agent
Ultrasound Contrast Agent in Clinical

Application
Currently, most commonly used clinical ultrasound contrast

agents are microbubbles, including Optison, Sonazoid,

SonoVue, and Luminity (Table 1).

Functional Targeted Ultrasound Contrast

Agent
In the past few decades, a great quantity of innovations has

been applied to the ultrasound contrast agent, the various

purpose of ultrasound contrast agents has been achieved.

Thus, we summarize some of these in the next part.

Thermosensitive Ultrasound Contrast Agent

Low temperature-sensitive liposomes (LTSL) have been

developed as a novel carrier for temperature-triggered

drug release at the lesion site by local hyperthermia.30–32

Through the use of LTSL, the drug is internal loaded and

remains in the liquid phase of the LTSL at body tempera-

ture, but released at the melting phase transition

temperature of the bimolecular lipid layer at the range of

40–45°C.30 In a recent study, Maples et al33 developed

echogenic low temperature-sensitive liposomes (E-LTSL)

as highly efficient drug delivery carrier for in vivo doxor-

ubicin (Dox) uptake by a 3D tumor spheroid model. As

showed in Figure 3A, 1,3-PD was validated to be encap-

sulated into E-LTSL composed of amphiphilic phospholi-

pids and perfluoropentane (PFP). The resulting 1,3-PD-

based E-LTSL were used for imaging of the xenograft

model in nude mice (Figure 3B). Furthermore, in combi-

nation with high intensity focused ultrasound (HIFU). The

Dox release of E-LTSL group was clearly mapped (Figure

3C). Also, Zhang et al34 designed a thermosensitive lipo-

some drug delivery system consisted of ammonium bicar-

bonate to allow both ultrasound imaging and the release of

Dox with local hyperthermia. The key point, ammonium

bicarbonate, provides a rapid, controlled release of Dox to

come to an effective drug concentration at the tumor site.

PH-Sensitive Ultrasound Contrast Agent

PH-sensitive nanoparticles have been widely used in cancer

therapy.35–37 The tumor tissue in low perfusion regions is

highly acidic in contrast to the surrounding normal tissues

as a result of high lactate metabolism and insufficient oxy-

gen supply of tumor cells.38–40 Depending on its character-

istics activated by low pH, pH-sensitive nanoparticles can

protect encapsulated drugs from loss during blood circula-

tion until the loaded drugs were released into the acidic

extracellular space of tumors.41 Lv et al42 fabricated pH-

sensitive nanoparticles carrying resveratrol and loaded into

microbubbles, thus combining advantages of targeted ther-

apy, ultrasound imaging, and pH responsiveness. The

results showed that the anti-tumor efficacy of resveratrol

on tumor-bearing mice was significantly enhanced. With

ultrasound coordination, Luo et al43 devised pH-sensitive-

microbubble complex, which consists of a succinylated-

heparin carrier combined with Dox through hydrazone

linkage and conjugated with dual targeting ligands through

biotin-avidin binding (Figure 4A). In particular, the pH-

sensitive nanoparticles attained high tumor inhibition rates

in the experiment of inhibiting cell proliferation, inducing

apoptosis and anti-tumor angiogenesis, providing an effec-

tive strategy for targeting drug delivery and ultrasound

imaging (Figure 4B and C).
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Photosensitive Ultrasound Contrast Agent

Photosensitive ultrasound contrast agents refer to carry

photosensitive materials.44–47 When laser pulses are used,

the optical energy can be absorbed by photosensitive

materials and generated into heat, then the transient ther-

mal expansion results in the generation of a broadband

ultrasonic emission, which can be detected by ultrasonic

transducers and analyzed to form images (Figure 5A).48 To

date, a variety of photosensitive materials have been

widely used in photoacoustic imaging, and therein gold

nanomaterials49 can reach high efficient photothermal

transformation by means of plasmon resonance, which

occurs when the frequency of surface electron and that

of incident photons match mutually (Figure 5B).50

Furthermore, gold nanomaterials possess good biocompat-

ibility and excellent plasmonic characteristics.51 Also,

Figure 2 Evaluation of molecular targeted attachment of microbubbles using ARF. Without ARF, targeted microbubbles moving towards the direction of blood flow, thereby

