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Abstract: There has been excessive rate of use of antibiotics to fight Pseudomonas 
aeruginosa (P. aeruginosa) infections worldwide, which has consequently caused the 
increased resistance to multiple antibiotics in this pathogen. Due to the widespread resistance 
and the current poor effect of antibiotics consumed to treat P. aeruginosa infections, finding 
some novel alternative therapeutic methods are necessary for the treatment of infections. The 
P. aeruginosa biofilms can cause severe infections leading to the increased antibiotic 
resistance and mortality rate among the patients. In this regard, there are no approaches 
that can efficiently manage these infections; therefore, novel and effective antimicrobial and 
antibiofilm agents are needed to control and treat these bacterial infections. Quorum sensing 
inhibitors (QSIs) or quorum quenchings (QQs) are now considered as potential therapeutic 
alternatives and/or adjuvants to the current failing antibiotics, which can control the viru-
lence traits of the pathogens, so as a result, the host immune system can quickly eliminate 
bacteria. Thus, the aims of this review article were presenting a brief explanation of the 
research reports on the natural and synthetic QSIs of P. aeruginosa, and the assessment of the 
current understanding on the QS mechanisms and various QQ strategies in P. aeruginosa. 
Keywords: Pseudomonas aeruginosa, quorum quenchings, quorum sensing, nanoparticle, 
natural compounds, synthetic compounds

Introduction
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative pathogen1,2 that 
causes acute and chronic infections in immunocompromised patients such as cystic 
fibrosis and burn patients.3 The treatment of P. aeruginosa by conventional anti-
biotics has become very difficult, due to the rise of multi-drug resistance strains. 
Therefore, there is an urgent need to find some novel antimicrobial agents and 
recognize novel approaches to treat or prevent bacterial infections.4–7

The quorum sensing (QS) plays a critical role in multi-drug resistance of 
P. aeruginosa, which can upregulate both biofilms-associated matrix and efflux 
pump genes to improve resistance of bacteria against antibacterial agents.8 A new 
promising approach to treat P. aeruginosa infections is its QS blocking without killing 
any of the target bacteria.3 Efforts to disturb bacterial biofilms and reduce the expres-
sion of efflux pump genes have provided the recognition of molecules produced by 
prokaryotes and eukaryotes with the capability of inhibiting the QS signals, named as 
quorum quenchings (QQ) or quorum sensing inhibitor (QSI). Since QQs do not effect 
the growth of bacterial, they do not inflict potent selective pressures on the increased 
resistance compared to antibiotics. Therefore, they have been considered as an ideal 
target for novel anti-virulence drugs.9–11 The QQs could significantly affect the 
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treatment of a broad range of pathogenic bacterial 
infections.12 Moreover, they can aggressively control the 
QS signals as well as providing a chance to improve novel 
agents against QS signals to fight pathogens.13

The aims of this review article were presenting a brief 
explanation of the research reports on the natural and 
synthetic QSIs of P. aeruginosa, and the assessment of 
the current understanding on the QS mechanisms and 
various QQ strategies in P. aeruginosa.

Quorum Sensing
Bacteria at low cell densities behave like single cellular 
organisms; however, when their population density 
reaches the concentration threshold, they may change 
their behavior to the “multicellular” type via sensing. In 
this step, they communicate via autoinducers (AIs), which 
enable them to express genes for various phenotypes, 
particularly those that are responsible for their virulent 
behavior.14 This system, known as the bacterial QS, can 
be divided into several steps. In the first step, signaling 
molecules, also called AIs, are produced by the bacterial 
cell that are then released either actively or passively into 
the surrounding environment. After reaching the concen-
tration threshold, signal molecules can be recognized by 
specific receptors and the signal molecules can lead to 
some changes in the gene’s expression and regulation.15 

Opportunistic bacteria such as P. aeruginosa select to lie 
“dormant” and postponement their virulent factors until 
their population density has sufficiently increased to over-
come the host’s defense systems.13

The QS systems operate via a broad range of signals as 
follows: (a) Oligopeptides,16 (b) N-acyl homoserine lactones 
(AHLs, AI-1),16 (c) Furanosyl borate (AI-2),13,14 (d) 
Hydroxyl-palmitic acid methyl ester,13,14 (e) Methyl dode-
canoic acid,14 and (f) Diffusible signal factor (DSF); cis-11- 
methyl-2-dodecenoic acid.17 In addition, the two most 
broadly studied signaling molecules are as follows: (1) 
Peptide based QS system or oligopeptides, containing 
between five and 34 amino acid residue, which are generally 
involved in intercellular communication in Gram-positive 
bacteria, and (2) AHLs, which differ in the length and 
oxidation state of their acyl side chains and are produced 
by Gram-negative bacteria to screen their population density 
in QS control of gene expression (Figure 1).4,13,18–20 Also, 
many other signaling molecules have been known that can 
act as QS signals. Among these signaling molecules, the cis- 
2-unsaturated fatty acids are included, often referred to as 
DSF family signals. The first molecule of the DSF family, 

cis-11-methyl-2-dodecenoic acid, was discovered in phyto-
pathogen Xanthomonas campestris pv. campestris. 
Subsequently, other DSF family signals were also described 
in Burkholderia cenocepacia and P. aeruginosa, which can 
synthesize cis-2-dodecenoic acid (BDSF) and cis-2-decenoic 
acid (PDSF), respectively.17,21

