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Abstract: We present a two-phase strategy for optimizing a multidimensional, nonconvex 

function arising during genetic mapping of quantitative traits. Such traits are believed to be 

affected by multiple so called quantitative trait loci (QTL), and searching for d QTL results in 

a d-dimensional optimization problem with a large number of local optima. We combine the 

global algorithm DIRECT with a number of local optimization methods that accelerate the final 

convergence, and adapt the algorithms to problem-specific features. We also improve the evalua-

tion of the QTL  mapping objective function to enable exploitation of the smoothness properties 

of the optimization landscape. Our best two-phase method is demonstrated to be accurate in at 

least six dimensions and up to ten times faster than currently used QTL mapping algorithms.

Keywords: global optimization, QTL mapping, DIRECT

Introduction
Most traits of medical or economic importance are quantitative. Examples are 

 agricultural crop yield, growth rate in farm animals and blood pressure and cholesterol 

levels in humans. These traits are generally believed to be governed by a complex inter-

play between multiple genetic factors and the environment. One method to locate the 

genetic regions underlying a quantitative trait is known as quantitative trait locus (QTL) 

mapping. A QTL is a DNA region (locus, pl. loci), harboring a gene or a  regulatory 

element affecting a quantitative trait. In a standard QTL  mapping study, genetic data 

(genotype data) from an experimental population is used as input to a statistical model 

of the measured trait (phenotype data). The model fit and significance tests are per-

formed using numerical algorithms implemented in a QTL mapping  software. QTL 

mapping methods were reviewed by Doerge.1

Finding the most likely positions of d QTL influencing a trait corresponds to 

minimization of a d-dimensional nonconvex objective function (the outer problem) 

which is defined by the QTL model fit (the inner problem). The numerical analysis 

framework governing the QTL mapping computations is that of a separable nonlinear 

least squares problem.2–4 However, the QTL mapping problem has several special 

features that have to be accounted for, and standard optimization algorithms cannot 

be immediately applied. To derive and study efficient algorithms for the real world 

QTL mapping problems, we need to use a combination of knowledge from the fields of 

numerical analysis and genetics, and also rely on results from both numerical experi-

ments and analysis for simplified problems.

In standard QTL mapping software,5–8 the outer problem is solved using an 

 exhaustive grid search. The computational requirement for this type of algorithm is 
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(d 2Gd), where the number of grid points G is of the order 

103. This type of scheme is reliable but prohibitively slow for 

d . 2, which has resulted in that high-dimensional searches 

have so far not been used in practice. In this paper, we intro-

duce a hybrid global–local optimization algorithm for the 

outer problem, which is combined with an efficient scheme 

for solving the inner problem. Using the new algorithms, we 

show that it is possible to solve the optimization problems 

arising in QTL mapping up to at least d = 6 using a standard 

desk-top computer. We do not consider the important problem 

of how to select the QTL model, nor do we consider real 

application problems where high-dimensional QTL searches 

are performed for experimental data and genetic implications 

are drawn from the results. However, the introduction of 

the new algorithms paves the way for future work in these 

directions.

It should be noted that already today, geneticists routinely 

fit models with multiple QTL. This is performed using a for-

ward selection procedure where an identified QTL is included 

as a known quantity when searching for an additional QTL. In 

this way it is possible to search for d QTL by a sequence of d 

one-dimensional exhaustive grid searches. For general QTL 

models, it is not clear how accurate this technique is. It could be 

anticipated that the forward selection scheme can fail to detect 

QTL that only affect the phenotype through interactions with 

other QTL. Several analyses of real data sets have revealed such 

interactions between pairs of QTL, some of which were only 

detectable by solving the full  two-dimensional optimization 

problem.9–11 Such results motivate our interest for developing 

efficient algorithms also for high-dimensional QTL mapping 

problems, and using simulated data we also show that the new 

scheme is more accurate than the forward selection technique 

for problems of this type.

A class of QTL models
A typical QTL mapping experiment involves two animal 

lines, each genetically homogeneous, of individuals that differ 

considerably in some phenotype. Genetic comparisons of the 

two groups would not reveal the QTL positions since the lines 

have a vast number of genetic differences, most of which are 

uncorrelated with the phenotype of interest. Instead, individu-

als are mated according to a specific scheme, most often the 

backcross or the intercross. This results in a population of 

offspring whose genetic material is a mosaic of DNA from 

the two original lines. The mosaic structure of the offspring 

genomes is the result of recombination, a random process 

which occurs during the formation of germ cells. Using stan-

dard (but still rapidly developing)  experimental technology, 

the genotypes of each individual at a set of marker loci in the 

genome can be determined. The genetic markers are irregu-

larly scattered at locations determined by the experimental 

procedure. Between markers, the genotypes can be estimated 

using a statistical model of the  recombination process.

At each (initially unknown) QTL an individual may 

have only one of a few different genotypes. The QTL model 

describes how the phenotype depends on the individual’s par-

ticular combination of genotypes at the QTL. Given a model 

including d QTL, the aim of QTL mapping is to find the set of d 

loci xQTL where the genotype combinations best correlate with 

the phenotypic variation, and to determine whether the result is 

statistically significant. A robust approach for determining the 

significance thresholds is permutation testing,12 where O(103) 

QTL searches are performed using randomly permuted data 

sets. If a model involving several QTL (d . 1) is used, this is 

of course a very computationally demanding procedure.