low adherence to the target. When ARF pulse exposure, the pulse pushes targeted microbubbles to the contralateral vascular wall, thus increasing targeted attachment of

microbubbles.
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carbon nanomaterials, especially graphenes,52–55 has been

explored in the field of biomedicine. Graphene oxide,

a derivative of graphene, shows broad absorbance in the

near infrared region. In addition, compared to other carbon

nanomaterials, graphene oxide has many merits, such as

outstanding water solubility and physicochemical stability

owing to its oxygen functional groups, and easy to obtain

because of an abundant and low manufacture cost

material.56–59

Application of UMTD in Tumor
Treatment
Tumor
The incidence of cancer and the number of deaths is

rising year by year. Although some anti-tumor drugs can

induce tumor cell death in vitro, the curative effect of

clinical application is not ideal, which may be related to

the special microenvironment of the tumor. Previous studies

have demonstrated that tumor cells can secrete various

growth factors and proteases to alter the characteristics of

tumor tissue microenvironment, such as hypoxia, angiogen-

esis, and high interstitial pressure, thus reducing the sensi-

tivity of the tumor to radiotherapy and chemotherapy

(Figure 6).60–62 Therefore, different combination therapies,

targeting tumor cells and tumor microenvironment, have

become the new trend in cancer treatment. Presently,

numerous researches have been done on tumor therapy

through UMTD technique. Next, we will respectively dis-

cuss the application development of UMTD in tumor drug

therapy, gene therapy and immunotherapy.

Tumor Drug Therapy

The effective concentration of chemotherapeutic drugs in

tumor tissue directly affects the effect of chemotherapy.

Despite the fact that traditional chemotherapy can effec-

tively inhibit tumor cell growth in vitro, it excreted rapidly

in vivo due to blood circulation, thus, the amount of intra-

venous medication is usually larger, increasing the systemic

toxic side effects. UMTD technique has become a hot spot

in the field of drug delivery, because it can achieve direc-

tional drug delivery, improve local drug concentration and

reduce side effects. Rapport et al63 prepared dox-loaded and

acoustic-sensitive nanoparticles by encapsulated perfluoro-

pentane with polymeric micelles. At physiologic tempera-

tures, liquid nanodroplets converted into microbubbles. Dox

was steadily retained in the microbubbles but released under

ultrasound exposure. Meanwhile, the cavitation effect of

microbubbles occurred, which increased intracellular drug

uptake by tumor cells and resulted in tumor regression in

the mouse model. Also, Min et al64 used the oil in water

emulsion method to construct tumor-targeted and glycol

chitosan-based nanoparticles, which enwrapped an anti-

tumor drug and perfluoropentane (Figure 7A). Compared

to the conventional microbubbles, the nanoparticles had

a smaller size of 432nm (Figure 7B and C) and presented

significantly increasing tumor-targeted ability with lower

non-specific uptake by other tissues in tumor-bearing mice

(Figure 7D–G).

Tumor hypoxia and angiogenesis present further obsta-

cles for effective therapy in various solid tumors. Tumor

hypoxia triggers various cellular defense mechanisms that

enhance the drug-resistance of tumor cells.65–69 Therefore,

some studies showed that oxygen treatment prescribed

before radiotherapy or chemotherapy can boost tumor

oxygenation, and improve drug uptake.65,70,71 As a novel

drug carrier, microbubbles, assisted by ultrasound, have

the potential to simultaneously deliver oxygen and anti-

tumor drugs for chemotherapy.72,73 Tumor angiogenesis,

the proliferation of abnormal blood vessels, results in high

interstitial pressure and poor perfusion that contribute to

the low effective uptake of anti-tumor drugs.74–76

Recently, research has shown that microbubbles combined

with low-frequency ultrasound for delivery of anti-

angiogenic drugs can effectively improve the anti-tumor

efficacy of drugs.77

Tumor Gene Therapy

With the rapid development of genetic engineering and

gradual explanation of molecular pathogenesis of tumor,

gene therapy has emerged as a promising and efficient

therapeutic strategy for treating tumor.78,79 Gene therapy

is widely known as the transfection of a therapeutic gene

into tumor cells or selective silencing of the oncogene to

alter gene expression as a means to treat the tumor. Current

gene transfection methods, including viral and non-viral

vector systems, have various limitations.80–82 For example,

viral vectors are highly efficient in gene transfection but

Table 1 Clinical Microbubbles

Name Shell Material Filled Gas Size (μm)

