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Purpose: Annatto-derived tocotrienol (AnTT) has been shown to improve bone formation

in animal models of osteoporosis and promote differentiation of pre-osteoblastic cells.

However, the mechanism of action of AnTT in achieving these effects is unclear. This

study aims to investigate the mechanism of action of AnTT on MC3T3-E1 pre-osteoblasts

via the mevalonate pathway.

Methods: Murine pre-osteoblastic cells, MC3T3-E1, were cultured with the density of 1 × 104

cells/mL and treated with 4 concentrations of AnTT (0.001–1 µg/mL). Expression of HMG-CoA

reductase (HMGR) gene was carried out using qPCR after treatment with AnTT for 21 days.

RhoA activation and bone morphogenetic protein-2 (BMP-2) were measured using immunoas-

say after 9 and 15 days of AnTT treatment. Lovastatin was used as the positive control.

Mineralized nodules were detected using Von Kossa staining after 21 days of AnTT treatment.

Results: The results showed that HMGR was up-regulated in the lovastatin group on day 9

and 21 compared to the control. Lovastatin also inhibited RhoA activation (day 9 and 15) and

increased BMP-2 protein (day 15). On the other hand, AnTT at 0.001 μg/mL (day 3) and 0.1

μg/mL (day 21) significantly down-regulated HMGR gene expression compared to the

control. On day 21, HMGR gene expression was significantly reduced in all groups com-

pared to day 15. AnTT at 0.1 μg/mL significantly decreased RhoA activation on day 9

compared to the control. AnTT at 1 μg/mL significantly increased BMP-2 protein on day 15

compared to the control (P<0.05). Mineralized calcium nodules were more abundant in

AnTT treated groups compared to the control on day 21.

Conclusion: AnTT suppresses the mevalonate pathway by downregulating HMGR gene

expression and inhibiting RhoA activation, leading to increased BMP-2 protein in MC3T3-

E1 cells. This explains the stimulating effects of AnTT on osteoblast mineralization.
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Introduction
Bone remodelling is regulated by osteoblast-mediated bone formation and osteo-

clast-mediated bone resorption. The imbalance of these two processes causes

abnormalities in bone remodelling, which can produce a variety of bone disorders

including osteoporosis.1 Osteoporosis is a “silent” bone degenerative disorder
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characterized by low bone mass and deterioration of ske-

letal microarchitecture, leading to bone fragility.2

Osteoporosis mainly affects postmenopausal women but

it can also occur in men.3,4 It is one of the most under-

recognised non-communicable health conditions affecting

developing countries with increasing elderly population.5

The current therapies for osteoporosis include anti-

resorptive agents (bisphosphonates, calcitonin, denosu-

mab, estrogen + progesterone) and anabolic agents

(teriparatide).6,7 These agents are effective against osteo-

porosis but they come with adverse side effects.8,9 The

preventive agents for osteoporosis are limited to calcium

with or without vitamin D. This highlights a significant

gap for pharmacological prevention of osteoporosis.

The mevalonate pathway, responsible for cholesterol

synthesis, has been the target of drug intervention for

osteoporosis.10 Statins, traditionally known as cholesterol-

lowering agents, have been found to promote bone formation

in vitro and in vivo.11–13 Statins regulate the mevalonate

pathway by inhibiting the 3-hydroxy-3-methyl-glutaryl

coenzyme-A (HMG-CoA) reductase (HMGR) enzyme, the

rate-limiting enzyme for the mevalonate pathway, from con-

verting HMG-CoA into mevalonate. These will subsequently

suppress the synthesis of isoprenoids, such as farnesyl pyr-

ophosphate (FPP) and geranylgeranyl pyrophosphate

(GGPP). FPP and GGPP are involved in the protein prenyla-

tion process, whereby the isoprenoids are bound covalently

to the C-terminal of small G-proteins or GTPase.14

G-proteins consist of 5 families; the Rho/Rac/Cdc42, Ras,

Rab, Sar1/Arf, and Ran families.15 Rho is involved in statin-

induced osteogenesis. A study by Harmey et al showed that

Rho-Rho kinase inhibition stimulated differentiation and

calcium nodule formation of mouse calvariae cells.16

Inhibition of Rho kinase was shown to increase bone mor-

phogenetic protein-2 (BMP-2) gene expression by pitavasta-

tin in human osteoblasts.17 However, this stimulatory effect

was abolished by mevalonate or GGPP, indicating that these

effects originated from inhibition of the mevalonate

pathway.17 BMP-2 plays a crucial role in the differentiation

of human embryonic stem cells.18 BMP signalling regulates

transcription factors including runt-related factor 2 (Runx2)