A standard class of models13,14 for the phenotype of indi-

vidual i, i = 1,…, n, in the population is given by

 

y a x b a bi ij j
j

k

ij j
j k

k k

i

g

g

g f

= + +
= = +

+

∑ ∑( ) .
1 1

ε

 

(1)

Here, y
i
 is the measured phenotypic value, k

g
 is the num-

ber of genotype parameters (in general modeling both QTL 

effects that are additive among loci, marginal effects, and 

nonlinear interaction effects between loci, epistatic effects), 

k
f
 is the number of covariates (or fixed effects), eg, sex and 

other known factors included in the model, a
ij
 are indicator 

variables for QTL genotypes and covariates, x is a set of d loci 

in the genome, b
j
 are the effects of the QTL and the covariates, 

and ∈
i
 is the error. The basis for the forward selection scheme 

mentioned in the Introduction is that, if a QTL has already 

been identified in a previous study, the genotype at that locus 

could be included in the model as a fixed effect.

In matrix form, the model Eq. (1) is given by

 y = A(x)b + ε, (2)

where y is the n-vector of observed phenotypes, A is the 

n × (k
g
 + k

f
)-matrix of indicator variables (the design matrix), b is 

the (k
g
 + k

f
)-vector of effects, and ∈ is an n-vector of errors.

The computational problem  
for QTL mapping
The inner problem, the linear regression method for QTL 

mapping will be introduced. Using this standard approach, 

any hypothetical set of d loci x directly corresponds to a 
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matrix A(x) which can be introduced in the model Eq. (2). 

The computational problem in QTL mapping is then to opti-

mize the linear model fit over all possible positions x and to 

compute the corresponding residual sum of squares, RSS,

 
RSS F b x A x b y

b x b x
= = −min ( , ) min || ( ) || .

, ,
2
2

 (3)

The minimization problem of Eq. (3) arises in two 

versions; When searching for a putative set of QTL, the 

optimal set of loci x
opt

 and the corresponding RSS-value 

are needed (but the computation of the effects b
opt

 can 

normally be deferred until the significance of the result 

has been established). When performing the permuta-

tion test for determining the significance threshold, only 

good approximations of the RSS-values for the permuted 

problems are required.

The formula in Eq. (3) is a separable nonlinear least 

squares problem2–4 where the model is given by a linear 

combination of nonlinear functions. Following,2 the solu-

tion of Eq. (3) can be separated into two parts: The outer 

nonlinear problem,

 min f (x),  (4)

where the search space d is described later, and the inner 

linear problem, which has an explicit solution,

 
f x A x b y A x A x I y

b
( ) min || ( ) || || ( ( ) ( ) ) || ,= − = −+

2
2

2
2

 
(5)

where A(x)+ is the pseudo-inverse of A(x). If A has full rank, 

A+ = (ATA)−1AT.

The inner problem
At positions x where unambiguous genetic information is 

available, the matrix A(x) in Eq. (2) is uniquely determined 

and f (x) is given by Eq. (5). In practice, the genotypes are 

(at best) exactly known only at the marker loci. For a gen-

eral x, exact genetic information is not available and the 

matrix entries a
ij
(x) are not given a priori. However, genetic 

recombination can be modeled as a Poisson process, and 

using the closest informative markers as input it is still pos-

sible to make a good estimate of the probability of a certain 

genotype. There are several different methods of forming 

the inner problem which all in some way use the Poisson 

process approach for handling the problem of missing data. 

For all these methods, the objective function reduces to 

Eq. (5) in the case of exact genotype information.

Interval mapping13,15 gives maximum likelihood estimates 

of QTL locations and effects. In this case, the inner problem 

is nonlinear. The computations are expensive, since a non-

linear equation system must be solved for each solution of 

the inner problem. A commonly used alternative strategy is 

the linear regression method.16–18 Here the genetic indicator 

variables are replaced by the a priori between-marker geno-

type probabilities given by the Poisson process model, and 

the corresponding design matrix is used in Eq. (5). Since the 

inner problem now is a single linear least squares problem 

(with some special features), this is a simple and fast method. 

When the quality of data is high (dense marker maps, few 

experimental errors) the global optimization landscapes 

and the QTL mapping results for interval mapping and the 

linear regression approximation are very similar.17,19,20 For 

the experiments presented in this paper, we simulate such 

high-quality data and use the linear regression method. We 

use the same notation A(x) and a
ij
 for both the exact and the 

approximated genotype variables. Given the matrix A(x), 

effcient schemes for solving the least squares problem Eq. (5) 

in the QTL mapping setting are described by Ljungberg and 

colleagues.21,22

Efficient construction of the design 
matrix A(x)
Even when using the linear regression method, computing the 

matrix entries a
ij
(x) using the exact formulas for the a priori 

probabilities given by Haley and Knott17 is rather costly. The 

closest informative markers need to be located, the genotype 

information retrieved, and then a set of exponential functions 

must be evaluated for each individual. Therefore, standard 

QTL mapping codes normally perform a preparation step 

by evaluating a
ij
(x) at regularly spaced grid points in the 

genome. Then, only values of f (x) at points in this artificial 

grid are used in the exhaustive grid search employed for solv-

ing Eq. (4). The size of the genome is measured in the unit 

Morgan [M], which is a logarithmic function of the number 

of recombination events on an interval. A typical grid step 

size is o(10−2) M and the size of a representative genome is 

O(10) M. The preparation step could be performed once and 

for all for each data set, and the resulting data stored to a file. 

However, since the objective function is only given at grid 

points, it is awkward to use optimization methods based on 

exploiting the piecewise continuity of the objective function 

(and its derivatives).