Optison Albumin C3F8 3~32

Sonazoid Phospholipid C4F10 2~3

SonoVue Phospholipid SF6 2.5

Luminity Phospholipid C3F8 1.1~20
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Figure 3 (A) Schematic representation showing the structure of derivatized 1,3-PD (MW: 162) and determination of derivatized 1,3-PD encapsulation in E-LTSLs using gas

chromatography-mass spectrometry (GC-MS). (B) Continuous high-resolution tumor blood vessels US images following intravenous injection of E-LTSL in a mouse model.

A gradual increase in contrast after injection was shown at (a) 0 min, (b) 5 min, (c) 10 min, (d) 15 min. (C) Significantly greater drug release in heated sample (LTSL & ELTSL,

HIFU) relative to unheated control at 37°C were respectively noted in cell supernatant (left) and 3D tumour spheroid (right) (*p<0.05). Adapted with permission from

Maples D, McLean K, Sahoo K, et al. Synthesis and characterisation of ultrasound imageable heat-sensitive liposomes for HIFU therapy. International Journal of Hyperthermia.
2015;31(6):674–685. Copyright 2015 Taylor & Francis Ltd; http://www.tandfonline.com; reprinted by permission of the publisher.33

Tian et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2020:15406

Powered by TCPDF (www.tcpdf.org)

http://www.tandfonline.com
http://www.dovepress.com
http://www.dovepress.com


Figure 4 (A) Illustration showing the mechanism of the US combined with DPMC to deliver DOX into nuclei. (B) In vitro and In vivo antitumor efficacy. (a) In vitro cytotoxicity of

MCF-7 cells respectively incubated with DOX, DP, DPMC with US, and MB with US. (b) In vivo tumor growth inhibition of DPMC with or without US, DOX and saline in a breast

tumor model. DPMC with US obtained significant tumor inhibition. At the end of the experiment, tumor tissues were collected from sacrificed animals, photographed (d) and

weighed (c) (***p<0.001; ** p<0.01; * p<0.05). (C) Histological analysis of tumors frommicewith different treated groups (left) and corresponding quantification of Caspase-3, Ki67

and CD34 staining (right) (***p<0.001; ** p<0.01). Adapted from Luo W, Wen G, Yang L, et al. Dual-targeted and pH-sensitive Doxorubicin Prodrug-Microbubble Complex with

Ultrasound for Tumor Treatment. Theranostics. 2017;7(2):452–465. Copyright 2017 Ivyspring International Publisher (https://creativecommons.org/licenses/by-nc/4.0/legalcode).43
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Figure 5 (A) Schematic illustration showing the process of photoacoustic imaging (PAI). Adapted from Wang S, Lin J, Wang T, Chen X, Huang P. Recent Advances in

Photoacoustic Imaging for Deep-Tissue Biomedical Applications. Theranostics. 2016;6(13):2394–2413. © 2016 Ivyspring International Publisher (https://creativecommons.org/

licenses/by-nc/4.0/legalcode).48 (B) Schematic illustration of (a) surface plasmons and (b) a localized surface plasmon. Adapted with permission from Mayer KM, Hafner JH.