There is a significant correlation among QS and the 
pathogenic factors production, motility, plasmid transfer, 
antibiotic production, and biofilm formation. Accordingly, 
the QS system facilitates the population to live and multi-
ply in a better environment with effective intercellular 
communication, since it can contribute to several beha-
viors that enable bacteria to resist antibacterial compounds 
or antibiotics like biofilm development.22 Due to the sig-
nificance of bacterial communication in the expression of 
pathogenic factors, QQ can be considered as a potential 
target to prevent bacterial infection.23

Quorum Sensing Systems in 
P. aeruginosa
Of Gram-negative bacteria, P. aeruginosa is the common 
pathogen in the AHL AIs studying and has been extensively 
used for performing studies on QS.4 The P. aeruginosa has 
four QS systems as follows: LasI/LasR, RhlI/RhlR systems, 
which both are two AHL-based signaling systems, as 
Pseudomonas quinolone signal (PQS), which is a non- 
AHL-based signaling system, as well as the newly identified 
QS named integrated QS signal (IQS) (Figure 2).24–26

In P. aeruginosa, Las and Rhl are two critical QS 
systems represented by LasI/LasR and RhlI/RhlR system. 
N-3-oxo-dodecanoyl homoserine lactone (3OC12-HSL) is 
synthesized by LasI synthase in las system, which forms 
a LasR-3OC12HSL complex by binding to LasR and can 
initiate the transcription of many virulence genes such as 
lasB, apr, and toxA.18,24 This complex indues the expres-
sions of LasI and RhlR; therefore, both AHL-based QS 
systems can be positively regulated.18 The RhlR is one of 
the QS transcription factors that is able of autoinduction, 
as well as replying to N-butanoyl-homoserine lactone (C4- 
HSL) produced by RhlI. The RhlR-C4HSL complex 
indues the expression of pathogenesis factors such as 
pyocyanin, rhamnolipid, and elastase. In addition, RhlR 
has no direct effect on the LasR system.18,24,27,28

The PQS system can be mediated by 2-alkyl-quinolones.27 

In this regard, the pqsABCDE and pqsH systems are two 
members of quinolone-dependent QS system, which directly 
synthesize PQS and HHQ (4-hydroxy-2-heptylquinoline) 
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signals, respectively. Although pseudomonas quinolone signal 
positively regulates the Rhl QS system and indues RhlR 
expression, it has no direct effect on the LasR system. Also, 
HHQ and PQS signals link to the transcriptional regulator 
pqsR, and besides, positively modulate the expression of 
pathogenic factors such as production of biofilm and swarm-
ing and twitching motilities.18,29–31

The 2-(2-hydroxyphenyl)-thiazole-4-carbaldehyde is 
a novel class of QS signal molecules, which belongs to 
IQS that has been recognized in P. aeruginosa, and is able 
to integrate the environmental stress cues with the QS sys-
tem. The ambBCDE cluster encodes the enzymes for 
L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) bio-
synthesis occurring through a non-ribosomal peptide 
synthase (NRPS) pathway that directly synthesize the IQS. 
When IQS biosynthesis is disturbed, it can disable the Pqs 
and Rhl systems, which attenuate the pathogenicity of 
bacteria.25,31,32 In addition, the IQS contributes to the greater 
pathogenicity of P. aeruginosa in several animal models 
such as mice,14 zebrafish,14 fruitfly and nematode.32 In addi-
tion, IQS is able to sense the phosphate-reduction stress by 

networking with the QS system. Therefore, in the phosphate 
reduction stress situation, it can partly take over the purposes 
of the Las system, which provides some important clues in 
comprehending the confusing phenomenon.25,32

Overall, the QS signals are hierarchically organized as 
follows: Las system positively regulates Rhl, Pqs, and Iqs 
systems.32 Moreover, the RhlI/RhlR and the PqsABCDE/ 
PqsR systems regulate each other, and besides, the 
ambBCDE/IqsR system regulates the PqsABCDE/PqsR 
system.26 In addition, each one of these systems is mod-
ified by a collection of extra regulators in both transcrip-
tional and post-transcriptional steps.26

Quorum Quenching
Due to the increased antibiotic resistance among the human 
bacterial pathogens and the current poor effects of antibiotics 
to treat bacterial infections, finding novel alternative antimi-
crobial approaches is urgently needed.5–7,33 Correspondingly, 
one of these approaches is targeting the expression of the QS- 
regulated pathogenic factors using the analogs of the QS 
molecules. In this regard, they have been developed as 

Figure 1 The LuxR/AHL-mediated quorum sensing the regulation of the target genes’ expressions in P. aeruginosa. At a threshold level of AHL, a positive feedback loop is 
formed causing more AHL to be synthesized. Afterward, the reaction takes place between the AHLs and the LuxR receptor in the cytoplasm of the cell, leading to target 
genes’ expression of quorum sensing.
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different methods to produce novel antimicrobial agents. This 
aim can be attained by the control of the synthesis of AIs and 
their contact with the receptors, as well as the raise of their 
disintegration.26 In this case, several natural and synthetic 
compounds have been characterized, which can degrade and 
also inactivate the QS molecules (Figure 3).

