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Abstract: Phosphoglycerate mutase 1 (PGAM1) is an important enzyme that catalyzes the

reversible conversion of 3-phosphoglycerate and 2-phosphoglycerate during the process of

glycolysis. Increasing evidence suggests that PGAM1 is widely overexpressed in various

cancer tissues and plays a significant role in promoting cancer progression and metastasis.

Although PGAM1 is a potential target in cancer therapy, the specific mechanisms of action

remain unknown. This review introduces the basic structure and functions of PGAM1 and its

family members and summarizes recent advances in the role of PGAM1 and various

inhibitors of cancer cell proliferation and metastasis from a glycolytic and non-glycolytic

perspective. Recent studies have highlighted a correlation between PGAM1 and clinical

features and prognosis of cancer as well as the development of target drugs for PGAM1. The

integrated information in this review will help better understand the specific roles of PGAM1

in cancer progression. Furthermore, the information highlights the non-glycolytic functions

of PGAM1 in tumor metastasis, providing an innovative basis and direction for clinical drug

research.
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Introduction
Even in aerobic environments, most cancer cells rely mainly on glycolysis to generate

energy, unlike normal cells, which mainly rely on mitochondrial oxidative phosphor-

ylation to generate energy. This phenomenon was discovered by Warburg in 1924 and

was named the “Warburg effect”1 Glycolysis is not an effective process for generating

adenosine triphosphate (ATP) and the preference of cancer cells for this type of

metabolic pattern has aroused intense interest and has been thought to be a hallmark

of cancer therapy in past decades.2,3 Following the discovery of the Warburg effect,

many glycolytic proteins were subsequently found to be involved in cancer progres-

sion, including lactate dehydrogenase A (LDHA),4,5 phosphoglycerate dehydrogenase

(PHGDH),6,7 hexokinase 2 (HK2),8,9 and glucose transporter 1 (GLUT1).10 Among

these proteins, phosphoglycerate mutase 1 (PGAM1), a key enzyme in the glycolytic

pathway that catalyzes the reversible conversion of 3-phosphoglycerate (3-PG) into

2-phosphoglycerate (2-PG), has also received increasing attention.11 PGAM1 is over-

expressed in colorectal cancer,12,13 hepatocellular carcinoma (HCC),14 non-small cell

lung cancer (NSCLC),15 pancreatic ductal adenocarcinoma (PDAC),16 oral squamous

cell carcinoma (OSCC),17 prostate cancer (PCa),18 urothelial carcinoma (UBC),19
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glioma,20 and breast cancer.21–23 Furthermore, it plays an

important role in tumor proliferation and tumor metastasis

in some of these cancer types. The expression of PGAM1

was higher in tumor tissues than in adjacent normal

tissues.24–27 Altogether, these findings indicate that

PGAM1 could be a potential target for cancer therapy.

Until recently, several factors of PGAM1 biology were still

unknown such as how it affected tumor proliferation and

metastasis through the regulation of glycolysis, whether its

non-glycolytic effect participated in the malignant behavior

of cancer and whether it is a clinically relevant therapeutic

target or biomarker for cancer. In this review, we summarized

the current knowledge of the role of PGAM1 and its inhibi-

tors in the regulation of tumor malignant behaviors, as well

as current developments on target drugs for PGAM1. Such

information will provide novel concepts for future investiga-

tion of PGAM1 as a potential target for cancer therapy.

Basic Structure and Function of
PGAM1 and Its Family Members
PGAM1 belongs to the phosphoglycerate mutase family,

which can be subdivided into monophosphoglycerate mutases

(mPGAM) and bisphosphoglycerate mutases (BPGAM). The

interconversion of 3-PG and 2-PG is mainly catalyzed by

mPGAM, whereas the conversion of 1,3-bisphosphoglycerate

(BPG) to 2,3-BPG in the presence of 3-PG is catalyzed by

BPGAM.7,11 Additionally, mPGAM can be further subdi-

vided into two distinct categories, cofactor-dependent

(dPGM) and cofactor-independent (iPGM).28 Previous studies

provided evidence indicating that dPGM and BPGAM have

kinetic and structural similarities and are thought to be paralog

structures.29,30 For example, dPGM participates in three cata-

lytic reactions: the reversible conversion of 3-PG to 2-PG,31,32

the phosphatase reaction transforming 2,3-BPG to PG,29,33

and the synthase reaction producing 2,3-BPG from 1,3-BPG,

which is similar to BPGAM. In adult mammals, dPGM has

two different subunits, BB-PGAM and MM-PGAM. In

humans, BB-PGAM, another form of PGAM1, was originally

isolated from the brain but has recently been found in the liver,

breast and other tissues.14,21 MM-PGAM (also known as

PGAM2) is a muscle-specific form mainly expressed in

mature cardiac tissues and skeletal muscles.34

In humans, the cytogenetic location of PGAM1 is

10q24.1, with its cDNA encoding a 254 amino acid protein.