In this paper we use a new scheme for efficient evalua-

tion of the matrix entries for the linear regression method 

at an arbitrary point in the search space. From the formulas 

x∈Gd
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described by Haley and Knott,17 it is clear that the matrix 

entries a
ij
(x) can be completely described by a set of func-

tions g(ζ  ), where ζ is a scalar variable that runs over marker 

intervals. For example, for a backcross population we have 

that, for each individual, the function g(   ) between markers 

p and p + 1 is given by

g(ζ) = K(1 + c
1
e−2ζ)(1 + c

2
e2ζ) = K(1 + c

1
c

2
  

    + c
1
e−2ζ + c

2
e2ζ), 

(6)

where c
1
 = ±e−2k1 is a constant where k

1
 $ 0 is the distance 

from marker p to the closest marker with known genotype 

to the left and the sign of c
1
 depends on the individual’s 

genotype at the informative marker, c
2
 = ±e−2k2 is a constant 

where k
2
 $ D is the distance from marker p to the closest 

informative marker to the right and the sign of c
2
 depends 

on the genotype at that informative marker. Note that geno-

type information might be missing at some markers. The 

parameter D is the distance between markers p and p + 1, and 

K = 0.5/(1 + e−2(k1 + k2)). For an intercross, two similar functions 

g
1
( ) and g

2
( ) are needed for each individual and interval, 

and for more general populations a few more functions of 

approximately the same form might be required.

To allow for efficient computation of the matrix entries, 

we approximate the functions g( ) by a corresponding set of 

third degree polynomials p( ).

The matrix entries should be continuous functions of x, 

implying that the four-parameter polynomials are fixed at 

the two markers and two degrees of freedom remain. We fit 

the polynomials

p g
D D

g D D q D q( ) ( )( ) ( ) ( ) ( ) ,ζ ζ ζ ζ ζ ζ ζ= − + + − + −0 1 1
2

2

 
  

(7)

where q
1
 and q

2
 are the unknowns to be computed, by minimiz-

ing the integral of g( )−p( ) from 0 to D in the least squares 

sense. For typical values of D, third degree polynomials give 

sufficiently good approximations which do not suffer from 

oscillations. For the one-QTL backcross model, we have in fact 

proved that already using second degree polynomials the maxi-

mal error in the approximation p( ) is significantly smaller than 

the error arising from using a stepwise constant approximation 

corresponding to  evaluating g(  ) on a standard 1 cM grid. The 

proof, which is based on an interval analysis technique,23 is rather 

extensive and is not shown here. If the marker interval is very 

short we fit only a one-degree polynomial to the endpoint data, 

and if the marker interval is unusually long we insert a pseudo-

marker with no genotype information at the midpoint. The poly-

nomial fitting is done in a preparation step. In the optimization 

algorithm, the matrix A(x) needs to be computed for a given 

location x. In the implementation, the proper marker interval 

is first located and the corresponding polynomial coefficients 

are retrieved. Then the local coordinate ζ is determined and the 

polynomials are evaluated. Using this scheme, we can evaluate 

the matrix entries a
ij
(x) efficiently everywhere, not just at grid 

points. The extra time required for building the design matrix in 

this way, instead of retrieving grid values, is small compared to 

the computational time needed for an evaluation of the objective 

function. In total the increase in CPU time for the objective func-

tion is only about 10% compared with the grid-based strategy, 

and compared with using the exact functions this method is 

much faster. Finally, the memory requirement is significantly 

reduced compared to using a grid-based storage of a
ij
(x), since 

we only store a few parameters per marker interval.

The search space d

The outer problem in Eq. (4) should in principle be solved by 

optimizing overall x in a d-dimensional hypercube where the 

side is given by the size of the genome. However, efficient 

optimization algorithms exploit more detailed information 

about the two-level structure of the search space d. This 

structure also affects the properties of the solution to the 

inner problem, f(x).

The first level of structure is given by that the genome is 

divided into C chromosomes, resulting in that the search space 

hypercube consists of a set of Cd d-dimensional unequally sized 

chromosome combination boxes, cc-boxes. A cc-box is identi-

fied by a vector of chromosome numbers c = [c
1
 c

2
…c

d
], and 

consists of all x for which x
j
 is a point on chromosome c

j
. The 

ordering of the loci does not affect f (x). Therefore, we can 

restrict the search space gd to cc-boxes identified by nondecreas-

ing sequences of chromosomes. In addition, in cc-boxes where 

two or more edges span the same chromosome, eg, c = [1 8 8], 

we need only consider values of x such that x
k
 , (x

k
 + 1

−S) for 

k for which c
k
 = c

k+1
. The distance S between two points on 

the same chromosome must be chosen large enough for some 

recombination to have occurred between x
k
 and x

k+1
.

Marker

D

k2k1

Known genotypeKnown genotype

p p + 1

Figure 1. The parameters used for the polynomial approximation between markers 
p and p + 1.
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Figure 2 The search space for the outer problem is divided into chromosome combination boxes, cc-boxes. each cc-box is further divided into marker boxes, m-boxes.

A second level of structure results from that, on each 

chromosome, the set of marker positions defines the locations 

where the genetic information is completely determined by 

the experimental procedure (in case of perfect data). Each 

cc-box is built up from a set of d-dimensional unequally sized 

marker boxes, m-boxes, defined by the marker positions and 

the endpoints of the chromosome. Figure 2 illustrates the 

two-level structure of the search space for a problem where 

d = 2. Figure 3 shows a part of a representative objective 

function f(x).

