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Abstract: Persistent hepatitis C virus (HCV) infection is a leading cause of chronic hepatitis, 

cirrhosis, and hepatocellular carcinoma and the major indication for liver transplantation in adults. 

Current standard of care treatment (SOC) with pegylated-interferon-α 2 and ribavirin (RBV) 

has a limited efficacy and is associated with significant side effects frequently associated with 

poor compliance or treatment discontinuation, requiring specialized and frequent monitoring. 

To overcome the limited efficacy of SOC, more than 50 direct-acting antiviral agents (DAA) 

designed to target viral-encoded proteins essential in the HCV life cycle are currently under 

development. The rapid selection of resistant mutants associated with the quasispecies nature of 

HCV with high mutation and replication rates is one of the main challenges for the new HCV 

therapies. Predictive host and viral factors together with combination of DAAs with or without 

IFN and/or RBV need to be accurately evaluated to design the most effective individualized 

treatment strategy within the shortest time interval and with minimum side effects.
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Introduction
An estimated 200 million people are infected with the hepatitis C virus (HCV) world-

wide, a prevalence fivefold higher than that of human immunodeficiency virus (HIV).1,2 

Chronic HCV infection (CHC) is one of the leading causes of chronic hepatitis, cir-

rhosis, and hepatocellular carcinoma (HCC). HCV-associated end-stage liver disease 

and/or HCC account for more than 50% of adult liver transplantation cases in Western 

countries,3 and HCV-associated disease burden is expected to exponentially increase 

in the next decades. Epidemiological studies draw a future gradual decline in the 

infected population; however, the number of patients with HCV-associated cirrhosis 

and its complications is expected to increase exponentially during the next decades.4 

A mathematical model has been used to project, over the next 30 years, the HCV-

related complications and costs in a cohort of 419,895 infected patients,  representing 

the HCV-infected population in Spain. The model predicts a gradual decline in the 

infected population, but the proportion of patients with cirrhosis will increase by up 

to 14% and morbidity associated with HCV infection by up to 10% by the year 2030. 

The same model predicted that treating from 10% to 50% of the HCV population using 

standard therapy will result in a reduction of 6% and 26% in morbidity and 4% and 

20% in mortality in the next decades.5

In contrast to HBV and HIV, HCV does not integrate into the host genome and 

treatment is aimed at viral eradication rather than suppression of viral replication.6 

Indeed, sustained viral response (SVR), defined as undetectable serum HCV RNA 
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6 months after treatment completion, has been shown 

to halt progression to cirrhosis7 in the vast majority of 

patients. Furthermore, viral eradication among patients 

treated when cirrhosis has already established signifi-

cantly reduces the risk of hepatic decompensation and 

HCC,8 increasing survival and reducing the need for liver  

transplantation.

The current standard of care (SOC) treatment for CHC is 

the combination of pegylated-interferon-α 2b (peg-IFN-α 2b, 

PegIntron®; Merck (MSD), Whitehouse Station, NJ) or 2a 

(peg-IFN-α 2a, Pegasys®; Roche, Berlin, Germany) with 

weight-adjusted ribavirin (RBV). The rates of SVR achieved 

with peg-IFN-α and RBV are genotype dependent, with 

∼80% of genotypes 2- and 3-infected patients achieving SVR 

after 6 months of treatment and ∼50% of genotypes 1- and 

4-infected patients treated for 48 weeks.9 Unfortunately, 

HCV genotype 1, the most prevalent worldwide,10–13 is also 

the less responsive to current treatment, with no significant 

differences in SVR rates between the two available peg-IFN 

+ RBV formulations.12 In addition to its limited efficacy, 

SOC treatment is associated with significant side effects,14 

frequently requiring dose reduction or treatment discontinu-

ation (10%–15% of patients), with a significant decrease 

in SVR rates, or even precluding their use in patients with 

certain comorbidities (ie, major psychiatric conditions, renal 

insufficiency, and/or cardiac disease).4 Therefore, the lim-

ited efficacy of peg-IFN + RBV therapy, especially against 

HCV genotype 1, together with side effects and treatment 

contraindications in many patients and a lack of an alterna-

tive to present therapy have led to the use of many adjunctive 

pharmacotherapeutic agents.