The system of QS can be disturbed via various methods 
including: (a) decreasing in the activity of the AHL 
synthase, (b) inhibition of the production of AHLs, (c) 
degradation of the AHLs, and (d) the use of various com-
pounds as the antagonists of the signaling molecules.13,34,35

Natural Compounds
Natural-originated compounds are always taken into consid-
eration in medical fields, because they are biodegradable and 
usually very useful, so they serve as a convenient compound 
for the inhibition of biological infection. Several studies have 
shown that the use of natural eukaryotic or prokaryotic 
derived compounds can reduce the bacterial virulence and 
modulates QS.4,36-40 In this regard, natural compounds are 
assumed to be better than other QSIs, so for this reason, they 
can be used more confidently for a prolonged time and can 
reach the situation of GRAS (generally recognized as safe).41

Prokaryotic QSIs
In recent years, several QSIs have been reported in bacteria. 
Singh et al42 in their study showed that Delftia tsuruhatensis 
SJ01 isolated from the rhizosphere has the AHL degrading 

activity as well as an anti-biofilm potential. Secondary meta-
bolites of Vibrio alginolyticus inhibit the P. aeruginosa 
PAO1 virulence factors by downregulating the motility abil-
ity, elastase activity, and rhamnolipid production. In addi-
tion, the Vibrio alginolyticus extract inhibits the production 
of biofilm in P. aeruginosa PAO1.43

Moreover, some species of bacteria are capable of 
producing QQ enzymes that are as follows: (I) 
Firmicutes: Arthrobacter, Bacillus, and Oceanobacillus; 
(II) Actinobacteria: Rhodococcus and Streptomyces; (III) 
Proteobacteria: Acinetobacter, Agrobacterium tumefaciens, 
Alteromonas, Comomonas, Halomonas, Hyphomonas, 
Klebsiella pneumoniae, P. aeruginosa, Ralstonia, 
Stappia, and Variovorax paradoxus; (IV) Bacteroidetes: 
Tenacibaculum; and (V) Cyanobacteria: Anabaena.14,44-49

Prokaryotes have three types of enzymes that target the 
AHLs and play an essential role in QQ including AHL 
lactonases, AHL acylases, and AHL oxidoreductases.40,41

AHL-Lactonase Enzymes
One of the metallo-β-lactamase (MBL) family members is 
AHL-lactonases, which can hydrolyze the lactone ring.50 

Owing to conservation of targeted homoserine lactone ring 
among all the AHLs and nonspecific interactions within 
the active-site cavity of the enzymes that are created by 
variable acyl chains, AHL lactonases have a very broad 
AHL substrate specificity.44–47 Autoinducer inactivation 
gene (aiiA), as the first described AHL lactonase, was 

Figure 2 Graphical plot of the quorum-sensing system of P. aeruginosa. The AIs 3OC12-HSL, C4-HSL, and PQS/HHQ are synthesized by the AIs synthases, LasI, RhlI, and 
PqsABCDE, respectively. AIs are also identified by the receptors in the cell cytoplasm LasR, RhlR, and PqsR. Protein receptors in the cell cytoplasm regulate the expression 
of its corresponding AIs synthase as well as new targets, as demonstrated by the arrows. Arrows labeled (+) demonstrate a positive feedback.
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identified in Bacillus spp. Correspondingly, the expression 
of aiiA alleles in some pathogenic bacteria such as 
P. aeruginosa and Burkholderia thailandensis, declined 
AHL accumulation and also changed the QS-dependent 
behaviors.51–53

Other AHL-lactonase enzymes could alter the produc-
tion of virulence factors in P. aeruginosa PAO114 like 
Mom1 in Muricauda olearia, interfere with swarming 
motility of P. aeruginosa like HqiA in Pectobacterium 
carotovorum,18,54 or could decrease the production of 
pathogenic factors like proteases and pyocyanin, as well 
as decreasing the biofilm production of P. aeruginosa like 
Ssopox in Sulfolobus solfactaricus.10

AHL-Acylase Enzymes
The AHL acylases belongs to the novel family of 
N-terminal nucleophile (NTN) that cleave the acyl side 
chains in the homoserine lactone, resulting in disabling the 
AHLs. The acylase enzymes are also recognized as ami-
dase enzymes, which hydrolyze the amide bond between 
the acyl chain and the homoserine lactone ring.55 

Moreover, there are many different types of acylases in 
terms of the various acyl chain exchanges on AHLs. Also, 
for the first time, the deacylation activity of AHL was 
detected in Variovorax paradoxus VAI-C. Accordingly, 
this strain can use AHLs as a source of nitrogen and 
energy.56–58

Acyl homoserine lactone acylases have been found in 
numerous bacteria, such as AhlM in Streptomyces sp. 

strain M664,59 PvdQ and QuiP in P. aeruginosa 
PAO1,58,60 AiiC in Anabaena sp. strain PCC712061 and 
AiiD in Ralstonia sp strain XJ12B.62 Investigating AiiD 
enzyme of P. aeruginosa PAO1 showed that it is very 
diverse and shared only 39% similarity at the amino-acid 
level.13,57 AiiD homologs have also been identified in 
numerous of Pseudomonas spp., which can have AHL- 
acylase activity.58,62,63 Notably, the AHL acylases could 
potentially modulate bacterial behavior by interfering with 
the production of virulence factors. Also, motility pheno-
types in P. aeruginosa PAO1 can be changed by the 
expression of AHL acylases aiiD.62,64

The P. aeruginosa PAO1 contains four acylases homo-
logues, which belong to NTN hydrolase enzymes includ-
ing PvdQ (PA2385), QuiP (PA1032), HacB (PA0305), and 
PA1893. Accordingly, PA1893 is the known member of 
QS-regulons, while the other homologues have acylase 
activities.18,57 Also, NTN hydrolase enzymes can decrease 
the secretion level of pathogenic factors in 
P. aeruginosa.18,55,65