Localized surface plasmon resonance sensors. Chemical Reviews. 2011;111(6):3828–3857. Copyright © 2011 American Chemical Society.50

Tian et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2020:15408

Powered by TCPDF (www.tcpdf.org)

https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://www.dovepress.com
http://www.dovepress.com


cause insertional mutagenesis and immune responses.83–86

Most non-viral vectors are limited by low transfection

efficiency and lack of targeting.87,88 UMTD technology

represents an appealing, efficient and non-virus transfer

method, which could deliver therapeutic genetic material,

such as oligonucleotides and plasmid DNA, to the tumor

site in a simple and noninvasive way. This is based on the

fact that microbubbles after ultrasound irradiation occur

cavitation, which generate microflow around the cell mem-

branes to cause sonoporation, allowing for gene directly

transfected into the cells.89

Transfection of Anti-Oncogene

P53, a commonly used tumor suppressor gene, plays

a vital role in the onset of tumor development, prolifera-

tion, and metastasis. Transfection of p53 into tumor cells

can effectively inhibit tumor cell growth and promote cell

apoptosis. However, there is a risk of mutagenesis using

viral vectors to transfect genes into the tumor. UMTD

technology can avoid this. For example, Chang et al90

described that the application of ultrasound on ovarian

cancer cells following incubation with tumor-targeted

microbubbles resulted in a higher cell apoptosis rate, com-

pared to those of the other groups. Similarly, transfection

of wild-type p53 using microbubble-assisted ultrasound

led to significantly higher transfection efficiency as com-

pared to treatment with microbubbles alone. MicroRNAs

(MiRs) are short noncoding RNAs and involved in several

pathways related to the pathogenesis of tumor.91–95 It has

been observed that multiple tumors possess aberrant

miRNA expression. Restoration of the MiR expression

levels can inhibit tumor development. Besides, some

MiRs can be downregulated in several tumor types,96

therefore some tumor patients are benefiting from success-

ful transfection of specific MiRs. Previous studies have

shown that over-expression of miR-122 cannot only

Figure 6 Physiological characteristics of tumor tissues and vasculatures that can restrain drug delivery. Adapted from Kobayashi H, Watanabe R, Choyke PL. Improving

conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2013;4(1):81–89. Copyright 2013 Ivyspring International

Publisher (https://creativecommons.org/licenses/by-nc/4.0/legalcode).62
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inhibit tumor cell proliferation, but also induce cell apop-

tosis and cell cycle arrest, and recovery of tumor sensitiv-

ity to chemotherapy.97–100 Successful delivery of miR-122

into the tumor, playing the part of a novel anti-tumor

agent, is of crucial importance. However, MiRs are easy

to be degraded by nucleases present in blood circulation.

Thus, Wang et al79 proposed encapsulating the miR-122

into nanoparticles to guard against nuclease degradation.

Delivery of miR-122 loaded nanoparticles at the tumor site

was then enhanced by ultrasound. Results showed that

local miR-122 expression in the tumor after treatment

with ultrasound was 7.9-fold higher compared to treatment

without ultrasound.

RNA Interference

Gene therapy, based on RNA interference, is a highly efficient

gene disruption approach, permitting selective silencing of

a specific gene. Small interfering RNA (siRNA) can be imple-

mented to target a specific messenger RNA (mRNA), which

results in down-regulation of the encoded protein. This process

has been reported for the treatment of various tumors, in which

some proteins are found to be upregulated.101 For instance,

vascular endothelial growth factor (VEGF) is one of that

overexpressed in some malignancies, and is responsible for

accelerating tumor angiogenesis, that results in rich blood flow

in the tumor, thus enhancing tumor growth.102–105 Delivering

siRNA, that can target VEGF mRNA and down-regulate

protein, has been reported to be a novel strategy to treat tumors

revealing enhanced angiogenesis.106–108 For attaining the

desired effect, the siRNA, delivered to the tumor site, must

reach a therapeutically sufficient concentration.109 However,

naked siRNA shows poor cellular uptake and easily degraded

by ribonucleases in serum.101 To overcome the aforemen-

tioned shortcomings, Florinas et al110 applied cationic polymer

Figure 7 (A) Schematic illustration of drug-loaded and echogenic chitosan-based nanoparticles (Echo-CNPs). Size distribution (B) and TEM images (C) of Echo-CNPs

compared with CNPs, Sonovue®, and PFP-GC. (D) In vivo biodistribution of fluorescent FlammaTM labeled Echo-CNPs after 1 h, 3 h, 24 h, and 48 h post-tail vein injection

with or without US irradiation. (E) Fluorescent intensities on the target tumor tissue after 1 h and 3 h post-injection with or without US treatment. (F) In vitro fluorescence

imaging of the excised tumor tissues with or without US treatment. (G) Real-time dynamic drug release process visualized by OV-100 micro-vessel imaging system in tumor

tissue after 10 min tail vein injection, and subsequently exposed to US destruction mode for 5 min. Adapted from Min HS, You DG, Son S, et al. Echogenic Glycol Chitosan