This review will highlight the most promising new drug 

treatments under advanced clinical trials, the need to evalu-

ate predictive host and viral factors, and new combination of 

agents with or without IFN and/or RBV to improve antiviral 

efficacy.

Emerging treatments
Emerging treatments have been focused on improving the 

existing armamentarium in the form of modified or alterna-

tive IFN and RBV preparations, identifying new inhibitors 

of HCV, defining new regimens of antiviral combinations, 

and looking for predicting factors of SVR.

New IFN and RBv preparations
The basic requirements for newly developed agents are to 

increase efficacy, to reduce duration of treatment, to reduce 

toxicity and facilitate accomplishment of treatment, and 

to allow treatment of patients with IFN contraindications  

(Table 1).

IFN-λs
IFN-λs are type III interferons (IFNs) that have been shown to 

upregulate major histocompatibility complex (MHC) class I 

antigen expression and induce antiviral protection, antiprolif-

erative, antitumor, and immune responses, as well as activation 

of IFN-stimulated genes.15,16 The correlation between SVR 

rates and a single nucleotide polymorphism (SNP) situated in 

the IL28B genomic region (see below) in genotype 1 HCV-

infected patients treated with SOC highlighted the IFN-λ 

signaling axis as a potential target for novel antiviral drug 

development. Initial studies showed that IFN-λ1 (IL29) and 

IFN-λ2 (IL28A) blocked HCV replication in human hepa-

tocytic cell lines.17–19 In a Phase Ib trial of responders/relaps-

ers chronic HCV patients, the drug showed a robust activity 

against HCV and a low toxicity, which may be explained by a 

much more restricted tissue distribution of the IFN-λ receptor 

compared to that of the IFN-α receptor. Phase IIb studies with 

different IFN-λ doses in combination with RBV (daily) have 

started including patients chronically infected with genotypes  

1 to 4.

Interestingly, there is in vitro evidence that anti-HCV 

activity of IFN-λs and IFN-α is enhanced by a low dose of 

the other, which suggests that both IFNs may interact playing 

a complementary role in the suppression of HCV.17,20

Albumin-IFN-α
Recombinant human slow-release type 1 albumin-IFN-α is 

a novel 85.7-kD recombinant protein consisting of IFN-α-2b 

genetically fused to human serum albumin (Albuferon; 

Human Genome Sciences Inc., Rockville, MD, USA/Novartis 

AG, Basel, Switzerland) named Zalbin in the United States 

and Joulferon in Europe. The advantage of Albuferon is a 

longer mean life that allows regimens of dosage every 2–4 

weeks. Phase III studies reported similar results in SVR 

Table 1 Novel interferon (IFN) and ribavirin (RBv) preparations

Class Agent Phase of 
development

Type III IFN IFN-λ1 (IL-29) Phase IIb

IFN
Slow-release 
type I IFN

Albuferon Zalbin (USA)
Under 
review

Joulferon (eU) Halted
Locteron (BLX-883) Phase II

Oral IFN-α Belerofon Phase II1

RBv RBv prodrug TBv Phase III

Note: 1Phase II 2007.
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rates21 than standard peg-IFN-α 2 in SOC treatment. However, 