and osterix (OSX) involved in the formation of osteoblasts

and expression of downstream genes involved in bone

formation.19

Tocotrienol is a member of the vitamin E family, along

with tocopherol. It can be found in palm oil, wheat germ, rice

bran, barley, and annatto bean. Both tocotrienol and tocopherol

contain 4 isomers, i.e. alpha (α), beta (β), delta (δ) and gamma

(γ), depending on the side chains on the chromanol ring.

Tocotrienol exerts powerful neuroprotective, antioxidant, anti-

cancer and lipid-lowering properties, which distinguish it from

tocopherol.20 In addition, γ-tocotrienol preserved normal body

composition and calcium content more effectively compared

to α-tocopherol in dexamethasone-induced rats.21 Both palm

tocotrienol and annatto derived-tocotrienol have been reported

to protect bone in various animal models of osteoporosis.22

A previous study suggested the involvement of mevalonate

pathway in the bone-sparing effects of γ-tocotrienol in ovar-

iectomized mice.23 Annatto derived-tocotrienol (AnTT) from

seeds of achiote tree native to tropical America contains 90%

δ- and 10% γ-tocotrienol.24,25 In animal models of osteoporo-

sis due to testosterone deficiency, AnTTwas shown to prevent

bone loss by increasing osteoblast number, osteoid volume

and osteoid surface.26 Combination of AnTT and lovastatin

also increased bone formation, improved bone structure and

bone strength in ovariectomized rats.27,28 In cell culture stu-

dies, AnTT stimulated MC3T3-E1 differentiation and

mineralization.29 However, the mechanism of action behind

this osteogenic activity is still unknown.

In the present study, the mechanism of action of AnTT

on the mevalonate pathway, specifically on HMGR gene,

RhoA prenylated protein and BMP-2 protein, in MC3T3-

E1 cells was investigated. It is hypothesized that AnTT

promotes bone mineralization via the mevalonate pathway,

marked by decreased expression of HMGR gene, RhoA

and increased BMP-2 proteins in MC3T3-E1 cells.

Materials and Methods
Chemicals
Minimum Essential Medium Eagle – Alpha Modification

(α-MEM) was obtained from Invitrogen (Carlsbad, USA).

Antibiotic-antifungal (AA), foetal bovine serum (FBS) and

phosphate-buffered saline (PBS) were obtained from

Gibco (Waltham, USA). Sodium phosphate, ascorbic acid

and silver nitrate were obtained from Sigma-Aldrich Co.

(St Louis, USA). Ethanol was obtained from HmbG

Chemicals (Hamburg, Germany). Lovastatin was obtained

from ChemFaces (Wuhan, China).

Experimental Treatments
Annatto-derived tocotrienol (AnTT) was a generous gift

from American River Nutrition (Hadley, USA). AnTT was

prepared based on a previous study.29 Briefly, AnTT stock

solution was dissolved in ethanol to a concentration of

5 mg/mL. From the stock solution, 25 µL AnTT was
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added to 60 µL FBS and incubated overnight. On the

following day, 90 µL differentiation media and 105 µL

ethanol were added to the mixture. AnTT was diluted into

0.001, 0.01, 0.1 and 1 µg/mL in differentiation media. For

the control group, the same amount of ethanol as the

AnTT groups was used.

For the positive control group, 20 mg lovastatin was

dissolved with 1 mL ethanol. Then, lovastatin was diluted

into 5 µM in differentiation media. All treatments were

freshly prepared every 3 days until the end of treatment.