AHL-Oxidoreductase Enzymes
The AHL oxidoreductase modifies the chemical structure 
of the AHLs by oxidizing or decreasing the acyl side chain 
at the third carbon position without damaging the AHLs.57 

In general, to the best of our knowledge, there are few 
studies performed on the disabling of AHLs through the 
oxidation of the acyl side chain compared to the AHL 
degradation by lactonases and acylases. Accordingly, 

Figure 3 Schematic diagram demonstrating quorum sensing inhibitors compounds of P. aeruginosa.
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these enzymes were firstly observed in Rhodococcus ery-
thropolis that is capable of using a range of AHLs as 
nitrogen and carbon sources.18,55,66 In recent years, 
a novel oxidoreductase, known as BpiB09, has been iden-
tified that can inactivate 3OC12-HSL. In addition, oxidor-
eductase BpiB09 in P. aeruginosa PAO1 reduces the 
accumulation of AHLs, followed by reducing motility 
phenotypes, pyocyanin secretion, and biofilm 
production.18,55

Eukaryotic QSIs
The eukaryotic-derived compounds including animals, 
antibodies, plants, fungus, and algae derived compounds 
are capable of interfere in bacteria cell-to-cell signalling 
molecules.4 In this regard, they are usually used in medical 
field, since they are bio-compatible, usually very efficient, 
and known as excellent candidates for biological anti- 
infectious approaches. So, studies have suggested the use 
of the eukaryotic-derived compounds to decrease bacteria 
pathogenicity and QS modification.36,67

It has been recognized that animals have evolved mul-
tiple defence strategies including anti-microbial peptides, 
lysozymes, and antibodies to protect themselves against 
bacterial pathogens. Additionally, interactions between 
animal hosts and pathogenic bacteria provoke a broad 
range of reactions, particularly in the presence of QS 
molecules.13,68 Enzymes of QQ have been discovered in 
several animals such as mice, rats, and zebrafish. Notably, 
the enzymes of QQ have been discovered in several ani-
mals such as mice, rats, and zebrafish. Acylase I enzyme 
of porcine kidney could disable QS signals of 
N-Hexanoyl-L-homoserine lactone (C6HSL) and 
3OC12HSL; however, it was shown that it has no effect 
on C4HSL.14 Acylase I can have effect on diminishing 
biofilm production by Aeromonas hydrophila and 
Pseudomonas putida.69 A group of mammalian enzymes 
known as paraoxonases 1, 2, and 3 (PON) has been found 
to have hydrolytic activities on esters and lactones, which 
are relevant to drug metabolism and detoxification of the 
nerve agents. PON-lactonases vary from prokaryotic lac-
tonases due to the loss of the “HCDH~H~D” motif, and 
besides, they need calcium ion for their functions.13,70,71 

The human epithelial cells and mammalian sera have PON 
enzymes, which are able to disable and destroy AHLs.18 

Several studies have shown that the PON by an active site, 
can hydrolyze many various substrates such as lactones, 
esters, and phosphotriesters.18,72,73

Antibody based QSI as one of the methods for anti- 
infective therapy have been proposed to inhibit QS 
signals.35 The anti-QS activity of antibodies was firstly 
reported by Sandra De Lamo Marin’s group.74 They 
revealed that some of the anti-AHL antibodies could inhi-
bit the 3OC12-AHL-based QS system. In this regard, 
XYD-11G2 is one of the most efficient antibodies that 
have capability of inhibiting 3OC12HSL in 
P. aeruginosa.74 It has been shown that the generation of 
the monoclonal antibody RS2-IG9 against the 3OC12HSL 
analog RS2 could be efficient on destroying 3OC12HSL of 
P. aeruginosa.75 Also, some studies have shown that anti-
body catalysis could create a novel approach for the inhi-
bition QS in bacteria.35,74

Plant-derived compounds are mostly secondary meta-
bolites that are used for their antibacterial properties, since 
many years ago. Moreover, they have been used for 
decreasing bacterial virulence and production of biofilm.4 

Notably, many natural compounds have been described as 
QSIs, and some of the most promising QSI molecules have 
been found in various plants. These compounds can serve 
as both autoinducer agonists and antagonists.18,76,77 Also, 
herbal extracts can act as QSIs, which are structural ana-
logs of AHLs and disrupt the QS system by binding to 
LuxR/LasR-receptors.78,79 Some of these herbal extracts 
that act as QSIs as well as their effects on P. aeruginosa 
are shown in Table 1.

The QSI has been also reported from algae. Some 
studies have shown that several algal species have natural 
defense strategies to inhibit microbial accumulation.4,23 

Regarding this, halogenated furanones created by the red 
marine macroalga Delisea pulchra were firstly recognized 
as anti-QS compounds.80,81 D. pulchra can produce some 
of the nontoxic and halogenated metabolites, especially 
brominated furanones that can act as mimics of the bacter-
ial AHL QS signals23 and also inhibit the QS-regulated 
behaviors by competitively linking to the LuxR- 
receptors.80,81 Moreover, these compounds are known as 
structural analogs of AHLs, which control the QS regula-
tion in various bacteria to prevent biofilm formation and 
subsequent accumulation effectively.23,82 Most of the algal 
QS modulators investigations have been conducted on the 
furanones and their derivatives.4 Furanone-mediated inhi-
bition of QS signaling indicated some significant effects 
on the disruption of expression of P. aeruginosa virulence 
gene. It is noteworthy that, treatment of bacteria with low 
concentrations of furanones decrease the secretion of exo-
protease enzymes, pyoverdin production, and biofilm 