observation of respiratory adverse events has prompted the US 

Food and Drug Administration (FDA) to raise some questions 

about the benefit–risk assessment. Recently (in June 2010), the 

manufacturer formally withdrew Albuferon® from European 

license procedure, and also in the United States following the 

61st Meeting of AASLD in Boston.79

Other IFN preparations
Locteron® (Biolex, Pittsboro, NC/OctoPlus, Leiden, The 

Netherlands) is a microsphere-based controlled-release of 

unpegylated IFN-α 2b recombinant formulation that allows 

regimens of dosage every 2 weeks. Clinical trials combining 

Locteron® + RBV have reported similar results than peg-IFN + 

RBV over 12 weeks of treatment and with less fewer flu-like 

side effects.22 Some other promising preparations such as 

Belerofon® (Nautilus Biotech, Evry, France), a slow-release 

IFN preparation that can be orally administrated, omega 

IFN (Intarcia Therapeutics, Hayward, CA),23 a type1 IFN 

that has been tested for anti-HCV effect using an implant-

able infusion pump (Duros device) for the continuous 

delivery and consistent dose of drug for 3–12 months,24 or 

Consensus IFN (CIFN),25 an artificially engineered IFN, 

despite having promising reports, have not reached a final 

approval or been extensively commercialized for different  

reasons.

RBv
RBV is still an essential drug in all present anti-HCV regi-

mens. RBV has antiviral efficacy, measured by clearance of 

HCV RNA, when used in combination with IFN.

The impact of RBV on HCV infection remains poorly 

understood. It has been suggested that RBV acts clini-

cally by promoting nonviable HCV RNA mutation rates 

and is capable of driving replicating virus into error 

catastrophe.26–29 The combination therapy of RBV with IFN 

was superior than RBV monotherapy in inducing nucleic 

acid substitutions.29 The principal specific side effect caused 

by RBV is anemia, and it is frequently detected during 

combination peg-IFN + RBV treatment. Anemia is one 

of the reasons for discontinuation of treatment and makes 

many patients with contraindications, such as patients with 

renal insufficiency and/or cardiac diseases, ineligible.4 To 

improve efficacy, tolerability, and reduce RBV-associated 

anemia,30 liver-targeting RBV prodrugs are under devel-

opment. Among them, taribavirin (TBV) (Viramidine®; 

Valeant Pharmaceuticals, Aliso Viejo, CA) is a prodrug that 

is metabolized by the liver to the active metabolite, thereby 

limiting the red blood cell effect and reducing anemia 

caused by standard RBV. A comparative clinical Phase IIb 

study of RBV versus TBV both combined with peg-IFN-α 

2b revealed that when doses were adjusted to body weight, 

the combination peg-IFN-α 2b + TBV achieved comparable 

virological response rates than standard peg-IFN-α 2b + 

RBV treatment, but with the advantage that TBV caused 

less anemia (7%–15% of peg-IFN + TBV-treated patients 

compared with 24% treated with peg-IFN + RBV).31 Sec-

ondary effects such as diarrhea were more common with 

TBV but were generally mild and not dose limiting. Clinical 

Phase III trials are in process.

New inhibitors of HCv
Manipulation of immune response either 
innate or adaptive
Preliminary data exist for direct immune stimulants, both 

innate and adaptive, as well as therapeutic vaccines. Spe-

cifically enhancing adaptive immunity against HCV-specific 

epitopes with concomitant alteration of the cytokine milieu 

represents multiple opportunities for drug design, but 

manipulation of immune response which represents a tightly 

regulated system represents a delicate balance and can result 

in severe secondary effects (reviewed by Schinazi and cowork-

ers32). A more specific therapeutical approach needs deeper 

knowledge of HCV biology since several HCV proteins 

(core, envelope, NS3, and NS5A) may interfere/inhibit IFN-

α-induced activation of the JAK–STAT pathway, which is a 

critical transducer of IFN-α-mediated signaling and serves 

as a global director of the IFN-α-driven innate immune  

response.33–35

Many classes of immunomodulators are under various 

stages of clinical investigation, including polyclonal antibod-

ies, interleukin therapy, broad-spectrum anti-inflammatory 

agents, and nonspecific immune enhancers such as toll-like 

receptor targets, thymosin α1, 3-hydroxy-3-methylglutaryl-

CoA reductase inhibitors, the monoclonal antiphosphatidyl-

serine bavituximab (Peregrine Pharmaceuticals, Inc., Tustin, 

CA), the dipeptide l-Glu-l-Trp oglufanide (Implicit BioSci-

ence, Toowong, Australia), SCV-07 (SciClone Pharmaceuti-

cals, Inc., Causeway Bay, Hong Kong), and the antiprotozoal 

nitazoxanide.32,36,37

Several therapeutic vaccines are under development. 