Cell Culture
Murine calvarial pre-osteoblast cell line, MC3T3-E1, was

purchased from American Type Culture Collection (ATCC)

(ATCC No CRL-2594) (Manassas, USA). The cells were

cultured in growth media (α-MEM supplemented with 10%

AA and 10% FBS) at 37°C and 5% carbon dioxide. The

cells were seeded at the density of 1 × 104 cells/mL growth

media in all experiments. On the next day, the cells were

treated with AnTT (0.001–1 µg/mL) and 5 µM lovastatin

prepared in differentiation media (growth media + 3 mM

sodium phosphate + 50 µg/mL ascorbic acid).

HMGR Gene Expression
Pre-osteoblast cells were seeded at a density of 5 × 104 in

6-well plate. On the following day, the cells were treated

with AnTT (0.001–1 µg/mL) and 5 µM lovastatin for 3, 9,

15 and 21 days. At the end of each time-point, the cells

were washed with PBS and lysed using TRI-Reagent

(Molecular Research Centre, Inc., Cincinnati, OH, USA).

The extracted RNA converted into cDNA with a thermal

cycler (Techne, Staffordsire, UK) using iScript™ cDNA

Synthesis Kit (Bio-Rad Laboratories Inc., Hercules CA,

USA). Expression of targeted genes was quantified by

CFX96 Touch™ Real-Time Detection System (Bio-Rad

Laboratories Inc., Hercules CA, USA) under the amplifi-

cation condition of 40 cycles, 10 s at 95 °C for denatura-

tion and 30 s at 56 °C for annealing. The mice primers

used were: β-actin, 5ʹ-GAAGAGCTATGAGCTGCCTGA
-3ʹ and 5ʹ-GCACTGTGTTGGCATAGAGGT-3ʹ; HMGR,

5ʹ-TCTTTCCGTGCTGTGTTCTG-3ʹ and 5ʹ-TTTTAACC

CACGGAGAGGTG-3ʹ (First Base, Singapore Science

Park II, Singapore).

RhoA Activation Assay
The RhoA activation assay measured the active form of

RhoA in the cells. The cells were seeded in a 6-well plate

at a density 5×104 and incubated overnight. Then, they were

treated with AnTT (0.001–1 µg/mL) and 5 µM lovastatin for

9 and 15 days. The cells were harvested at the end of each

time-point and assayed with G-LISA® RhoA Activation

Assay Kit (Cat. BK124) (Cytoskeleton Inc. Denver, USA).

BMP-2 Protein
Murine preosteoblastic cellswere seeded at a density of 5 × 104

in a 6-well plate. On the next day, the cells were treated with

AnTT (0.001–1 µg/mL) and 5 µM lovastatin for 9 and 15 days.

At the end of each time-point, the cells were washedwith PBS.

Then, the cells were lysed with freeze-thaw method 3 times in

PBS. The supernatants were collected after quick centrifuged

at high speed. The expression of BMP-2was determined using

an enzyme-linked immunosorbent assay (Cat. No. E-EL-

M0193, Elabscience, Wuhan, China).

Assessment of Mineralization
To determine the effects of AnTT on mineralization, the

extracellular matrix of the culture was assessed using Von

Kossa staining. Cells were treated with AnTT for 3, 9, 15

and 21 days. At the end of each time-point, the cells were

washed with deionised water and fixed with 10% buffered

formalin for 10 min. Then, the cells were treated with 5%

silver nitrate and incubated at room temperature for 1 hr

under ultraviolet light. After the cells were washed with

deionised water, positive staining for Von Kossa was

visualized under the inverted microscope EVOS Cell

Imaging System (Thermo Fisher Scientific).

Statistical Analysis
Statistical analysis was performed using SPSS software for

Windows, version 20 (IBM Corporation, Armonk, NY,

USA). The difference in the variables of interest among the

study groups was analysed using one-way analysis of var-

iance (ANOVA) with Turkey post hoc pairwise comparison.

For gene expression analysis, mixed-design ANOVA with

small effect analysis was used. A P-value less than 0.05

(P<0.05) was considered statistically significant.

Results
Effects of AnTT on HMGR Gene
In this study, MC3T3-E1 cells were treated with AnTT

(0.001–1 µg/mL) and 5 µM lovastatin (positive control) for

3, 9, 15 and 21 days (Figure 1). There were significant time

(P<0.05) and treatment (P<0.05) effects on HMGR gene

expression. In terms of time, for the control group, HMGR

gene expression was significantly reduced on day 9 and day
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21 compared to day 3 and day 15, respectively (P<0.05).