We now make three observations concerning the prop-

erties of f  (x). Using Golub and Pereyra’s theory for sepa-

rable nonlinear least squares problem, more specifically the 

Figure 3 A part of a typical objective function f(x) for the outer problem. The discontinuities at cc-box boundaries can be seen as straight lines in the contour plot below 
the surface.

formulas for the variable projection functional and its gradi-

ent,2 it would be possible to produce proofs of the statements 

below in a general setting. However, we instead focus on 

analyzing specific simple QTL mapping problems, using 

problem-specific properties in an attempt to try to retrieve 

more detailed information about the objective function:

 (i)  The function f (x) is continuous within cc-boxes (but 

with discontinuities at chromosome boundaries) and 

smooth within m-boxes (but with discontinuous first 

derivatives at the m-box boundaries).

(ii)  Within a cc-box, there exists a finite Lipschitz constant 

K for f (x). For a simple case, ie, a one-QTL model 

for a backcross population, we have derived a tight 
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bound for K. Again, we have chosen not to present the 

proof since it is extensive and the expression for K is 

complicated. Note that a good estimate of the Lipschitz 

constant could be used in the global optimization algo-

rithm to discard regions of the search space. However, 

for the more complex models and high-dimensional 

searches which are of interest in this paper, it is much 

harder to derive corresponding estimates which are tight 

enough to be of practical value, and we have so far not 

pursued this approach further.

(iii)  The function f (x) is normally not convex within a 

 cc-box, nor necessarily within an m-box. In fact, 

numerical experiments partly presented in Numeri-

cal experiments show that within an m-box, f (x) may 

be convex or concave, or it may have none of these 

properties.

The outer problem
As exemplified by Figure 3, Eq. (4) is a global optimization 

problem with a large number of local minima. Apart from 

the standard exhaustive search, previously used optimiza-

tion methods for QTL mapping problems include a genetic 

optimization algorithm, implemented for d = 2 using 

library routines,24 and an algorithm based on the DIRECT25 

scheme, implemented for d = 2 and d = 3.26 Ljungberg and 

colleagues,26 results show that, for the problems considered, 

the DIRECT-based scheme is as reliable as an exhaustive 

grid search, and faster and more accurate than a genetic 

optimization algorithm. However, we have found that 

further improvements are needed to be able to tackle high-

dimensional QTL mapping problems. The local minima 

of the objective function often have very similar function 

values, and for high-dimensional searches the DIRECT 

algorithm sometimes get stuck at the wrong local optimum 

for a long time. Also, once the correct local optimum is 

identified, the local convergence is still rather slow. A pos-

sible way of improving the convergence rate is to use a two-

phase method, combining a global optimization algorithm 

with some more efficient algorithm for local optimization.  

A two-phase optimization algorithm for the outer problem 

we present methods of this type.

Before presenting the new algorithms, we give a brief 

review of DIRECT-based methods. The original scheme 

was presented as a general purpose deterministic global 

optimization algorithm for Lipschitz continuous multivariate 

functions subject to simple bounds.25 In DIRECT the search 

space is divided into gradually smaller hyper-boxes, and the 

function value f
c
 is computed at the center of each box. If the 

Lipschitz constant K is known, a lower bound on the func-

tion value anywhere in a box can be computed as f
c
 − K⋅d

cv
, 

where d
cv

 is the center to vertex distance. This is the basis 

for Lipschitz optimization algorithms of  branch-and-bound 

type for global optimization problems, see eg, Horst and 

colleagues’ work27 DIRECT does not require knowledge of 

the Lipschitz constant, but instead uses the approach that for 

a given K, the box with the lowest bound is potentially opti-

mal and should be examined further. Jones and colleagues 

show how all boxes potentially optimal for any value of K 

can be identified, and each of these boxes is subdivided in a 

DIRECT iteration. Selecting boxes for subdivision amounts 

to determining the lower convex hull of the cloud of dots in 

a scatter plot of f
c
 versus d

cv
, where each dot represents one 

box. Note that no regions in the search space are discarded 

by the algorithm, but the subdivision of “uninteresting” 

regions is postponed. DIRECT is sometimes referred to as 

a branch-without-bound algorithm. If a minimal box size 

is used and the algorithm is run sufficiently long, DIRECT 

will perform an exhaustive grid search on an equidistant grid 

defined by the centers of the minimal size boxes.

A number of variants of DIRECT have been described.28–32 

Several authors have noted that the final (local) convergence 

of the DIRECT algorithm often is rather slow. Nelson 

and Papalambros,28 present an improved scheme where 

a quasi-Newton step is taken from the best current point 

and the box division pattern is adjusted accordingly. This 

is a theoretically attractive approach, but it is awkward to 

implement since the quasi-Newton steps break the simple 

box division pattern of the original algorithm and also may 

cross box boundaries. Cox and colleagues used30 DIRECT 

to locate promising regions of the search space by running 

it until the smallest box reached a specified percentage of 

the original box size. Then a fixed number of the best points 

identified by DIRECT were used as starting points for local 

searches, using clustering to select only points which are 

sufficiently far apart from the others already used as start-

ing points. A local optimizer based on sequential quadratic 

programming was used for the local optimization. The 

authors found that this version of DIRECT was suited for 

problems with many widely spaced local optima, which is 

a property also found in the QTL mapping problems. The 

DIRECT algorithm can also be made locally biased by 

using the infinity-norm instead of the euclidian norm when 

measuring d
cv

,31 or globally biased by dividing each box 

which has the best f
c
 in its group of boxes of the same size, 

not only those on the convex hull.33 The method described 

by Cox and colleagues30 is an example of what Schoen34 
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referred to as two-phase methods for global optimization. 

Here, the general strategy is to use one algorithm for global 

exploration of the search space and another for refinement 

of local optima, possibly iterating between the global and 

the local stages.