GI-5005 (GlobeImmune, Inc., Louisville, CO) has recently 

finished Phase IIb trial and results show that in triple therapy, 

peg-IFN + RBV + GI-5005 increased the SVR in genotype 

1 IFN-naive patients (58%) compared to patients receiving 

peg-IFN + RBV alone (48%).
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Inhibition of host-encoded targets  
essential for viral replication
A number of host-encoded targets essential for HCV 

 replication have been identified, of which enzymatically 

active cyclophilin A is the most advanced. It is required for 

HCV replication and processing kinetics.38 One promising 

drug showing potent anti-HCV function is cyclosporine A 

(CsA) because of its high affinity to cyclophilins (CyPs), but 

it is a powerful immunosuppressive drug39 due to its ability 

to block the phosphatase calcineurin. Because of the nonim-

munosuppressive properties combined with profound antiviral 

activity, CsA derivatives such as Debio-025 (alisporivir; 

Debiopharm SA, Research Triangle Park, NC),40,41 NIM811 

(Novartis, Basel, Switzerland),42 and SCY-635 (Scynexis, 

Durham, NC) are more likely to be used as anti-HCV agents. 

Unlike CsA, these molecules bind to CyPs but do not dis-

play calcineurin inhibition and have demonstrated clinical 

antiviral activity against HCV.43 Clinical Phase IIb trials are  

ongoing.

Recent in vitro assays reveal that the combination of 

Debio-025 with either RBV or another inhibitor (see below) 

in the absence of IFN resulted in additive antiviral activity 

in short-term antiviral assays, delaying or preventing the 

development of resistance to HCV protease inhibitors as well 

as to nucleoside and nonnucleoside polymerase inhibitors. 

This result will improve efficacy in the treatment of patients 

with severe contraindication to IFN treatment.

Debio-025 is an attractive drug candidate for the treat-

ment of HCV infections in combination either with standard 

IFN-based treatment and/or treatments that directly target the 

HCV polymerase and/or protease.44

Use of microRNAs to regulate HCv expression 
(microRNA-122)
MicroRNAs (miRNAs) are key regulators of gene expres-

sion at a post-transcriptional level. The liver-expressed 

 microRNA-122 (miR-122) seems essential for HCV RNA 

accumulation in cultured liver cells since it stimulates its 

replication by binding to the 5′ noncoding RNA region 

(5®NCR), which is highly conserved in all six HCV geno-

types. Treatment of chronically infected chimpanzees with 

a locked nucleic acid-modified oligonucleotide (SPC3649; 

Santaris Pharma, Hoersholm, Denmark) complementary to 

miR-122 leads to long-lasting suppression of HCV viremia, 

with no evidence of viral resistance or side effects in the 

treated animals. Conservation of both miR-122 seed sites in 

all HCV genotypes and subtypes suggests that such therapy 

will be genotype independent.45 However, miR-122 has been 

regarded as the negative regulator of gene expression in, for 

example, cell differentiation, proliferation, migration, and 

invasion. Recent studies have revealed that miR-122 plays 

an important role in the regulation of intrahepatic metastasis 

of HCC46 and that it is downregulated in both primary and 

metastatic HCC.47,48

Therefore, miR-122-based therapeutics might be a 

double-edged sword for the treatment of HCC in HCV-

infected patients and inadvisable for the basic treatment of 

HCV-infected patients.