PGAM1 is a homodimer with a molecular weight (MW) of

28,804 Da (Figure 1A). The phosphorylated HIS11 residues

in the active domain are donors and acceptors of phosphate

groups, with 2,3-BPG acting as an intermediate26

(Figure 1B). PGAM1 is primarily found in the cytoplasm,

but has also been found on the cell membrane.35

The primary role of PGAM1 is to catalyze the rever-

sible conversion of 3-PG to 2-PG,11 a critical step in

glycolysis (Figure 2). According to a study by Liu et al,36

PGAM1 is a downstream target of the PI3K/Akt/mTOR/

HIF-1α pathway, which regulates cellular metabolism

(Figure 2). Schrade et al found that altered expression of

PGAM1 is associated with GATA4, which mostly modu-

lates tight and adherens junction formation and extracel-

lular matrix reorganization in mouse Sertoli cells (SCs).37

Glycolytic Role of PGAM1 in Cancer
Proliferation
Glycolysis is an oxygen-independent metabolic pathway

that converts glucose to ATP and combines ten enzyme-

catalyzed reactions.9 The glycolytic pathway is the first

step in glucose metabolism in all living cells, with multiple

enzymes involved in the precise regulation of the pathway

for the maintenance of homeostasis. Most normal cells

generate energy through glycolysis under oxygen deficient

conditions. However, the Warburg effect highlights that

cancer cells mainly produce energy via glycolysis, even

in an aerobic environment.38 Therefore, to provide suffi-

cient ATP and carbon for the necessary building blocks of

the cellular processes such as nucleotides, amino acids,

lipids and NADPH, cancer cells require a higher glucose

intake than normal cells to meet the energy requirements

for rapid proliferation.38–40 Subsequently, this overactive

glycolysis may play a role in promoting tumor cell

proliferation.41

The alternative recombinant metabolic pattern of cancer

cells was considered to provide new opportunities for cancer

treatment, which lead researchers to investigate the roles of

metabolic enzymes during the development of cancer.42,43

Therefore, the relationship between the metabolic changes

brought by PGAM1 and cancer are gradually being explored.

Hitosugi et al.28,44 found that PGMI-004A, a small molecule

inhibitor of PGAM1, was able to decrease the glycolytic

function of PGAM1. Subsequently, a significant decrease in

the pentose phosphate pathway (PPP) flux and biosynthesis

as well as an attenuated cell proliferation and tumor growth

were observed in the breast cancer cell line MDA-MB-231,

the lung cancer cell line H1299, the acute myeloid leukemia

cell line Molm14, and in the head and neck cancer cell line

212LN. In this in-depth study, several new findings were
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discovered. First, knocking down PGAM1 led to a significant

decrease in the glycolytic rate, lactate production, lipogen-

esis, and RNA biosynthesis and, correspondingly, cell pro-

liferation in H1299 cells. Second, the role of PGAM1 in

promoting tumor proliferation has also been shown to be

modulated by intracellular levels of 3-PG and conversely

by 2-PG. Third, Y26 phosphorylation of PGAM1 was

found to represent a common, short-term molecular mechan-

ism that contributed to the upregulation of PGAM1 activity

and promotion of cancer cell proliferation and tumor growth.

This mechanism differs from the previously described

chronic mechanism in which the upregulation of PGAM1

was thought to be caused by loss of TP53. Fourth, the crystal

structure of the mechanism of Y26 phosphorylation has been

revealed, showing that activation of PGAM1 is enhanced by

the release of inhibitory E19 that typically blocks the active

site, thereby stabilizing cofactor 2,3-BPG binding and H11

phosphorylation. In addition, Engel et al.45 also indicated that

PGAM1 activity can be inhibited by exogenous polypep-

tides, resulting in a decrease in the glycolytic rate and cell

growth arrest in a breast cancer cell line. Although there are

still many unknown factors, there is a correlation between

PGAM1 and cancer proliferation. Moreover, PGAM1 is

thought to affect cancer cell proliferation through the

Figure 1 3D structure and the cDNA encoding of PGAM1. (A) The 3D structure of PGAM1 from SWISS-MODEL website (https://swissmodel.expasy.org/docs/terms_of_use).