A two-phase optimization 
algorithm for the outer problem
Using the motivation earlier, we assume that the QTL map-

ping objective function f (x) is Lipschitz-continuous within 

the cc-boxes. The arguments indicate that a Lipschitz-based 

algorithm could be a suitable choice for the outer problem (4). 

Since the objective function f (x) is discontinuous at cc-box 

boundaries, the DIRECT algorithm described by Ljungberg 

and colleagues26 is initiated by evaluating the objective func-

tion at the center of all cc-boxes. In this way, no assumption of 

continuity across cc-box boundaries is used. Also, symmetric 

cc-boxes (c
k
 = c

k+1
 for at least one k) are taken care of by a 

special machinery in the box division algorithm. The multiple 

box initiation is a contrast to the original algorithm where there 

is only one hyper-box, spanning the whole space, on startup. 

Another difference is that the search space is not normalized 

to the unit hypercube.26 This is to preserve the relation between 

the distance measure, Morgan, and change in the genotypes. 

Not normalizing the search space leads to that a large number 

of different values of d
cv

 emerge in the box selection step. 

In the original algorithm, this would lead to that too many 

boxes must be considered as candidates for division in each 

iteration. Ljungberg and colleagues26 solved this problem 

by grouping boxes of similar size together using a hashing  

technique.

We now describe a two-phase algorithm using the 

DIRECT scheme described by Ljungberg and colleagues26 

for the global exploration of the search space. The basis of 

the algorithm is that when a box below a certain size (in 

max–norm) is chosen for subdivision in DIRECT, it is not 

divided according to the standard pattern. Instead, the box is 

first examined to determine whether it extends across one or 

more m-box boundaries. If this is the case, the box is divided 

into sub-boxes along these boundaries, resulting in in one 

(if no division is performed) or more boxes which all lie 

completely within an m-box. All boxes but the the one with 

the smallest function value at the center are returned to the 

global phase. A local algorithm chosen from the list below 

is used for optimization in the box with the smallest function 

value. According to the search space g d, the objective function 

is smooth within this box implying that methods for local 

optimization using derivative information can be applied.

As for other practical global optimization methods, there 

is no theoretical well-founded convergence criterion for 

DIRECT. Jones and colleagues25 suggested to terminate the 

search if no improvement of the objective has occurred during 

the last N
i
 iterations. In our two-phase algorithm we prefer 

to enforce a limit N
f
 on the number of function evaluations 

with no improvement. This form of stopping rule is easier 

to generalize to different data sets and different numbers of 

QTL d. Using this approach, we exploit information from 

the local optimization stages to determine how long to keep 

on performing DIRECT iterations. Note that this means that 

we in some cases do local optimization in many boxes, while 

sometimes only in one.

Local optimization methods
The standard method for solving separable nonlinear least 

squares problems is the variable projection algorithm, where 

the outer problem is solved using a Gauss–Newton method2–4 

which is adopted to the structure of the separated problem. 

For the QTL mapping problems, a global optimization method 

must first be employed to select the regions containing the most 

promising local optima. Moreover, once one or more such 

regions have been found, the methods of Gauss–Newton type 

reviewed4 are not efficient for solving the local optimization 

problems. A Gauss–Newton method can be viewed as a scheme 

of quasi-Newton type, where the Hessian approximation is 

formed by neglecting a product where one of the terms is the 

residual.35 The approach is viable if the residual is small and the 

residual functions are not highly nonlinear. However, the model 

is fitted to noisy biological data in the QTL mapping problems, 

and the residual is quite large even at the optimum. Instead, we 

have examined other local optimization methods.

In the numerical experiments presented, we compare the 

two-phase algorithms to the single-phase DIRECT algorithm 

presented by Ljungberg and colleagues.26 For the local opti-

mization stages in the two-phase algorithm we have employed 

the DIRECT, steepest descent, and quasi-Newton algorithms 

further described below. Using the polynomial approximations 

for the functions describing the matrix entries a
ij
(x) presented 

in Efficient construction of the design matrix A(x), it would 

be possible to derive analytical formulas for the Jacobian and 

Hessian of the objective function. However, in practice this 

would be complicated already for the computation of the exact 

gradient because of the numerous variants of the model Eq. (1) 

that might occur. Therefore we have chosen to use numerical 

differentiation for computing the gradient.

•  DIRECT (D-D): A two-phase algorithm may of course 

use a global optimization algorithm also for the local 
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stages. We use such an algorithm where we restart 

DIRECT in the box marked for local optimization. In 

our experiments, the local iteration is stopped when 

there is no function value improvement for the last two 

iterations. Note that this two-phase algorithm is not 

equivalent to a single global DIRECT run with more 

iterations.

•  Steepest Descent (D-SD): Using the steepest descent 

scheme, first-derivative information of the objective 

function is used in the most straightforward way. In this 

case, we stop the local search when the step length is 

smaller than a parameter γ, which is chosen as 1 cM in 

the experiments. During the line search along the nega-

tive gradient the Armijo condition is enforced, and the 

maximum step length is defined by the box boundary. The 

bound constraints are accounted for by a simplified bar-

rier method, where a component of the negative gradient 

pointing out of the box is set to zero if the current point 

is close to a box boundary.