Hepatitis C
virus life cycle

Drug discovery

HCV attachment and entry

(+) (+/−)

HCV viral
replication

HCV-RNA translation

HCV-RNA post-translation
processing

Viral assembly
and release

Figure 1 Hepatitis C virus life cycle and putative targets to design specific drugs.
Provided by courtesy of Dr Charles Rice and Dr Shihyun You.
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Inhibitors of HCV life cycle steps
All proteins encoded in the small HCV genome are essential 

for viral propagation and very attractive for therapy since 

inhibition of these viral proteins does not mainly affect 

cellular functions. Putative targets to design specific drugs 

include inhibitors of all steps in the HCV life cycle: viral 

entry, HCV RNA translation and post-translational pro-

cessing, HCV replication, and viral assembly and release 

(Figure 1 and Table 2).

Inhibitors of viral attachment and entry
Several receptors have been associated with HCV-specific 

attachment and entry to the hepatocyte. It has been proposed 

that the first step includes the cell surface contact through 

the heterodimeric E1 and E2 proteins. Both glycoproteins 

are expressed on the virus envelope that is associated with 

low- and very-low-density lipoprotein (vLDL).49 Initial host 

cell contact is mediated by interaction with the low-density 

lipoprotein receptor (rLDL) and/or glycosaminoglycans. 

E2 also binds to dendritic cell-specific intercellular adhe-

sion molecule-3-grabbing nonintegrin and liver/lymph 

node-specific intercellular adhesion molecule-3-grabbing 

integrin; the asialoglycoprotein receptor may also interact 

with HCV structural proteins.50–56 The virus subsequently 

binds to high-affinity receptors, including scavenger receptor 

class B type I and the tetraspanin protein CD81, through the 

ecto-domain of E2. It then binds to claudin 1 and occludin, 

both of which are expressed at tight junctions of polarized 

hepatocytes.57,58 Internalization of the virus proceeds through 

clathrin-dependent endocytosis, and viral membrane fusion 

takes place in the acidified endosome, a pH-dependent 

mechanism.59 This releases the viral core into the host cytosol, 

where uncoating and disassembly of the virus capsid releases 

the RNA genome. To date, numerous entry inhibitors are in 

various stages of preclinical development and are reviewed 

by Schinazi and coworkers.32 Among them d,l-a-peptides 

have shown activity in genotypes 1a, 1b, and 2a in vitro,60 

and CD81mAb in liver-uPA-SCID mice model, but admin-

istration of anti-CD81 antibodies after viral challenge had 

no effect.61 Inhibition of viral entry into HCV-permissive 

cells could provide an efficacious mechanism for reduction 

or elimination of viral infection, but blocking cellular recep-

tors with important biochemical functions for the hepatocyte 

without differentiating between infected and noninfected 

hepatocytes may cause important negative effects on the 

normal functionality of the liver.

Inhibitors of viral assembly
Core (191aa) acts as the viral nucleocapsid and RNA packag-

ing. It has good sequence conservation across isolates, and 

the protein is poorly structured prior to assembly. However, 

core–core interaction avidity can reduce potency of any 

inhibitors in vivo. HCV assembly starts with recruitment of 

the core protein and NS5A to the surface of lipid droplets, 

followed by delivery of HCV RNA from the HCV replication 

complex to the nascent viral particle.62,63 However, nonspe-

cific inhibitors targeting this region have not yet proved the 

proof of principle in clinical trials.

Alteration of proper envelope protein folding of many 

viruses has been obtained using α-1 glucosidase I inhibitors.64 

Phase IIa clinical investigation using one of these inhibitors 

named celgosivir (Megenix Inc., Vancouver, Canada) has 

demonstrated potency against both HCV and HBV,64 but 

studies have been cancelled.