Reproduced fromWaterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1), W296-

W30357 and Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective.

Electrophoresis. 2009;30, S162-S173.58 The active sites of PGAM1 are indicated in the form of red rods in the picture. (B) The whole protein feature view of PGAM1 from

RCSB PDB website (https://www.rcsb.org). Reproduced from Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Research. 2000;28: 235-242.59
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regulation of glycolysis in the cell. In addition to the prolif-

eration of tumor cells, tumor metastasis is also an important

factor affecting the prognosis of cancer patients. DM et al.46

reported PGAM1 was overexpressed in the cytoplasm of

capillary/artery endothelial cells, suggesting a potential cor-

relation between PGAM1 and tumor invasion andmetastasis.

However, the relationship between the metabolic role of

PGAM1 and tumor metastasis has been infrequently

reported. It is difficult to confirm whether the mechanisms

by which PGAM1 affects tumor metastasis are also achieved

through glycolytic regulation.

Non-Glycolytic Role of PGAM1 in
Tumor Invasion and Metastasis
Many studies have highlighted the metabolic role of PGAM1

in promoting cancer cell proliferation. However, it remains

unclear whether PGAM1 can promote cancer malignant

behaviors through a non-metabolic pathway. Previously,

metabolites such as adenosine monophosphate (AMP), an

allosteric activator for AMP-activated protein kinase which

senses intracellular energy levels (ATP/AMP ratio), have

been suggested to function as signaling molecules.47

Glutamine, which activates leucine uptake, leads to mTOR

activation.48 The non-glycolytic role of PGAM1 has been

recently uncovered. Hitosugi et al.28 found that targeting

PGAM1 did not significantly influence intracellular ATP

levels and showed that the decrease in ATP production

caused by the attenuated glycolysis in PGAM1 knockdown

cells was compensated by rescue treatment with methyl-

2-PG. However, methyl-2-PG treatment only partially res-

cued the attenuated cell proliferation in the PGAM1 knock-

down cells or cells treated with PGMI-004A, indicating that

PGAM1 might contribute to cell proliferation in a 2-PG-

dependent and -independent manner. The latter has been

associated with the non-glycolytic function of PGAM1.

The promoting role of PGAM1 on tumor metastasis has

also been unveiled, but rarely related to the glycolytic func-

tions of PGAM1. Recently, Zhang et al.23 confirmed that

PGAM1 can promote tumor metastasis through a non-

metabolic function. In this study, PGAM1 was found to

directly interact with α-smooth muscle actin 2 (ACTA2)

independent of its metabolic activity. To exclude the impact

of the glycolytic pathway, numbers of glycolytic enzymes,

such as HK2, PKM2, LDHA, and PDK1, were individually

depleted in MDA-MB-231 cells. Following depletion of

these enzymes, knocking down the expression of PGAM1

still reduced cancer cell motility. The PGAM1 metabolic

inhibitor PGMI-004A28 also failed to affect cell migration

in HEK 293 cells regardless of the effects of decreased

PGAM1 enzymatic activity in cancer cell proliferation.

This metabolism-independent role of PGAM1 in tumor inva-

sion and metastasis has been verified through its association

with ACTA2.

As well as interacting with non-glycolytic proteins,

the promoting role of PGAM1 in tumor invasion and

Figure 2 Schematic diagram showing the current understanding of the role of PGAM1 in cancer cells and the research directions of PGAM1-targeted drugs. The role of

PGAM1 in cancer proliferation has mainly focused on its glycolytic functions. Most small molecular compounds such as PGMI-004A usually have a significant effect on cancer

proliferation. The genetic inhibitors such as siRNA and shRNA can influence both proliferation and invasion, respectively. The role of PGAM1 in cancer invasion and

metastasis was newly found to be mainly associated with non-glycolytic molecules and pathways. Therefore, a PGAM1-targeted drug to inhibit invasion and metastasis should

be developed from the non-glycolytic direction.
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metastasis was also found to correlate with other non-

glycolytic pathways. Zhang et al.17 showed that

reduced expression of PGAM1 in HN12 and Cal27

cells lead to a significant decrease in cell migration

and in the expression levels of corresponding regula-

tory pathway molecules, such as focal adhesion kinase,

the proto-oncogene c-SRC, and paxillin. Liu et al.36

also found that PGAM1 can promote migration and

invasion of pancreatic cancer cells and may promote

epithelial-to-mesenchymal transition (EMT) in pan-

creatic cancer cells by regulation of the Wnt/β-catenin

pathway. Although the non-glycolytic function of

PGAM1 was rarely described, it provided a better

explanation of the mechanism by which PGAM1 mod-

ulates tumor progression, especially invasion and

metastasis and led to an important new pathway for

anti-cancer therapy.