•  Quasi-Newton (D-QN): Using a quasi-Newton scheme, 

we also include approximative second derivative infor-

mation in the local optimization algorithm. Here, we 

use the same line search and barrier method for the 

bound constraints as described for the steepest descent 

scheme, but choose the search direction using the BFGS 

method where an approximate inverse of the Hessian 

is repeatedly updated during the iterations using the 

gradients,36 For the first iteration we perform a steepest 

descent step, and the approximative inverse Hessian is 

then initiated as a multiple of the identity matrix.36 If 

the curvature condition is not satisfied, the inverse of 

the Hessian becomes indefinite. In such situations, we 

also perform a steepest descent iteration and restart the 

Hessian approximation process. The derivative across 

the boundary is discontinuous since a component of the 

gradient is set to zero as described above. However, the 

second derivative along an admissible search direction 

is continuous.

In the experiments, we compare the accuracy and effi-

ciency of the two-phase algorithms described above to the 

one-phase DIRECT algorithm used in by Ljungberg and 

colleagues,26 which we denote by D. Note that, for the D 

and D-D algorithms, we are guaranteed to get a sufficiently 

accurate approximation of the local minimum if the algo-

rithms are run sufficiently long. For the D-SD and D-QN 

schemes, we are only guaranteed to reach the true minimum 

if the objective function is convex within the box where local 

optimization is applied.

Numerical experiments
We chose to test the new optimization algorithms on sets 

of simulated data. In this way, no explicit modeling errors 

are included in the computations (however, two types of 

noise are included), and also we know a priori approxi-

mately where the optimal position x
QTL

 is located. We have 

simulated a collection of 115 large data sets, imitating 

both backcross and intercross populations. The number 

of QTL, d, is varied from 2 to 6. In the intercross sets we 

only introduce marginal QTL effects, ie, effects depending 

only on the genotype at a single locus. In the backcross sets 

the major effects come exclusively from pairwise epistatic 

interactions, ie, they depend on the combined genotypes at 

pairs of loci. More details about the data are given in the  

Appendix.

We begin by presenting a numerical investigation of the 

properties of the objective function f (x) in the search space 

hyper boxes where we perform local optimization. A simple 

midpoint test of a necessary but not sufficient condition for 

convexity of f (x) was implemented in the line search algorithm 

within the D-SD and D-QN methods. If the condition was 

violated in any iteration for any line search in a hyper-box, 

that box was marked as nonconvex. The results of this inves-

tigation was that, of the boxes containing the global optima 

for the 115 test problems, in total 65 proved to be nonconvex. 

Further experiments indicated that in these cases, the function 

was concave and the minimum was located at the hyper-box 

boundary. The corresponding result for all boxes where local 

optimization was applied was that at least 43627 out of the 

64739 boxes tested were nonconvex. From these results it 

would be tempting to draw the conclusion that the gradient-

based optimization methods can not be used for the local 

optimization phase. However, we also performed an investiga-

tion of the accuracy of the different schemes. Here, the global 

optimum was considered to be found if R , 1, where R is the 

ratio of the current error to the accepted error, ie,

R = (  f (x)−f (x
opt

))/(  f (x
opt

) ⋅ γ).

In the experiments we used γ = 2 ⋅ 10−4, a choice which is 

motivated by that the function value at the second smallest 

local minimum in some cases differ to the global minimum 

by almost as little as this. The slightly surprising result of 

the investigation was that all optimization methods, includ-

ing the D-SD and D-QN schemes, succeeded in finding the 

global minimum for all the 115 data sets. We cannot give 

a rigorous explanation for the good result for the gradient-

based methods.
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Before proceeding to a comparison of the work required 

for the different algorithms, we consider the criterion used for 

terminating the optimization algorithms again. As remarked in 

A two-phase optimization algorithm for the outer problem, we 

terminate the search for the global optimum when N
f
 objective 

function evaluations have been performed without any further 

improvement in the function value. For a d QTL model, the 

size of the search space is Gd/d!, where G is the length of the 

genome in centi-Morgan. This motivates us to set N
f
 = (  p

alg
⋅G)

d/d!, where the parameters p
alg

 are determined by performing 

a large number of numerical experiments for each algorithm, 

adjusting p
alg

 so that the global optimum is found in all 115 

data sets. In Table 1, the values of p
alg

⋅G are shown. When 

performing the experiments resulting in Table 1, we noted that 

for all algorithms the values of p
alg

 were determined by a few 

“exceptional” data sets. For most sets of data, a much smaller 

value of p
alg

 can be used and the global optimum is still found. 

We also noted that, in general, the intercross data sets require 

more function evaluations than the backcross sets.

For QTL analysis problems, the evaluation of the objective 

function, ie, the solution of the inner problem, completely domi-

nates the CPU time. In Tables 2 and 3, we compare the maximal 

number of objective function evaluations required for the differ-

ent algorithms when solving all of the test problems. The tables 

show results for different values of d, and also include data for 

an exhaustive grid search with the resolution needed to locate the 

optima with the same accuracy as used for the other methods. In 

Figures 4 and 5, the same results are shown graphically using a 

logarithmic scale for the number of function evaluations.

From the tables and figures, it is clear that using a two-

phase algorithm significantly reduces the number of function 

evaluations required, even when the DIRECT algorithm is 

used also for the local optimization. It is also clear that if the 

gradient based methods are employed, this gives a consider-

able further improvement. Here, the difference between the 

D-SD and D-QN schemes is not very large. It should also 

be noted that, as a result of the type of stopping criterion 

used, the number of function evaluations is dominated by 

the number of evaluations with no improvement required 

before terminating the global optimization algorithm. This 

also results in that there is no significant difference between 

the performance of the algorithms for the backcross and 

intercross data sets, even though for most of the backcross 

problems the global optimum is actually found faster than 

for most of the intercross problems.