Nanoparticles for Ultrasound-Triggered Cancer Theranostics. Theranostics. 2015;5(12):1402–1418. Copyright 2015 Ivyspring International Publisher (https://creativecom

mons.org/licenses/by-nc/4.0/legalcode).64
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as an encapsulated shell to protect siRNA from being degraded

by ribonucleases, meanwhile in combination with ultrasound

microbubbles to synergistically transfect VEGF-siRNA.

Results showed significantly higher siRNA uptake in vitro

and stronger tumor growth inhibition in vivo. Survivin,

a member of the inhibitor of apoptosis proteins family, is

generally over-expressed in a variety of tumors but low

expressed or not found in normal tissues.111–114 Also, survivin

has been reported as a preferential target for selective cancer

treatment because of its functions, contributing to the forma-

tion and progression of the tumor.115,116 Zhang et al117 con-

structed LHRHa targeted microbubble agent for transfecting

short hairpin RNA to inhibit survivin gene expression fol-

lowed by ultrasound exposure. Results showed that UMTD

method yielded higher RNAi efficiency, cell apoptosis rate,

and cell proliferation inhibitory rate (Figure 8). Considering

that the X-linked inhibitor of apoptosis protein (XIAP), also

amember of the inhibitor of apoptosis proteins family, protect-

ing tumor from apoptosis stimulation damage,118,119 is typi-

cally over-expressed in malignant tumors, therefore it can be

used as an RNA interfering target in tumor therapy. For

instance, XIAP-siRNA encapsulated ultrasound-responsive

microbubble was developed from polymeric siRNA micelles

and liposomal microbubbles through hetero-assembling

method.120 Intratumoral injection of microbubbles, carrying

XIAP-siRNA followed by low-frequency ultrasound irradia-

tion at the tumor site, resulted in increased permeability of

tumor regions for much more siRNA delivery into deep tumor

tissues. Significant enhancement ofXIAP gene silencing led to

a satisfactory therapeutic effect on human cervical cancer

subcutaneous xenograft model in nude mice. Moreover,

microbubbles carrying XIAP-siRNAwere also used as ultra-

sound contrast agents to monitor real-time tumor during the

therapeutic process.

Tumor Immunotherapy

Tumor immunotherapy is a promising means of therapy,

that has become a crucial part of many treatment plans, and

offers the possibility for the better cure by targeting tumor

cells more specifically than other conventional treatments.

Broadly speaking, immunotherapy is a treatment strategy

that refers to the stimulation of the body’s immune system

against tumor cells through the introduction of tumor vac-

cines, monoclonal antibodies, cytokines or immune cells.121

Immunotherapies can be classified as active immunotherapy

and passive immunotherapy. Therein, active immunothera-

pies rely on stimulating one’s own immune system to

eliminate malignant cells, and passive immunotherapies

contains cytokines, monoclonal antibodies and immune

cells acting directly on the tumor cells. However, no matter

it is a tumor vaccine or an antibody, intravenous injection is

applied for them to enter the body, thus leading to poor

delivery efficiency. UMTD technology has made some pro-

gress in tumor immunotherapy. Next, we give a brief intro-

duction to them in the following part.

Tumor Vaccine Immunotherapy

Tumor vaccines, where the patient’s own immune system

is triggered to target and eliminate tumor tissue, have

emerged as a novel and promising therapeutic strategy.