Hemmati et al                                                                                                                                                        Dovepress

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                                     

Infection and Drug Resistance 2020:13 2994

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


formation. The AHL mimic compounds, as halogenated 
furanones from D. pulchra, serve in the inhibition of the 
QS-regulated responses.82 The disruption of QS by fura-
nones can result in the improved animal survival after 
being exposed to the lethal dose of P. aeruginosa 
inoculations.18

Fungal secondary metabolites can also act as QSI. 
Penicillic acid and patulin are the secondary metabolites 
produced by of Penicillium spp., which are able to inhibit 
the QS system.83 Equisetin is a secondary metabolite of 
marine-derived fungi that could inhibit the biofilm produc-
tion, motility phenotypes, and other pathogenic factors in 
P. aeruginosa. It could also downregulate the expression 
of lasB, lasI, lasR, pqsA, pqsR, rhlA, rhlI, and rhlR 
genes.84

Synthetic Compounds
QSIs production is naturally occurred in a large number of 
organisms; however, their main limitation is the low 
levels, in which they are generated as well as the related 
toxicity in some cases.13 In recent years, control of bacter-
ial virulence using chemical compounds has considerably 
received many attention. Therefore, these studies aimed to 
extend targeted synthetic QS regulators.4,13 The process of 
the inhibition of QS by synthetic compounds can be fol-
lowed by various mechanisms in P. aeruginosa as follows 
(Table 2): I) synthetic signal analogs II) modifications in 
the AHL side-chain, III) modifications in the AHL ring 
moiety, and IV) antagonists of the receptor-ligand 
interactions.13,18

In recent years, nanoparticles (NPs) have received 
many consideration, due to their antimicrobial activities. 
Moreover, the use of NPs is one of the most promising 
strategies to fight against microbial drug resistance.85 

Suitable therapeutic compounds are not only required to 
display a low toxicity index, but also to have appropriate 
pharmacokinetic features for clinical usages.86 

Nanoparticles are also recognized as synthetic QSIs. 
However, more studies are required to explore these nano-
particles additionally. Researchers have recently utilized 
nanotechnology for the extension of innovative nanoma-
terials targeting QS-regulated pathogenic factors, which 
create new insights on the expansion of some alternative 
antibacterial treatments.87,88

Chitosan is a cationic polysaccharide formed by 
N-acetylglucosamine and glucosamine. Correspondingly, 
it is linked by β-(1, 4) glycosidic linkages,89 showing 
many unique properties, such as bio-compatibility,89 

biological activity,90 nontoxicity,91 bioadhesion,92 anti- 
hypercholesterolemia,92 antioxidant93 and antimicrobial 
activity.94 Moreover, chitosan and its derivatives have an 
anti-biofilm activity.95,96 Also, the antimicrobial properties 
of chitosan, due to the presence of its positive charge 
amino groups, can react with negatively charged lipopoly-
saccharides of P. aeruginosa, which can consequently 
inhibit the bacterial proliferation.85,97 Chitosan derivatives 
such as chitosan NPs have also shown biological activities 
against microorganisms. Recent studies have shown that 
the enhanced antimicrobial activity of chitosan NPs is 
related to the increase of surface area to volume ratio as 
the particle size decreases. Therefore, the chitosan NPs 
with vast surface areas modifies the bacterial membrane 
penetrability via the membrane incorporation and also 
leads to the death of bacteria.33,97-99 Furthermore, chitosan 
NPs have shown anti-QS properties by disrupting biofilm 
production, decreasing the expression of lasR and rhlR 
genes, and reducing the secretion of pyocyanin and pro-
teases in P. aeruginosa.100 In addition, chitosan NPs have 
a negative effect on the pathogenic factors produced by 
P. aeruginosa PAO1.101 In this regard, Muslim et al,100 in 
their study demonstrated that chitosan significantly 
decrease the biofilm formation, pyocyanin, protease secre-
tion, as well as the expressions of lasR and rhlR genes in 
P. aeruginosa. In addition, Ilka et al reported that the 
loaded kaempferol into chitosan NPs have QSI activity 
and suggested that a combination of materials with chit-
osan NPs can inhibit the QS-related encoding genes, 
which can serve as a new approach for antibacterial treat-
ment acting as the QS-based antibiofilm agents.95

In recent years, zinc oxide (ZnO) NPs have been 
recognized as efficacious QSIs for P. aeruginosa PAO1, 
by reducing the generation of different pathogenic factors 
with no growth-inhibitory efficacy.102 Lee et al102 demon-
strated that Zn2+ and ZnO NPs have no bactericidal activ-
ities against P. aeruginosa at the concentration levels of <3 
mM; however, they have antivirulence activities. In addi-
tion, generation of reactive oxygen species (ROS) on the 
surface of ZnO induce some serious damages to bacteria 
cell. Also, the attachment of the ZnO NPs on the bacterial 
surface or cumulating of NPs in the cytoplasm area 
induces disturbance of cellular action as well as the dis-
order of the bacterial membrane.103,104 Lara et al reported 
that ZnO NPs could significantly reduce the secretion of 
elastase, pyocyanin, and the production of biofilm in 
P. aeruginosa, which demonstrate that ZnO NPs have 
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Table 1 Herbal Extracts as Quorum Sensing Inhibitors and Their Effects on the P. aeruginosa QS System

Quorum Sensing Inhibitor 
Compounds

Quorum Sensing Efficacy Ref.