In Tables 4 and 5, we show the fraction of the total number 

of objective function evaluations spent in the local phase for 

the three methods using a local algorithm. From the tables, 

it is clear that even though the difference in work between 

using DIRECT for the local optimization compared to using a 

gradient-based scheme is not dramatic, significantly less time 

is spent in the local optimization phases when the gradient-

based methods are used. Also, for these schemes, the fraction 

of work in the local phase is less dependent on d.

Finally, we study the ability of the forward selection 

technique mentioned in the Introduction and A class of QTL 

models to locate the global optima for our test problems. We 

applied the forward selection procedure to our data sets, using 

exhaustive grid search for the consecutive one-dimensional 

optimization problems. In Table 6, we show the ratio of 

maximal actual error, in the minimum found using forward 

selection, to the accepted error. Recalling that a successful 

search is defined by R # 1, it is clear from the table that 

only for the model with d = 2 and the intercross data sets, 

the correct optimum is always found. For the backcross 

data, the method failed already for a model with two QTL. 

In many cases, the wrong cc-box is identified and the error 

is 50 times larger than acceptable. When the right cc-box is 

identified, the error in the position is often still very large. 

These results are consistent with previous observations for 

experimental data that forward selection can fail to detect 

Table 1 stopping rule parameters

Algorithm D D-D D-SD D-QN

palg⋅ G 41 32 25 22

Table 2 The maximal number of function evaluations for different 
values of d, all back-cross data sets

d 2 3 4 5 6

exhaustive 
grid search

13778625 2 ⋅ 1010 3 ⋅ 1013 3 ⋅ 1016 3 ⋅ 1019

D 2409 13501 126022 995586 .6650000
D-D 787 8571 59944 326606 1618725
D-sD 601 4296 25891 110433 418476
D-Qn 530 3637 19980 71113 236636

Table 3 The maximal number of function evaluations for different 
values of d, all intercross data sets

d 2 3 4 5 6

exhaustive 
grid search

13778625 2 ⋅ 1010 3 ⋅ 1013 3 ⋅ 1016 3 ⋅ 1019

D 1355 15010 124989 1341120 .6676400
D-D 1341 8985 54572 486633 1618411
D-sD 958 5445 24204 217926 415408
D-Qn 778 4035 17310 149691 246884
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QTL whose main effect is epistatic.9–11 It is important to 

note that also for the intercross data set, where there are no 

interaction effects at all, forward selection apparently can fail 

to find the correct cc-box. This indicates that it is important 

to use a true d-dimensional optimization method as soon as 

multiple QTL are fitted for a single phenotype, even when 

no interactions are included in the model. However, it is clear 

that this type of simple experiment needs to be extended to 

real data sets and actual QTL analysis problems before any 

firm conclusions of this type can be drawn.

Discussion
In this paper, we have discussed algorithms for QTL mapping 

using models including d QTL. Our approach is based on 
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Figure 4 The maximal number of function evaluations for different values of d, all 
backcross data sets.

Table 4 The fraction of function evaluations in local algorithm, 
backcross data

d 2 3 4 5 6

D-D 0.49 0.75 0.80 0.87 0.89
D-sD 0.39 0.40 0.52 0.58 0.60
D-Qn 0.31 0.40 0.48 0.52 0.52

Table 5 Fraction of function evaluations in local algorithm, 
intercross data

d 2 3 4 5 6

D-D 0.71 0.79 0.79 0.82 0.89
D-sD 0.56 0.66 0.51 0.61 0.60
D-Qn 0.49 0.54 0.41 0.48 0.52Figure 5 The maximal number of function evaluations for different values of d, all 

intercross data sets.
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solving the full d-dimensional global optimization problem 

for determining the best model fit, which is in contrast to the 

traditional forward selection technique where a sequence of 

one-dimensional problems are solved.

Standard QTL mapping software uses an exhaustive 

search algorithm for solving the global optimization problem. 

For this type of algorithm, the computational requirement 

for problems where d . 2 is prohibitive. In this paper, we 

have shown that by exploiting the specific structure of the 

QTL mapping problem, it is possible to derive much more 

efficient algorithms. Using these schemes, the optimization 

problems for models with up to six QTL can be solved using 

a standard computer. For a ix-QTL problem, the best new 

algorithm is more than 1014 times more efficient than the 

standard exhaustive search would be.

The new algorithms are based on the DIRECT scheme for 

global optimization combined with different algorithms for 

local optimization in hyper-boxes which contain interesting 

objective function values. For the local optimization stages, 

both DIRECT and standard gradient-based schemes are 

examined. Since the objective function is often not convex 

within the hyper-boxes where local optimization is applied, 

it is not a priori clear that the gradient-based schemes will be 

able to correctly locate the global minima. However, numerical 

experiments for all 115 data sets show that this is indeed the 

case, and using these schemes results in an up to sevenfold 

increase in performance compared to a two-phase scheme 

where DIRECT is used both for global and local optimization. 

However, the latter algorithm is guaranteed to find the global 

minimum if run for sufficiently as many iterations, which is 

clearly not the case if a gradient-based method is used.

We also investigate the ability of the standard forward 

selection technique to locate the global optima for our test 

problems, and confirm the assumption that this approach can 
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fail for models with several QTL. The conclusion is that, for 

our set of test problems, the new optimization methods are 

both more accurate and much more efficient that the methods 

currently used in QTL analysis software.

A suggested approach for using the new algorithms in 

practical QTL analysis is to exploit the two-phase DIRECT-

DIRECT algorithm, using a strict stopping criterion, for deter-

mining x
opt

 and RSS
opt

 for the genetic data. The motivation for 

using DIRECT for the local search is that it is independent 

of the convexity properties of the objective function. Then 

the DIRECT-Quasi Newton scheme can be employed for 

optimization during the permutation test used for determining 

the significance of the result. In the significance testing, the 

effect of an eventual error in x
opt

 is not important.