Dendritic cells (DCs) vaccines have made some progress

in the clinical and subclinical studies of anti-tumor

Figure 8 Targeted microbubble for ultrasound-mediated short hairpin RNA plasmid transfection to silence survivin gene and exert the antitumor effect (#p<0.05; *p<0.05).
Adapted with permission from Zhang Y, Chang S, Sun J, et al. Targeted Microbubbles for Ultrasound Mediated Short Hairpin RNA Plasmid Transfection to Inhibit Survivin

Gene Expression and Induce Apoptosis of Ovarian Cancer A2780/DDP Cells. Mol Pharm. 2015;12(9):3137–3145. Copyright © 2015 American Chemical Society.117
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immunotherapy.122–125 DCs are well known as antigen-

presenting cells that activate antigen-specific T cell

responses. DCs can be modified to present tumor-derived

antigens to T cells. Thus harnessing the patient’s own

immune system to battle against tumor.126 For example,

Dewitten et al127 evaluated the potential of DC using

microbubbles loaded with antigen and TriMix mRNA in

combination with ultrasound for tumor immunotherapy. In

vivo therapeutic setting, the application of mRNA sono-

porated DCs led to a significant inhibition of tumor growth

and prolongation of overall survival. Furthermore, com-

plete tumor regression and long-term immunological

memory occurred in about 30% of antigen + TriMix DC

vaccinated animals. DNA vaccination has emerged as

a potential immunotherapeutic approach against tumor

due to its stability and safety. It has been noted that

mammalian cells are able to express genes encoded on

plasmid DNA after transfection.128 What is more, it was

also proved that intramuscular injection of plasmid DNA

can result in the induction of humoral and cellular immune

responses against the encoded antigen.129 In addition,

numerous clinical trials on various DNA vaccines against

different tumors have been reported.130–133 Un et al134

developed a DNA vaccination for inhibition of melanoma

growth and metastasis using an ultrasound-responsive and

mannose-modified bubble lipoplexes. Following US expo-

sure, the cytotoxic T lymphocytes were specifically acti-

vated in the presence of melanoma-specific antigens, thus

obtaining potent DNA vaccine effects against melanoma.

However, therapeutic effects of DNA vaccine, regarding

a melanoma solid tumor, were insufficient due to the high

growth rate of the tumor. On the basis of research of Un

et al, Yoshida et al135 further investigated a method, invol-

ving the use of Dox-encapsulated liposomes and transfec-

tion using mannose-modified bubble lipoplexes in

combination with US irradiation for anti-tumor effect. It

cannot only inhibit tumor growth but also improve trans-

fection efficacy in antigen-presenting cells, thus improving

the therapeutic effects of a DNA vaccine against the tumor.

Tumor Monoclonal Antibody Immunotherapy

The monoclonal antibody can be used to treat the tumor by

blocking specific signaling pathways. One approved ther-

apeutic monoclonal antibody, which is effective for HER2-

positive breast cancer and significantly improves overall

survival of patients with advanced breast cancer, is

trastuzumab.136 However, the response of brain metastases

to trastuzumab is still poor, due to the restriction of the

blood-brain barrier. Previously, it has been reported that

the site-specific local delivery of trastuzumab to the mouse

brain can be heightened by blood-brain barrier disruption

using focused ultrasound in combination with microbub-

bles (Figure 9A–D).137 Furthermore, in research using

a breast cancer brain metastasis model in nude rats, it

was proved that mean tumor volume decreased evidently

in rats that injected with trastuzumab in combination with

ultrasound disruption of the blood-brain barrier compared

to other treatment groups.138 In addition, Kobus et al139

evaluated the anti-tumor effect of trastuzumab and pertu-

zumab through ultrasound-mediated blood-brain barrier

disruption using HER2-positive cell lines that were

derived from brain metastases in patients with breast can-

cer. It was shown that the growth of brain metastases from

breast cancer was significantly inhibited.

Tumor Adoptive Cellular Immunotherapy

Adoptive cellular immunotherapy is the reinfusion of nat-

ural or genetically modified autologous lymphocytes that

have been expanded ex vivo into patients to treat tumors.