Table 2 Some of the most promising direct-acting antiviral agents

Viral life  
cycle step

Target Agent Phase of 
development

Post-translational 
processing

NS3/4A  
protease

Telaprevir  
(vX-950)

Phase III1

Boceprevir 
(SCH503034)

Phase III1

GS-9256 Phase II
BI 201335 Phase II
RG7227  
(Danoprevir)

Phase II

vaniprevir  
(MK-7009)

Phase II

Narlaprevir 
(SCH900518)

Phase II

TMC435 Phase IIa
BMS-650032 Phase II
BMS-791325 Phase II
Danoprevir Phase II
ABT-450 Phase II

NS3 helicase BTN10/BTN11 Preclinical
Replication NS5A AZD-7295 Phase II

BMS-790052 Phase II
A-832 Phase II

NS5B (NI) RG-7128 Phase II
PSI-7977 Phase II
Tegobuvir Phase II
IDX184 Phase II

NS5B (NNI) GS-9190 Phase II
ABT-333 Phase II
ANA598 Phase II
BI-207127 Phase II
ABT-072 Phase II
Filibuvir  
(PF-00868554)

Phase II

vCH-916 Phase II
vX-222 Phase II
vX-759 Phase II

Note: 1Putative final approval in 2011.
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Inhibitors of RNA translation,  
post-translation, and replication
Internal ribosome entry site, p7, and NS2 inhibitors
The internal ribosome entry site (IRES), the initiation of 

cap-independent translation of HCV, serves as a direct regu-

lator for assembly of initiation of translation complexes on 

viral mRNA. It is highly conserved and structured. As this 

mechanism is distinct from those observed in prototypical 

 eukaryotic translation machineries, the inhibition of viral 

IRES could provide a virus-specific target for antiviral 

compounds. Specific inhibitors of IRES HCV translation, 

either RNA molecules (chimeric HH363 that target essen-

tial domain IV stem-loop position 363) that interfere with 

formation of a translationally active complex or DNAzymes 

(specific molecules with cleavage activity) or small molecules 

that bind p7 (63aa, ion channel or porin with low sequence 

conservation) and NS2 (217aa, cysteine autoprotease), have 

reported activity in cell culture,65 but none has yet reached 

development. Antisense RNAs specific for the IRES have 

not yet led to a proof of principle in clinical studies.32

NS3-NS4A-NS4B-NS5A-NS5B inhibitors
More than 50 new drugs specific against HCV named 

direct-acting antiviral agents (DAAs) (also known as specifi-

cally targeted antiviral therapy for hepatitis C or STAT-C) are 

under advanced clinical trials to be used either as an adjunct 

to current SOC therapy in triple, quadruple, or multiple 

combination or in place of it in patients with SOC severe con-

traindications. In the next 2 years, it will likely become stan-

dard for treatment either in naive or in pretreated patients.66 

Among them, DAAs targeting NS3, NS5A, and NS5B have 

demonstrated proof of principle for viable targets.

NS3
NS3 is essential for viral replication. It is a multifunc-

tional protein that harbors a serine protease located in the 

N- terminal one-third (189aa) involved in cis-cleavage of 

NS3–NS4A site, and the NS3 forming an heterodimer 

with NS4A is responsible for the downstream cleavage of 

the NS4A/4B, NS4B/5A, and NS5A/B junctions in the non-

structural region. The C-terminal two-thirds of NS3 have an 

NTPase/RNA helicase domain (442aa).

NS3 protease
NS3 serine protease activity is essential for cleavage of the 

large HCV polyprotein into active peptides that in turn are 

critical in forming the replicative complex from which viral 

RNA synthesis occurs.67–70 The NS3/NS4A serine protease 

also blocks activity of IFN regulatory factor 3 (IRF3), the 

critical transcription factor required for virus-induced IFN 

production.71 Therefore, the NS3 represents a dual therapeutic 

target, the inhibition of which may both block viral replication 

and restore hepatocyte IRF3 control of HCV infection.72

The serine protease inhibitors telaprevir (VX-950;  Vertex, 

San Diego, CA) and boceprevir (SCH503034; Schering-

Plough, Whitehouse Station, NJ) are the most advanced 

DAAs in clinical studies.