The conclusion presented in this paper will have to be con-

firmed for real experimental data sets and real QTL analyses. 

This will also require some method for establishing a reference 

result for at least a few high-dimensional QTL mapping prob-

lems where the global optimum is not known a priori. One way 

of performing these extremely demanding computations is to use 

a parallel implementation of the exhaustive search algorithm.
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Table A1 heritabilities

d 2 3 4 5 6

H backcross 0.05 0.17 0.20 0.31 0.34
H intercross 0.08 0.15 0.20 0.27 0.34

Appendix A

Data sets
The algorithms were tested on a collection of 115 simulated 

mouse data sets. They imitate the two most common experi-

mental designs, the backcross and the intercross. Pseudo-

marker20 was used to generate complete, dense auto-somal 

chromosome genotype information for a backcross with 1000 

mice and an intercross with 500 mice. There were 92 mark-

ers in total, including one at the beginning and end of each 

of the 19 chromosomes. The average inter-marker distance 

was 15 cM and the standard deviation 7.6 cM. The complete 

genotype information at the set of markers, obtained from the 

simulation, was used as input in the preparation step for fast 

evaluation of the approximated a
ij
 (see Efficient construction 

of the design matrix A(x)).

Using the full genetic information at the markers ensures 

that the objective function values are fairly independent of 

the kernel method used. Sen and Churchill20 demonstrated 

that linear regression and interval mapping kernels give very 

similar results and optimization landscapes as long as the 

proportion of missing genotype data is low.

The phenotypes were simulated according to the 

model Eq. (2). For each phenotype, QTL positions x
QTL

 and 

effects b
QTL

 were generated for a model with d QTL, 2 # d # 

6 (see below). A(x
QTL

) was built, using exact genotype infor-

mation from the Pseudomarker simulation, and y
QTL

 = A(x
QTL

)

b
QTL

 was computed. The noise vector  ∈ was constructed as 

the sum of two components, ∈ = ∈
gen

 + ∈
rand

. The genotype 

dependent component ∈
gen

  was simulated by generating 

positions x∈ and effects v
j
 (see below), building E(x∈) in the 

same way as A(x
QTL

) and computing ∈
gen

 = E(x∈)v. The random 

noise component ∈
rand

 was generated from a normal distribu-

tion with zero mean and variance σ∈, .rand
2

 The variance was 

chosen to give the desired broad sense heritability H, given 

in Table A1. Here, the heritability is defined37 as

 

H
QTL

QTL

=
+∈

σ
σ σ

2

2 2
,  (A1)

where σQTL
2

 is the variance of y
QTL

 and σ σ σ∈ ∈ ∈= +2 2 2
, ,gen rand  

is the variance of the noise ∈. The simulated phenotype is 

y = yQTL + ∈.

If the heritability is too low, ie, the noise levels too 

high, the global optimum x
opt

 will be in a different cc-box 

than x
QTL

 and the true QTL locations undetectable. We 

simulate phenotypes with very low heritability, tuned so 

that x
opt

 is in the same cc-box as x
QTL

 but f (x
opt

) is only 

slightly smaller than function values in other cc-boxes. 

This ensures that our test cases are difficult enough to 

be realistic.

Given the number of QTL d, the vector x
QTL

 was 

generated by randomly selecting d of the 19 autosomal 

mouse chromosomes and on each selected chromosome 

randomly place a QTL. Both the chromosome selection 

and the QTL placement was done using uniform prob-

ability distributions. The vector x∈, always of length 10, 

was generated in the same way as x
QTL

, except that only 

chromosomes not already harboring a QTL could be 

selected.

Epistatic interactions were simulated for the backcross 

data only. Interacting QTL pairs were formed by randomly 

grouping the previously placed d QTL into pairs. For even 

d, each QTL is in exactly one pair, while for odd d one QTL 

is part of two pairs.

Marginal QTL effects depend only on the genotype at 

a single locus. In an intercross the genotype at QTL x
k
 is 

described by two indicator variables, ak
α  and ak

δ , and the 

phenotype effect of QTL k is a b a bk k k k
α α δ δ⋅ + ⋅ . In a backcross 

the genotype at QTL x
k
 is described by a single indicator 

variable, ak
α , and the phenotype effect of QTL k is a bk k

α α⋅ . 

Epistatic effects depend on the genotypes at two or more loci. 

An additive by additive pairwise interaction depends on the 

genotypes at two loci k and l, and the effect is a bkl kl
α α α α× ×⋅  

where a a akl k l
α α α α× = ⋅ .

The magnitude of the parameters bk
α  and bkl

α α×  were 

generated randomly from a uniform distribution U(µ − 0.2 ⋅ µ, 

µ + 0.2 ⋅ µ), and the sign of the effects positive or negative with 

equal probability. The magnitude of the dominance effect of 

QTL k, where applicable, was chosen as | | | (| | ) |b bk k
δ α µ= −  

and the sign of the effect positive or negative with equal 

probability.

The means of the effects were defined relative to the 

intercross mean µ = µ
IC

. (The fixed heritability makes 

the absolute level irrelevant.) In the backcross case, 

µ = 0.2 ⋅ µ
IC

 was used for marginal effects and µ = µ
IC

 for 

interaction effects. The effects of the genotype dependent 

noise were generated exactly as the QTL effects, with 

µ∈ = 0.2 ⋅ µ
IC

.
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