Potential Clinical Value of PGAM1
as a Target for Cancer Therapy
The role of PGAM1 in cancer progression is receiving

increasing attention. Recent clinical data showed

a correlation between PGAM1 and the clinical features

and prognosis of cancer, suggesting that PGAM1 can be

a novel potential therapeutic target. Zhang et al.17 reported

that PGAM1 expression was correlated with age, lympha-

tic metastasis, and tumor recurrence and was closely asso-

ciated with poorer overall survival (OS) and disease-free

survival (DFS). PGAM1 was also suggested to be an

independent risk factor for OS and DFS. It also correlated

with a poor differentiation status and was identified as

a potential therapeutic target for urothelial cancer by

Peng et al.19 who conducted a two-dimensional electro-

phoresis proteomic analysis of clinical tissues. Li et al.49

found that PGAM1 was highly expressed in clear cell

renal cell carcinoma and that its expression was signifi-

cantly associated with age, tumor size, and TNM stage.

Ren et al.14 analyzed the expression of PGAM1 in 54

paired HCC samples and 21 normal liver tissues and

suggested PGAM1 as a potential diagnostic biomarker,

as well as an attractive therapeutic target for HCC.

Finally, Liu et al.36 found that the overexpression of

PGAM1 correlated with poor prognosis in PDAC patients

after analyzing 54 PDAC clinical tissues. Taken together,

these clinical data have emphasized the clinical research

value of PGAM1 and suggest that PGAM1 is a potential

therapeutic target for the treatment of cancer.

Summary of PGAM1 Inhibitors and
Research Directions to Explore
PGAM1-Targeted Drugs
Since PGAM1 was suggested as a potential therapeutic target

for multiple cancer types, several PGAM1 inhibitors have

been developed for cancer therapy.21,22,28,50–53 A summary

of these inhibitors and their related functions are listed in

Table 1. PGAM1 inhibitors are divided into pharmacological

inhibitors and genetic inhibitors. The pharmacological inhibi-

tors are small molecular compounds, with six types of small

molecules reported to inhibit PGAM1, and which are mainly

associated with metabolism and cancer cell proliferation.

MJE3 was the first cell-permeable, small-molecule compound

inhibitor of PGAM1. It reacted specifically with lysine-100

(K100) in the PGAM1 active site and hydrolyzed in situ to

produce acid products that decreased breast cancer cell

proliferation.21,22 The anthraquinone derivative 3, also

named PGMI-004A, is another small-molecule inhibitor of

PGAM1 that inhibits the conversion of 3-PG to 2-PG in

cancer cells, leading to significant inhibition of the glycolytic

pathway, PPP flux and biosynthesis, subsequently decreasing

cancer cell proliferation and tumor growth.28 However, this

inhibitor has been reported to be ineffective for tumor invasion

or metastasis.23 Epigallocatechin-3-gallate (EGCG), a natural

product derived from green tea, was also identified as

a PGAM1 inhibitor. EGCG was reported to inhibit PGAM1

enzymatic activity by directly impairing glycolysis and PPP

flux, regardless of 3-PG competition, and further, it was

shown to inhibit cancer cell proliferation by modulating the

intracellular level of 2-PG.52 However, because of its multiple

targets, its specificity to PGAM1 is poor.28,54 Wang et al.53

used scaffold hopping and a sulfonamide reversal strategy

based on the lead compound PGMI-004A to discover

a series of xanthone derivatives (12a–12s) as novel PGAM1

inhibitors. These xanthone derivatives showed stronger effi-

cacy and better specificity than PGMI-004A in the inhibition

of PGAM1, as well as an increased anti-proliferative effect in

the H1299 cell line. Huang et al.51 revealed that F22, K100,

and R116 of PGAM1 residues were critical for the binding of

inhibitors and that compound 9i, an anthraquinone inhibitor,

significantly decreased lung cancer cell proliferation in differ-

ent cell lines, which is a promising inhibitor for PGAM1.

