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Abstract: Drug delivery systems such as nanoparticles can provide enhanced efficacy for 

 anticancer agents. Noscapine, a widely used cough suppressant for decades has recently been 

shown to cause significant inhibition and regression of tumor volumes without any detectable 

 toxicity in cells or tissues. Nanoparticles made of human serum albumin (HSA) represent 

 promising strategy for targeted drug delivery to tumor cells by enhancing the drug’s bioavail-

ability and distribution, and reducing the body’s response towards drug resistance. In the  present 

study, we report for the first time the incorporation and delivery of noscapine-loaded HSA 

nanoparticles to tumor cells. The nanoparticles were designed and optimized to achieve a particle 

size in the range of 150–300 nm with a drug-loading efficiency of 85%–96%. The nanoparticles 

were evaluated in vitro for their anticancer activity and efficacy on breast cancer cells.

Keywords: HSA, encapsulation, microcapsule, nanomedicine, nanotechnology, tumor 

volumes

Introduction
Most commonly used chemotherapeutic drugs such as paclitaxel interact with  tubulin, 

the major protein of mitotic spindles, causing growth arrest in metaphase. These agents 

induce the polymerization of tubulin and stop mitosis of rapidly dividing cells; thereby 

leading to apoptosis. Despite impressive results, available chemotherapeutic drugs 

have severe symptoms associated with them including myelosuppresion.1 Also as 

a result of repeated and prolonged administration of chemotherapeutic agents, drug 

resistance can occur.1,2 In addition, these drugs are toxic to healthy tissues, and have 

poor bioavailability that results in the need of extended intravenous infusions and the 

use of toxic solubility agents.1,3

Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been used as 

an oral antitussive agent and has shown very few toxic effects in animals and humans. 

It is a naturally occurring tubulin-binding agent currently undergoing clinical trials for 

anticancer therapy. Noscapine, which lacks sedative, analgesic, and euphoric proper-

ties, has been used for decades as a cough suppressant. Noscapine showed little or 

no toxicity on kidney, liver, heart, bone marrow, spleen, and small intestine at tumor 

suppressive doses.4 Noscapine was also shown to cause growth arrest of tumor cells 

during mitosis and induces apoptosis5–7 and can therefore be used as an alternative 

to current chemotherapeutic drugs.8–10 It was recently reported that noscapine was 

 effective in reducing the growth of lymphoma and increasing the survival of tumor-

bearing mice when administered in their drinking water.7,11–15 However, current drug 

delivery methods of high concentration of noscapine are inadequate.
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To increase the concentration of noscapine at the 

tumor site, we have encapsulated noscapine into colloidal 

drug nanocarriers made of human serum albumin (HSA). 

 Nanoparticles of minimal size can enhance the efficacy of 

drug metabolism with minimal side effects since they allow 

for the possibility of site-specific targeted delivery.16–18 

Nanoparticles also offer benefits to carry functional groups 

(amino and carboxylic groups) that can be used for surface 

modifications. The emergence of nanoscaled devices as 

drug delivery systems has been remarkable in such a short 

span of time and has surpassed conventional methods of 

drug delivery. Nanoparticles help to increase the stability 

of drugs and possess useful controlled release properties. 

HSA-based nanoparticles can be well tolerated without any 

serious side effects, which is supported by clinical studies 

with registered HSA-based particle formulations such as 

Albunex.18–21 Albumin has been shown to be biodegradable, 

nontoxic, easy to purify, and soluble in water, allowing 

ease of delivery by injection and thus an ideal candidate for 

nanoparticle preparation. Incorporation of suitable drugs in 

nanoparticles has been shown to protect the pharmacological 

active substances from degradation during storage as well as 

from early degradation/inactivation after injection.22–24

Many different possibilities have been discussed and 

tested to reduce the toxicity and increase antitumor efficacy 

of anticancer drugs using nanodevices.25–27 Encapsulating 

noscapine in nanoparticles will help to increase its efficacy 

and lowers any side effects. In this paper we report for the 

first time encapsulation of noscapine into HSA nanoparticles 

with a described protocol on optimization of drug loading 

and preparation of nanoparticles and their effectiveness on 

breast cancer cell line (SK-BR-3).

Materials and methods
Materials
Human serum albumin (HSA fraction V, purity 96%–99%), 

noscapine hydrochloride and 8% glutaraldehyde, were 

 purchased from Sigma Aldrich (Oakville, Ontario, Canada). 