HMGR gene expression for cells treated with AnTTat 0.001,

0.1 and 1 µg/mL reduced on day 9 and 21 compared to day 3

and 15, respectively (P<0.05). In terms of treatment, HMGR

gene expression of cells treated with 0.01 µg/mL of AnTT

reduced on day 9 compared to the control (P<0.05). HMGR

gene expression was significantly decreased in all groups

on day 21 compared to day 3 (P<0.05). For the lovastatin

group, HMGR gene expression was up-regulated on day 9

and day 21 compared to the control (P<0.05). On day 3,

0.001 µg/mL AnTT significantly down-regulated HMGR

gene expression compared to the control (P<0.05). On day

21, 0.1 µg/mL AnTT significantly down-regulated HMGR

gene expression compared to the control (P<0.05).

Effects of AnTT on RhoA Activation
In order to confirm the involvement of the mevalonate

pathway, RhoA activation assay was carried out to deter-

mine whether Rho was geranylgeranylated after AnTT

treatment. MC3T3-E1 cells were treated with AnTT

(0.001–1 µg/mL) and 5 µM lovastatin (positive control)

for 9 and 15 days (Figure 2). RhoA activation was sig-

nificantly decreased in the lovastatin group on day 9 and

15 compared to control (P<0.05). On day 9, RhoA
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activation was significantly decreased in the 0.1 µg/mL

AnTT group compared to the control (P<0.05).

Effects of AnTT on BMP-2 Protein
In this study, MC3T3-E1 cells were treated with AnTT

(0.001–1 µg/mL) and 5 µM lovastatin (positive control)

for 9 and 15 days (Figure 3). In terms of time, BMP-2

protein levels of the control, 0.001, 0.1, 1 µg/mL AnTT

and lovastatin groups were significantly increased on day

15 compared to day 9 (P<0.05). In terms of treatment, BMP-

2 protein level of the lovastatin group was significantly

increased compared to the control on day 15 (P<0.05).

On day 15, 1 µg/mL AnTT significantly increased BMP-2

protein compared to the control (P<0.05).

Effects of AnTT on Mineralization
AnTT (0.001–1 µg/mL) were treated for 9 and 15 days and

stained using Von Kossa technique to determine the degree

of mineralization (Figure 4). Positive staining for Von Kossa

staining appeared in dark brown or black in the culture.

On day 3 and 9, all groups were not stained. On day 15,

positive staining appeared in all groups. On day 21, the

cultures were stained more intensively in 0.01, 0.1 and 1

µg/mL AnTT groups compared to the control. These data

indicated that AnTT promoted osteoblast mineralization.

Discussion
Osteoblasts play a crucial role in bone formation.

Osteoblasts secrete proteins to form the bone matrix and

later mineralise it. Previous studies showed that statins

promote osteoblast differentiation via inhibition of the

mevalonate pathway, which leads to suppression of pre-

nylated proteins including RhoA. This will modulate sig-

nalling pathways including BMP-2, to promote bone

formation. The present study showed that AnTT down-

regulated HMG-CoA reductase gene expression, which

leads to inhibition of RhoA prenylated protein. This indi-

cated that AnTT, acting as a HMG-CoA reductase sup-

pressor, inhibited the mevalonate pathway. Besides that,

AnTT also increased BMP-2 protein level involved in the

expression of transcription factors Runx2 and Osx critical

in osteoblast differentiation. This translated to increased

mineralization in osteoblast culture as observed in the

current study. Therefore, AnTT could serve as a potential

bone anabolic agent via inhibition of the mevalonate

pathway.

In the present study, AnTT was found to down-regulate

HMGR gene in preosteoblastic cells. A previous study

demonstrated that γ- and δ-tocotrienol stimulated HMGR

degradation, however only δ-tocotrienol completely

blocked nuclear SREBP-2 processing in the SV589

human fibroblast cells.30 The protein SREBP-2 is involved

in the regulation of cholesterol biosynthesis enzymes

including HMGR gene.31 Another study showed that δ-

tocotrienol down-regulated SREBP-2 target gene, includ-

ing HMGR in Chinese-hamster ovary cell lines, CHO and

prostate cancer cell lines, LNCaP.32 These studies sug-

gested that AnTT, which contains γ- and δ-tocotrienol,
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could inhibit the mevalonate pathway by down-regulating

HMGR at the transcription level.