Coumarin Production of biofilm and pathogenic factors production [76]

Pistacia atlantica crude extract Production of biofilm and pyocyanin secretion [11]

Curcumin Motility phenotypes and production of biofilm [131]

Ginseng Production of LasA and LasB and synthesis of the AHL molecules [141]

Baicalin Production of biofilm and pathogenic factors (protease, elastase, pyocyanin, 

rhamnolipid, motilities and exotoxin A)

[142]

Flavonoids (naturally-produced plant 

Metabolites)

LasR and RhlR receptors [143]

Ajoene, a Sulfur-Rich Molecule from Garlic Pathogenic factors production [144]

Berberine Production of biofilm, secretion of protease, pyoverdin, pyocyanin and the expressions 
of lasI, lasR, rhlI, rhlR genes

[133]

Trans-cinnamaldehyde Secretion of protease, elastase, pyocyanin and production of biofilm and the 
expressions of lasI, lasR, rhlI, rhlR genes

[145]

Salicylic acid Secretion of protease, elastase, pyocyanin and production of biofilm and the 
expressions of lasI, lasR, rhlI, rhlR genes

[145]

Phillyrin Pyocyanin, rhamnolipid, elastase, swimming and twitching motility and biofilm 
formation

[146]

Trans-anethole Swarming motility, secretion of protease, elastase, pyocyanin and the expressions of 
lasB gene

[147]

Cinnamic acid Secretion of pyocyanin, proteases, elastase and production biofilm [148]

Hordenine Swarming motility, secretion of pyocyanin, elastase, rhamnolipid, production of biofilm 

and the expressions of lasI, lasR, rhlI, rhlR genes

[149]

Eugenol from clove extract Pathogenic factors and production of biofilm [150]

Ocimum sanctum Secretion of pyocyanin, protease, elastase and production of biofilm [151]

Musa paradisiaca Pyocyanin, protease, elastase and biofilm formation [151]

Caffeine Motility phenotypes [151]

Methanolic extract of Phyllanthus amarus Motility phenotypes, pyocyanin secretion [152]

Zingerone Motility phenotypes, production of biofilm and pathogenic factors production [153]

Combretum albiflorum Elastase secretion and production of biofilm [154]

Allium sativum (garlic) extract Production of biofilm, elastase secretion [155,156]

FL fraction of Psidium guajava L Virulence factors production and production of biofilm [157]

Clove oil Protease, chitinase and pyocyanin secretion, swimming motility and production of 
biofilm

[158]

The methanol extract of fenugreek Protease, LasB elastase, pyocyanin and chitinase production, swarming motility and 
production of biofilm

[159]

(Continued)
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a wide spectrum, so it can be considered as an alternative 
for the treatment of P. aeruginosa infections.105

Other attractive compounds are Engineered nanoparti-
cles (ENPs), which are used as QSIs. Several recent 
researchers have described different mechanisms for the 
toxicity of ENPs as follows: (a) metal ions toxicity of 
ENPs,106 (b) enhancement in the generation of reactive 
oxygen species,107 and (c) the damage to DNA and 
proteins.108 Also, Li et al109 reported that different ENPs 
with various physicochemical traits have dissimilar effects 
on QS systems of P. aeruginosa PAO1. Although upper 
silver (Ag) ENPs concentrations (mg/L) induce the anti- 
QS activity in P. aeruginosa PAO1, its lower concentra-
tions (μg/L) have shown to increase its QS activity. In 
contrast to Ag ENPs, ferrous (Fe) ENPs enhance the con-
centration level of 3OC12-HSL, but it has no effect on the 
other QS activities. Mohanty et al110 also showed that Ag 
ENPs can decrease the release of C4-HSL, C6-HSL, 
3OC6-HSL, C8-HSL, and 3OC8-HSL in Pseudomonas 
syringae. Moreover, Singh et al111 reported that mfAg 
(mycofabricated Ag NPs) ENPs can decrease C4-HSL 
and 3OC12-HSL release in P. aeruginosa. In addition, 
mfAgNPs reduce the biofilm production and QS activities 
by reducing the expressions of lasIR and rhlIR genes. 
Furthermore, Wagh et al112 showed that silver nanowires 
(SNWs) had some hopeful properties of the QS-mediated 
controlling of biofilm in P. aeruginosa. Notably, when 
P. aeruginosa was treated in various concentrations of 
SNWs, it was detected that the most reduction was at 
4 mg/mL in the production of biofilm, without inhibiting 
bacterial growth. Nevertheless, the concentration enhance-
ment (≥5mg/mL) declines the number of viable cells. 
Therefore, 4 mg/mL of SNWs could dramatically inhibit 

the production of biofilm without affecting viability, while 
higher concentrations could inhibit bacterial growth. 
Gholamrezazadeh et al113 demonstrated that Ag NPs and 
benzalkonium chloride efficiently induced the rhlR gene 
expression. Prateeksha et al114 have reported that the sele-
nium NPs harbor a superior QSI property, antibiofilm 
activity, and antivirulence potential in P. aeruginosa. 
Moreover, Nafee et al115 reported that ultra-small solid 
lipid nanoparticles (US-SLNs) inhibited the QS- 
dependent phenotype like the secretion of pyocyanin in 
P. aeruginosa.