For cell culture, fetal bovine serum (FBS), trypsin, McCoy’s 

5a medium, penicillin/streptomycin, and the SK-BR-3 cell 

line were purchased from American Type Culture  Collection 

(Ontario, Canada). Cell-line was cultured according to 

 supplier’s instructions. All other reagents were purchased 

from Fisher (Ontario, Canada).

Preparation of noscapine nanoparticles
Drug-free HSA nanoparticles and noscapine-loaded 

 nanoparticles crosslinked with glutaraldehyde were  prepared 

using a pH-coacervation method.28,29 100 mg of HSA 

was dissolved in 2 mL of water or NaCl. Noscapine at a 

 concentration of 5–30 mg/mL was incubated with  solution for 

4–8 h at room temperature.30 The pH was adjusted to 8 by the 

addition of 1 M NaOH. Nanoparticles were formed by adding 

8 mL of ethanol drop-wise at a constant rate of 1 mL/min 

under constant magnetic stirring. The  particles were sta-

bilized by crosslinking with 100 µL of 8%  glutaraldehyde 

solution. The crosslinking was performed for at least 24 h 

under constant magnetic stirring at room temperature.30,31 

Drug loading was evaluated following an indirect method of 

collecting the supernatant of purified particles. The quantity 

of unloaded free drug present in the supernatant was mea-

sured by spectrophotometer that lead to the quantification of 

the percentage of drug loaded into the nanoparticles.

Purification of HSA nanoparticles
The resulting albumin nanoparticles were purified by 

three cycles of ultra-centrifugation (20,000 g, 30 min) 

followed by redispersion of pellet in water to original 

volume. Each redispersion step was performed in an 

 ultrasonication bath (Branson 2510; Bransonic, Danbury, 

CT) for 15 min.

Particle size and zeta potential 
of nanoparticles
The size of noscapine albumin nanoparticles was  determined 

by photon correlation spectroscopy (PCS) using a high 

performance particle size analyzer (Malvern Instruments, 

Westborough, MA). The samples were diluted with distilled 

water and measured at 25°C at a  scattering angle of 90°. Size 

distribution was characterized by a polydispersity index (PI) 

and the zeta potential was measured with the technique of 

electrophoretic laser   Doppler anemometry, using a Zeta 

Potential Analyzer (Brookhaven Instruments, Holtsville, 

NY).  Morphological characteristics were examined using 

scanning electron microscope (Hitachi S-4700 FE-SEM; 

Hitachi, Tokyo, Japan). In order to determine the stability 

of the  nanocarriers when dispersed in aqueous solution, 

they were stored at room temperature for 5 days while being 

regularly monitored for size and zeta potential each day. The 

size and shape of the nanoparticles were also  examined by 

scanning electron microscopy (SEM).

Drug release profile of noscapine-loaded 
hSA nanoparticles
Determination of drug release of noscapine was performed 

by dispersing 10 mg of noscapine-loaded nanoparticles 
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in 10 mL phosphate-buffered saline (PBS; pH 7.4) under 

 constant shaking at 200 rpm/min at 37°C. The samples were 

centrifuged and the amount of free noscapine in the super-

natant was determined at predefined time intervals using a 

UV spectrophotometer Victor3 V 1420 Multilabel Counter 

(Perkin Elmer, Boston, MA) at 310 nm. This analysis was 

performed three times for each sample.

cell culture
SK-BR-3 cells were grown in McCoy’s 5a medium with 10% 

FBS and 1% penicillin/streptomycin. Cells were cultured in 

a humidified incubator containing 5% CO
2
 at 37°C.

In vitro cell viability of noscapine-loaded 
hSA nanoparticles
The determination of cell viability is a common assay to 

evaluate the in vitro cytotoxicity of biomaterials. The MTS 

assay is a quantitative and rapid colorimetric method for 

measuring the viability of cells. The cytotoxicity study of the 

nanoparticles was examined in vitro on the breast cancer cell-

line SK-BR-3; the cell lines were cultured in 96-well plates at 

an initial concentrations of 5000 cells/well in fresh medium 

supplemented with 10% FBS. The cell proliferation was 

determined by cell counting after trypsinization and trypan 

blue staining. After 24 h of culture, cells were adherent and 

the medium was replaced by noscapine-loaded nanoparticles 

at a final concentration of 50 µg/mL. The media was removed 

after 24 h and replaced with fresh medium supplemented with 

10% FBS. The cell viability and cytotoxicity were determined 

using MTS cell proliferation kit. At predetermined time inter-

vals, 20 µl of MTT was added in each well and incubated for 

4 h in a humidified incubator containing 5% CO
2
 at 37°C and 

absorbance was measured at 490 nm using a Victor3V 1420 

Multilabel Counter spectrophotometer (Perkin Elmer).32–34

Results and discussion
Preparation and visualization  
of noscapine nanoparticles
The objective of the present study was to design HSA 