Moreover, in the recent research of Wen CL et al.55 an

allosteric inhibitor of PGAMI named KH3 has been explored

that dramatically inhibited the proliferation of PDAC cell lines

by hampering the canonical cancer metabolic pathways. In

summary, inhibitors targeting PGAM1 have been developed
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rapidly. However, most of the PGAM1 inhibitors were glyco-

lysis-targeted with minimal to no effect on the invasion and

metastasis of cancer cells (Table 1).

Genetic inhibitors, unlike pharmacological inhibitors,

interfere with RNA levels and appear to have increased

inhibitory effects on cancer. Genetic inhibitors such as

PGAM1-siRNA or shRNA proved to not only inhibit

cancer cell proliferation, but also invasion and

metastasis17,18,23,36 (Table 1). Liu et al showed that follow-

ing PGAM1 inhibition in PDAC cell lines, the decrease in

PDAC cell invasion occurred earlier than

proliferation.16,36 This points to the presence of an active

site in PGAM1 that regulates its non-glycolytic functions

and has a greater correlation with cancer metastasis.

Therefore, in the future, the development of PGAM1-

targeted drugs should also consider the non-glycolytic

pathway. Surprisingly, in the latest study by Huang et al.56

reported the first allosteric PGAM1 inhibitor HKB99,

which suppresses NSCLC tumor growth through ROS-

dependent activation of JNK/c-Jun and metastasis by abro-

gating the interaction between PGAM1 and ACTA2. This

discovery provides a new understanding of the function of

PGAM1’s undiscovered domain. PGAM1-targeted drugs

that integrate these two functions would more likely pro-

duce a more substantial effect in tumor therapy (Figure 2).

Conclusion
Increasing evidence has indicated the vital biological roles

of PGAM1 in tumor progression. On one hand, PGAM1 is

thought to be involved in the glycolytic pathway to reg-

ulate tumor cells’ metabolic pattern and promote cancer

cell proliferation. On the other hand, PGAM1 can promote

cancer cell invasion and metastasis through a specific non-

glycolytic function. Future studies should focus on the

molecular pathways modulated by PGAM1 to induce can-

cer cell motility during invasion and metastasis and devel-

opment of drugs that can target the non-glycolytic

functions of PGAM1, as its metabolic changes are mainly

associated with cancer cell proliferation. The latter

requires a deeper understanding of the non-glycolytic

functions of PGAM1. Finally, the correlation between

PGAM1 and cancer prognosis has been gaining attention

and further research will identify whether PGAM1 can be

used as a biomarker for early cancer detection. Although

Table 1 Effects of Different Inhibitors of PGAM1 on Proliferation and Metastasis of Various Cancer

Involved Organ PGAM1 Inhibitor Inhibit Tumor Proliferation Inhibit Tumor Metastasis Signal Pathway References

Breast cancer 1) siRNA / + ACTA2 [23, 28]

2) PGMI-004A / — / [28]

3) MJE3 + / / [21, 22]

4) Xanthone derivatives + / / [53]

Glioma siRNA + + / [20]

HCC shRNA + / / [14]

Leukemia PGMI-004A + / / [28]

NSCLC 1) shRNA + / RTK/PI3K/AKT/mTOR [15]

2) Compound 9i + / / [51]

3) Xanthone derivatives + / / [53]

4) EGCG + / / [52]

5) PGMI-004A + / / [28]

6) HKB99 + + ROS/JNK/c-JUN; ACTA2 [56]

OSCC siRNA / + Paxillin/FAK/SRC [17]

PCa siRNA + + / [18]

PDAC 1) siRNA + + PI3K/AKT/mTOR [35]

2) Xanthone derivatives + / / [53]

3) KH3 + / / [55]

UBC shRNA + / / [19]

Notes: “+” means “positive result”, “—” means “negative result”, “/” means “not research”.

Abbreviations: HCC, Hepatocellular carcinoma; NSCLC, Non-small cell lung cancer; OSCC, Oral squamous cell carcinoma; PCa, Prostate cancer; PDAC, Pancreatic

ductal adenocarcinoma; UBC, Urothelial bladder cancer.
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there are many unsolved questions around the roles of

PGAM1 in tumor malignant behaviors, increasing evi-

dence suggests that it has become an emerging and pro-

mising target for cancer therapy and worth further

investigation in the future.
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