Antibiotics as QSI
Antibiotics, besides having therapeutic efficacy in killing 
or inhibiting bacterial proliferation, can also act as signal-
ing molecules, which are capable of reducing the expres-
sions of virulence factors in bacterial populations.116–119

Some studies have demonstrated that several antibio-
tics are capable of inhibiting virulence factors in 
P. aeruginosa.13,18,120 In this study, the reply of 
P. aeruginosa to azithromycin antibiotic was analyzed by 
the use of the microarray method. Also, its phenotype 
investigation showed that there is a link between genes 
regulated by QS and by azithromycin.120 Several studies 
have revealed that azithromycin significantly has anti-QS 
activity, and the subinhibitory concentrations (SICs) of 
azithromycin are capable of blocking many genes regu-
lated by QS.120–122

Sofer et al123 in their study indicated that erythromycin 
therapy decrease the AHL production in bacteria. Another 
study has also shown that the treatment of P. aeruginosa 
with azithromycin reduce the C4HSL and 3OC12HSL 
production.124 The SICs of macrolides and β-lactam 

Table 1 (Continued). 

Quorum Sensing Inhibitor 
Compounds

Quorum Sensing Efficacy Ref.

The dichloromethane extract of 

Cordiagilletii

Pyocyanin secretion, the expression of genes lasB, rhlA, lasI, lasR, rhlI, and rhlR genes and 

production of biofilm

[160]

Manilkara zapota Pyocyanin, protease and elastase secretion and production of biofilm [151]

Diarylheptanoids from the barks of Alnus 

viridis and Alnus glutinosa

Pyocyanin secretion, twitching motility and production of biofilm [161]

Gingerol Exoprotease, rhamnolipid and pyocyanin secretion and biofilm formation [162]

Diterpene phytol Pyocyanin secretion, twitching motility and production of biofilm [163]
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antibiotics can reduce the pathogenic factors’ expression 
of P. aeruginosa such as the diminished of exotoxin 
A secretion, pyocyanin, protease, DNase, and phospholi-
pase C, as well as significantly removing the QS activity 
of P. aeruginosa.125 In addition, SICs of tobramycin could 
block the expressions of rhlI and rhlR genes by decreasing 
C4-HSL generation. Previous studies have also confirmed 
the impact of tobramycin, as a signaling molecule, on 
virulence genes expression in the transcriptional 
step.126,127

Skindersoe et al120 investigated several antibiotics for 
their capabilities in intervening with the bacterial signaling 

systems. Of the antibiotics used, azithromycin displayed 
high levels of QSI activity, followed by ciprofloxacin and 
ceftazidime that had potent QSI activities. Whereas ami-
noglycoside antibiotics, piperacillin, spectinomycin, and 
streptomycin had either low levels or no QSI activity. In 
their study, the protease secretion has been reduced by 
azithromycin, ciprofloxacin, and ceftazidime, as well as 
ciprofloxacin and ceftazidime that diminished the elastase 
activity.120

Furthermore, the nonsteroidal anti-inflammatory drugs 
(NSAIDs) such as aspirin, piroxicam, and meloxicam are 
chemical compounds that can be used as the potential 

Table 2 Synthetic Quorum Sensing Inhibitors, Their Targets, and Effects on the P. aeruginosa QS system

Quorum Sensing Inhibitor Compounds Target Quorum Sensing Efficacy Ref.

N-decanoyl-L-homoserine benzyl ester AHL-mediated Protease, elastase, rhamnolipid secretion and motility 
phenotypes

[164]

Synthetic triazole containing analogs of AHL LuxR-LasR 
analogs

LasR receptor [165]

N-(indole-3-butanoyl)-L-HSL AHL-mediated Pathogenic factors production, production of biofilm [166]

2-heptyl-6-nitro-4-oxo-1,4-dihydroquinoline-3- PqsR analog Virulence factor production [115]

N-(heptyl-sulfanyl acetyl)-L-HSL (HepS-AHL) AHL-mediated transcriptional regulator - LasR [167]

N-arylglyoxamide Derivatives LasR analog Pyocyanin secretion [168]

Diarylheptanoids AHL-mediated Production of biofilm and pyocyanin secretion [161]

Aspirin AHL-mediated Virulence factor production, expressions of lasI, lasR, rhlI, 
rhlR, pqsA and pqsR genes and expression of Pseudomonas 
toxins exoS and exoY

[128]

Meloxicam and Piroxicam AHL-mediated LasR and PqsE protein [129]

N-decanoyl-L-homoserine benzyl ester AHL-mediated Virulence factors production [164]

3-nitro phenylacetanoyl HL AHL-mediated LasR reporter [169]

1,3-benzoxazol-2(3 H)-one, 5-chloro-1,3-benzoxazol-2(3 
H)-one, 6-methyl-1,3-benzoxazol-2(3 H)-one, and 5-methyl- 

1,3-benzoxazol-2(3 H)-one

Unknown Elastase secretion, production of biofilm and motility 
phenotypes

[170]

(S,E)-2-hydroxy-N-(3-hydroxy-5-(hydroxymethyl)-2-27 

methylpyridin-4-yl)propane hydrazide (pyridoxal 

lactohydrazone)

Unknown Motility phenotypes, production of biofilm and pyocyanin 

secretion

[171]

Diastereomeric 2-methoxycyclopentyl AHL-mediated Pigmentation production [172]

benzamide-benzimidazole Transcriptional 

regulator

Reduced acute and persistent pathogenicity [12]

(S,E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene) propane 

hydrazide (lacto hydrazone)

Unknown Motility phenotypes, production of biofilm and pyocyanin 

secretion

[173]

Meta-bromo-thiolactone LasR/RhlR 

analogs

Secretion of pyocyanin and production of biofilm [174]
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inhibitors for controlling the P. aeruginosa QS signaling 
system as well as biofilm formation. The NSAID drugs 
can reduce the level of AHL-mediated quorum sensing in 
P. aeruginosa such as Las, Rhl, and Pqs.77,128,129 

Generally, some antibiotics and drugs have QSI potentials 
that can reduce the levels of AHL synthesis in 
P. aeruginosa. Therefore, diminishing in the bacterial 
population by antibiotics can result in the decreased levels 
of pathogenic factors.