 nanoparticles for noscapine delivery and establish a stan-

dard protocol for their preparation. HSA nanoparticles 

 containing noscapine were prepared by coacervation method, 

in which ethanol was used as a dissolving agent, followed 

by  crosslinking using glutaraldehyde.29 The pH-coacervation 

method has widely been used in the encapsulation of both 

water-soluble and insoluble drugs. Initially we investigated 

the effect of the process conditions such as the aqueous HSA 

concentration, the rotation speed of the magnetic stirrer, the 

pH of the solution prior to ethanol addition, and the rate of 

ethanol addition. After experimentation and optimization a 

final preparation method was prepared. Uniform particles 

with narrower size distribution were achieved at higher 

rotation speed of the magnetic stirrer with ethanol, dropped 

at a constant flow rate using a peristaltic pump. With the 

modified pH-coacervation technique reported in this study, 

we achieved noscapine-loaded HSA nanoparticles of diam-

eters between 150 and 300 nm and narrow size distribution 

determined by the PI of , 0.4. The SEM micrographs reveal 

morphological aspects of nanoparticles with a spherical 

shape and uniform size distribution in the desired range of 

nanoparticle sizes (Figure 1).

Degree of crosslinking  
of  noscapine-loaded nanoparticles
Crosslinking of nanoparticles with a crosslinking agent can 

limit their degradation rate and hydration potential, thereby 

attaining slow-release kinetics.35,36 The influence of the cross-

linking process (glutaraldehyde concentration, 50%–200%) 

on the size of albumin nanoparticles was investigated. This 

process plays a major role in the stability and drug release of 

albumin nanoparticles. Figure 2 shows the effect of different 

glutaraldehyde concentrations on particle diameter and PI of 

noscapine-loaded nanoparticles. The results reveal that the 

concentration of glutaraldehyde had little or no effect on 

particle size or polydispersity.

Influence of pH and crosslinking on size 
and zeta potential of hSA nanoparticles
It was found that the pH of the noscapine-HSA solution 

prepared prior to ethanol addition was a crucial factor in 

Figure 1 Scanning electron micrograph of glutaraldehyde crosslinked nanoparticles 
prepared at ph 8, 60k resolution. The nanoparticles were found to be of uniform 
size and narrow size distribution.
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Figure 2 effect of glutaraldehyde concentration on diameter and polydispersity index of noscapine (5 mg/mL) loaded human serum albumin (hSA) nanoparticles prepared 
with 10 mM Nacl solution and 100 mg of hSA protein at ph 8.

affecting the particle size of the resulting nanoparticles 

(Figure 3). At pH 5–7, particles were of larger diameter with 

high polydispersity indices. The particle size was greatest 

at pH 7 at approximately 2500 nm. At pH greater than 7 

the particle diameter was reduced and at pH 8 the particles 

had optimal size and narrow size distribution at approxi-

mately 175–200 nm. The nanoparticles prepared at higher 

pH of 8–8.2, when viewed under SEM, revealed uniform 

and spherical particles.

The electrical behavior of the noscapine-loaded HSA 

nanoparticles was also evaluated at different pH (Figure 3). 

Higher surface charge was attained on HSA nanoparticles 

by increasing the pH of the HSA solution. It was observed 

that with increasing pH . 7, the surface charge of prepared 

nanoparticles was reduced; particles prepared at pH 8 had 

their surface charge reduced to -47mV. It was noted that 

preparation of particles at higher pH also leads to repulsion 

among the HSA molecules due to steric effect and lead to 

aggregation during particle formation.

The stability of the nanoparticles was also investigated. 

Noscapine-loaded nanoparticles prepared at pH 8.2 were 

stored for 5 days in water at 4°C and at predefined times the 

samples were analyzed with regard to size (Figure 4). The 

particle size increased slightly to 190 nm, but particles were 

found to be stable after 5 days.

Investigation of noscapine delivery 
by nanoparticles
Noscapine was adsorbed to HSA in solution prior to 

 nanoparticle preparation. The pH was adjusted to 8.2 at 

different noscapine concentrations ranging from 5 mg/mL 

to 30 mg/mL of HSA. All preparations were stabilized 

with glutaraldehyde. Figure 5 illustrates the encapsulation 

efficiency of HSA nanoparticles at different drug concentra-

tions. Maximum encapsulation was attained at noscapine 

concentrations of 5 mg/mL with an efficiency of 97%. 