The critical role of transferring immune cells into tumor

patients has been reported by various articles.140–142 NK

cell, nowadays one of the most commonly used adoptive

cells, can exert innate immune response to tumor cells

(Figure 10).143 Compared with other systemic therapies,

targeted NK cells can lead to more specific cytotoxicity to

tumor cells, which are enhanced when recognizing those

tumor cells expressing the target antigen.144 Studies have

reported that the potential for focused ultrasound to deliver

targeted NK cells to the brain using a xenograft model of

human metastatic breast cancer in nude rats. Following the

disruption of the blood-brain barrier using focused ultra-

sound in the presence of microbubbles, the average ratio of

NK cells to tumor cells was greatly improved.145 In order

to further explore the salutary effect of targeted NK cells,

Alkins et al146 built an orthotopic HER2-amplified rodent

brain tumor model using human breast cancer. Results

showed that ultrasound-mediated targeted delivery of NK

cells to the tumor site could slow tumor growth and

improve survival of tumor-bearing rats.

Tumor Cytokine Immunotherapy

Cytokines, mainly regulation of immunity and inflamma-

tion, are biologic immune modulators that are naturally

generated by various cell types. Cytokines can regulate the

immune response, thus it is crucial to balance the properties

of their immune stimulatory and inhibitory for host
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immunity against tumor cells.147 Interleukin-12 (IL-12) has

shown promise in triggering an anti-tumor immune response

and establishing a long-term immune memory against tumor

recurrence in the host, but the dosage was limited by obvious

systemic immunotoxicity. Suzuki et al148 assessed the utility

of UMTDmethod to deliver IL-12 corded plasmid DNA and

successfully achieved high concentration aggregation of IL-

12 in local tumor tissue, thus minimizing the systemic

toxicity. The blood-brain barrier has long been a hindrance

of chemotherapeutic drugs for brain tumors, limiting the

delivery of the therapeutic materials and ability to reach an

effective dose at the tumor site. Chen et al149 reported the

use of focused ultrasound-induced blood-brain barrier open-

ing in enhance IL-12 transfer for treatment of a rat glioma

model and demonstrated that ultrasound-mediated delivery

of gene-transfer IL-12 suppressed tumor progression and

prolonged survival in a C-6 glioma model.

Conclusion
In summary, the method of UMTD has shown remark-

able promise in clinical therapeutic materials delivery

and significantly improved therapeutic effects. In this

review, we have described functional ultrasound contrast

agents and various strategies for their applications in

tumor therapy.

Regardless of the fact that a lot of progress has been made

in the application of UMTD to deliver therapeutic materials

to various tumors, there are still many difficulties to be

solved in clinical practice. Taking microbubbles as an exam-

ple. First of all, microbubbles, as foreign substances, may

Figure 9 (A) Pattern diagram for the blood–brain barrier (BBB) opening in mice induced by MRI-guided focused ultrasound. (B) The mice BBB opening monitored by

coronal (COR) and axial (AX) MR images (arrows). (Lower Left) Trypan blue staining the location of the BBB opening. (Lower Right) HE staining shows no apparent

macroscopic damage related to BBB disruption. (C) MR-intensity change between the sonicated target (○) and the contralateral side (control; ●). (D) Graphs show

Herceptin concentrations in the sonicated or control groups as a function of the applied acoustic pressure. *In the control (0 MPa), herceptin was below the lower limit of

the detection range (780 ng/g of tissue) in eight of nine cases. Adapted from Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Noninvasive localized delivery of Herceptin

to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proc Natl Acad Sci USA. 2006;103(31):11, 719–11, 723. © 2006 by The National

Academy of Sciences of the USA.137
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cause unnecessary immune system in vivo. Secondly, it is not

enough only to modify microbubbles with targeting ligands.

Ideally, it is essential to clarify the mechanisms whereby

ultrasound controls therapeutic materials fixed-point release.

What is more, the size of the microbubbles should also be

considered, larger microbubbles have poor vascular perme-

ability. Finally, how to excrete microbubbles from the body is

also worth thinking. We hope that these problems will be

solved with further research of UMTD in future.
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