Synergism Between QSIs and Antibiotics
A single QSI can not be very effective on bacteria, and could 
also lead to resistance against QSI. Therefore, a combination 
therapy of QSIs and antibiotics are suggested. Accordingly, 
this combination therapy prevents the resistance to a single QSI 
and can also increase the effectiveness of therapy without 
enhancing the toxicity of the antibiotics.41,130

Vadekeetil et al41 also reported the synergistic interaction 
between proanthocyanidin active fraction and ciprofloxacin 
against P. aeruginosa QS. Moreover, there was 
a considerable decrease in the amount of the expressions of 
several pathogenic factors such as motility phenotypes and 
biofilm formation; however, it did not affect the secretion of 
elastase and protease. The significant suppressing effect of 
ciprofloxacin has been also observed on the twitching motility 
of P. aeruginosa. In addition, their study demonstrated that 
ciprofloxacin combined with proanthocyanidin active fraction 
have a higher anti-motility property on all three forms of 
motilities (ie, swimming, swarming, and twitching).

The inhibitory effects of ciprofloxacin on biofilm for-
mation were also observed at SICs. However, it was found 
that, in the presence of proanthocyanidin active fraction, 
ciprofloxacin decreases biofilm production up to fivefold 
compared to the control sample.41

The synergistic efficacy of curcumin with ceftazidime and 
ciprofloxacin on signaling system in P. aeruginosa PAO1, was 
investigated by Roudashti et al.131 Their findings indicated that 
SICs of curcumin, ceftazidime, and ciprofloxacin both alone 
and in combination can dramatically decrease motility pheno-
types and the production of biofilm. Furthermore, these com-
pounds, alone and in combination, can also reduce the 
expression of the genes regulated by QS.131 Bahari et al132 

evaluated the synergistic efficacy of curcumin combined with 
azithromycin and gentamicin on signaling system in 
P. aeruginosa PAO1, and reported that the curcumin in combi-
nation with antibiotics drastically decline 3OC12-HSL and 
C4-HSL signals. Moreover, the above-mentioned compounds, 

alone and in combination, can considerably decrease motility 
phenotypes and biofilm production of P. aeruginosa PAO1.132

Li et al133 also found that azithromycin and berberine could 
significantly reduce the production of several pathogenic fac-
tors such as biofilm production, as well as secretion of pyo-
cyanin and elastase, and remarkably inhibition of the QS 
system and the expressions of the genes regulated by QS. In 
their study, it was also demonstrated that LasA activity was 
drastically decreased after the administration of azithromycin 
and berberine, separately and in combination.

Chanda et al134 showed that linolenic acid and tobra-
mycin (LNA+TOB) had significant impacts on downregu-
lating the QS-mediated genes. Also, they have revealed 
that LNA+TOB therapy could inhibit motility phenotypes 
and reduce the development of infection. Therefore, it can 
be deduced that LNA+TOB is more effective on the inhi-
bition of the pathogenic secretion and biofilm production 
compared to alone LNA or TOB in targeting the QS 
system of P. aeruginosa. Similar to these QSIs, it was 
observed that, Aminoglycosides in combination with 
resveratrol dramatically decrease the production of biofilm 
in comparison to each one of the agents alone, besides, it 
could significantly inhibit the expression of the QS regu-
latory genes.135

Bacterial Resistance to QSIs
The proposal reporting that bacteria may develop resis-
tance to the QSIs compounds was offered for the first time 
in 2010.136 The base for this assumption came from some 
studies demonstrating that the expression of the central QS 
genes was extremely diverse among various strains of the 
bacteria such as Vibrio spp. and P. aeruginosa.137 Lately, 
resistance mechanisms to the best-QSIs have been 
observed in the in vitro, and also in clinical isolates indi-
cating that the increased resistance to these types of com-
pounds is the facility. Brominated furanone C-30 is one of 
the best QSIs that is effluxed by the MexAB-OpmR pump. 
Bacterial species that have mutations in their efflux pump- 
encoding genes mexR and nalC are also resistant to C-30, 
which was observed in P. aeruginosa for the first time.138 

5-fluorouracil also is another QSI that some of the clinical 
isolates of P. aeruginosa are resistant to it.137,139,140 It has 
been proposed that the probabilities of QSIs resistance are 
lower compared to those for conventional antibiotics. In 
this regard, the combination of QSIs and antibiotics to 
hamper biofilms formation and reduce the pathogenic fac-
tors in bacteria, can be considered as an alternative 
approach.
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Conclusion
The QS inhibition is a broadly accepted anti-virulence and 
non-bactericidal mechanism. The development of diverse 
QS suppressing agents and the inhibition of QS mediators 
might be known as an evolutionary alteration that can 
decrease the resistance of the fouling bacteria. In addition, 
QS inhibition alone cannot affect the antibiotic suscept-
ibility of bacteria. Therefore, more studies are required to 
demonstrate their mechanisms of action and the optimal 
amounts of the QS inhibitory compounds that are safe and 
applicable.
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