Encapsulation efficiency was shown to gradually decrease 

with increasing drug concentration. The lowest encapsula-

tion efficiency was seen at noscapine concentrations of 

25 mg/mL and 30 mg/mL suggesting that at higher con-

centrations of noscapine more incubation time is probably 

required as well as greater concentration of HSA is needed 

for efficient encapsulation.

The drug release profiles of noscapine-loaded HSA 

 nanoparticles were also investigated. Noscapine albumin 

nanoparticles prepared under experimental conditions 

described previously were tested in vitro and released at 

37°C in PBS at pH 7.4. It was found that with increasing 

drug concentrations the particle size and polydispersity 

increased dramatically. Figure 6 shows the in vitro release of 

 cumulative amounts of noscapine from  albumin  nanoparticles 
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Figure 4 Stability of noscapine (5 mg/mL) loaded human serum albumin (hSA) 
nanoparticles over 5 days. Particle size was monitored. Noscapine-loaded HSA 
nanoparticles prepared with 10 mM Nacl solution and 100 mg of hSA protein 
at ph 8.

as a function of time. For noscapine  concentrations of 

5 mg/mL, the initial drug released was around 10% which 

was considered a biphasic way of release; it is character-

ized by an initial rapid release period followed by a step 

of slower release. For noscapine-loaded nanoparticles with 

noscapine concentrations of 5 mg/mL and 10 mg/mL, the 

release profile was slow after 72 h, with less than 30% of the 

drug being released. While at concentrations of 15 mg/mL of 

noscapine more than 60% of the drug had been released after 

72 h. The release profile seemed moderately slow.

Viability of hSA nanoparticles loaded 
with noscapine in a SK-BR-3 cell line
HER-2 positive SK-BR-3 breast cancer cells were used to 

examine the efficacy of noscapine prepared  nanoparticles. 

The cell lines were cultured in 96-well plates at an 

 initial  concentration of 5000 cells/well in fresh medium. 

After 24 h of culture, cells were adherent, and medium 

was replaced with prepared noscapine nanoparticles and 

 drug-free HSA  nanoparticles. We analyzed the cell viability 

and cytotoxicity of noscapine-loaded nanoparticles pre-

pared at noscapine concentrations of 5, 10, and 15 mg/mL, 

and compared them with drug-free nanoparticles. Both 

drug-loaded and drug-free nanoparticles were added 

in SK-BR-3 breast cancer cell lines over time periods of 24, 

48, 72, 96, and 144 h (Figure 7). As expected the efficacy of 

the particles depended on the concentration of drug-loaded. 

Noscapine nanoparticles with concentrations of 5 mg/mL 

had the lowest efficacy with cell viability of 60% after 

144 hrs. The cell viability was less than 35% for noscapine 

nanoparticles prepared with noscapine concentrations of 10 

and 15 mg/mL after 144 h. The drug-free nanoparticles had 
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Figure 5 Noscapine encapsulation of human serum albumin nanoparticles (50 mg/mL) in dependence on noscapine concentration.
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Figure 6 Drug release profile of noscapine-loaded human serum albumin (HSA) nanoparticles (noscapine concentration 5–15 mg/mL) over predetermined time intervals. 
Noscapine-loaded HSA nanoparticles prepared with 10 mM NaCl solution and 100 mg of HSA protein at pH 8.

little effect on the cell viability of the cells, and after 48 h 

the cell viability of cells with drug-free nanoparticles was 

approximately 93%. Gradually, the viability of cells treated 

with drug-free nanoparticles slightly decreased to about 80% 

after 144 h. Hence noscapine-loaded nanoparticles could 

potentially be used in the treatment of tumor cells.

Conclusion
HSA nanoparticles can be successfully used to encapsulate 

noscapine and be prepared by the coacervation method. 

Preparation pH appeared to have an influence on size 

and particle yield; however it did not induce any effect in 

the drug-loading capacity. In addition, the in vitro drug 

delivery studies indicated controlled slow release profiles. 

In  conclusion noscapine-loaded HSA nanoparticles have the 

potential to be used to deliver a maximum amount of noscap-

ine to target sites at a rate and concentration that permits 

optimal therapeutic efficacy, while reducing any undesirable 

side effects to a minimum. Further experiments using surface 

modification of noscapine nanoparticles are being conducted 

for tumor cell-specific targeting applications, and for further 

evaluation of cell cytotoxicity and efficacy in cancer cells.
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