This study also demonstrated that AnTT inhibited RhoA

activation in MC3T3-E1 cells in a manner comparable to the

positive control, lovastatin. A previous study showed that

HMG-CoA inhibitor, simvastatin blocked HMG-CoA

/GGPP/RhoA-dependent pathway in mouse embryonic

stem cell lines.33 Similarly, Ohnaka et al found that pitavas-

tatin stimulated BMP-2 and osteocalcin gene by inhibiting

Rho-kinase activity and inactivation of Rho via the mevalo-

nate pathway in human osteoblasts.17 In human airway

smooth muscle cells, 50 µM γ-tocotrienol inhibited RhoA

activation that leads to a reduction of cell proliferation

and migration.34 On the other hand, the combination of statin

and γ-tocotrienol inhibited HMG-CoA reductase activity and

RhoA activation in human colon cancer HCT116 and HT29

cells.35 Since AnTT inhibited HMGR in this study, it is

suggested that the production of isoprenoids and prenylated

G-protein like RhoAwould be suppressed.

The current study also showed that AnTT increased

BMP-2 protein level in pre-osteoblastic cells in a manner

comparable to lovastatin. Mevastatin and simvastatin were

shown to activate BMP-2 promoter, leading to increased

BMP-2 mRNA and protein expressions in human osteosar-

coma cell line.36 A previous animal study also showed that

the combination of AnTT and lovastatin increased the

expression of BMP-2 mRNA in the bones of ovariectomized

rats.37 This paper investigated the effects of annatto tocotrie-

nol via BMP2 but it cannot be ruled out that it may act

through other BMPs and transforming growth factor signal-

ing in bone metabolism.38–41

In this study, AnTT promoted osteoblast mineralization in

MC3T3-E1 cells. This validated the observation previously

obtained in a cellular study, whereby AnTT enhanced differ-

entiation and mineralization (marked by Alizarin Red stain-

ing) of MC3T3-E1 cells.29 A study by Deng et al showed that

γ-tocotrienol increased calcium nodule formation in mice

bone marrow cells. This effect was abolished by co-

treatment with mevalonate, implicating the involvement of

mevalonate pathway in the mineralization induced by γ-

tocotrienol.23 In animal studies, AnTT alone and in combina-

tion with lovastatin were shown to improve the structural

properties of femoral trabecular bone in ovariectomized

rats.28 Similarly, AnTT preserved trabecular bone microarch-

itecture in an animal model of osteoporosis induced by testos-

terone deficiency and metabolic syndrome.37,42

Figure 4 Von Kossa staining on MC3T3-E1 cells after AnTT treatment for day 3, day 9, day 15 and day 21.
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Several limitations should be acknowledged in this

study. We only studied the mevalonate pathway partially,

focusing on the upstream (HMGR) and down-stream

(RhoA) section of the pathway. The effects of AnTT on

the other steps of the pathway remain unknown, espe-

cially on the production of isoprenoids such, as FPP and

GGPP. Inhibition of the mevalonate pathway by statins

has been widely shown to deplete FPP and GGPP

levels.43 We also did not study the activity of HMGR

to correlate with the gene expression level due to tech-

nical issue. Nevertheless, this is the first time the effects

of AnTT on the mevalonate pathway were elucidated in

pre-osteoblast cells. Annatto tocotrienol, which is shown

in this study to promote mineralization by modulating

BMP and HMG-CoA reductase, will likely to have mul-

tifaceted effects in other physiological and pathological

context like cardiovascular diseases, neurodegenerative

diseases or cancer.44–49 Our work warrants further inves-

tigation of mechanism and synthetic modification to

improve tocotrienols to enhance its pharmacological

and therapeutic application in a disease-specific manner.

Conclusion
AnTT treatment down-regulates HMGR gene expression,

thus inhibiting the mevalonate pathway, leading to reduced

RhoA activation downstream of the mevalonate pathway.

AnTT also increases BMP-2 protein expression. The sup-

pression of mevalonate pathway may partially explain the

anabolic effect of AnTT on osteoblast mineralization.
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