Phase II clinical trials using triple therapy with 

peg-IFN-α + RBV + telaprevir (TPR) (termed PROVE 1 

for the US study73 and PROVE 2 for the European one74) 

or boceprevir (BPR) (SPRINT) have shown an important 

increase in SVR rates and a decrease in breakthrough and 

relapse rates, being highest in patients who did not achieve 

a rapid virological response at week 4 with SOC therapy.75 

The addition of a potent protease inhibitor to the SOC treat-

ment considerably accelerates the first slope of viral decline 

during the first few days of therapy.76–78

The Phase IIb studies (PROVE 1 and PROVE 2) in HCV 

genotype 1 patients showed that double combination TPR 

and peg-IFN-α had low efficacy (SVR rates of 41%–46% 

PROVE 1 and 2, respectively) and higher relapse (22%–23%) 

than triple therapy adding RBV (SVR rates 61%–69% and 

relapse 2%–14%). Therefore, the first conclusion of this trial 

was that RBV is still an essential drug for these anti-HCV 

regimens. Another important conclusion was that adminis-

tration of TPR for 12 weeks followed by 12 weeks of SOC 

yields superior SVR rates with shorter duration of therapy 

compared to SOC treatment.73,74

In the case of BPR, triple combination was compared 

with SOC treatment in the SPRINT-1 study. A key aspect 

of this trial was the assessment of a 4-week SOC lead-in 

phase before the introduction of BPR in triple therapy. The 

rationale for this approach was to establish antiviral activity 

before adding BPR with the hope of minimizing the risk of 

emergent drug resistance, followed by 44 weeks of triple 

therapy with BPR (for a total of 48 weeks of treatment). The 

most important finding from this analysis was that 44 weeks 

of BPR following the 4-week lead-in phase was associated 

with the highest SVR rate of 75% compared to 38% with 

SOC (P , 0.0001). The next highest SVR rate was 67%, 

which was achieved by patients receiving the 48-week triple-

combination regimen that did not include lead-in treatment 

(P , 0.0001 versus SOC). The proportion of patients who 

achieved SVR with 24 weeks of triple therapy following a 

4-week lead-in phase was 56% (P = 0.0005 versus SOC) 

versus 54% with 28 weeks of triple therapy and no lead-in 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Infection and Drug Resistance 2010:3 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

139

New strategies for the treatment of HCv

treatment (P = 0.013 versus SOC). BPR seems to be quite 

effective in this context, and the triple-combination regimen 

with the 4-week lead-in phase has been selected for further 

evaluation in Phase III clinical trials.

In both TPR and BPR treatment clinical trials, the 

improved efficacy comes with additional side effects, par-

ticularly rash and increased anemia, and a risk of  selecting 

drug-resistant viral variants that may limit subsequent 

therapeutic options.75,79 As a result, response-guided therapy 

has been adopted in the design of the Phase III trials either 

using TPR or BPR.

The recently reported Phase III study named ADVANCE 

(Vertex) using TPR is an example of a response-guided trial. 

Seventy-five percent of patients infected with HCV1 who 

were not previously treated achieved an SVR after receiving 

12 weeks of TPR in triple therapy followed by a course of 

SOC therapy for at least another 12 weeks. In the ADVANCE 

trial, in the TPR group, if the virus was sufficiently sup-

pressed after 4 weeks, patients received only 24 weeks of total 

treatment (half the standard treatment time). Notably, about 

70% of those who achieved SVR only received 24 weeks of 

therapy. Patients in the control group underwent standard 

therapy for 48 weeks and 44% achieved an SVR.

In the case of BPR, Phase III trials have been focused 

on treating genotype 1 patients who were nonresponders 

or relapsers to prior therapy comparing SOC treatment 

(arm1) with response-guided therapy receiving BPR in 

triple therapy for 32 weeks, and those HCV RNA positive 

at week 8 received an additional 12 weeks of SOC (arm2), 

and BPR of 44 weeks (arm3). There was a significant 

absolute increase in SVR compared with SOC of 37.4% 

in arm2 and 45.2% in arm3.

Phase III results from either TPR or BPR in triple therapy 

fuel hopes for major improvements in treatment outcomes 

increasing the cure rate by more than 30%.75,79,80

To improve the pharmacokinetic profile, dosing inter-

vals, and perhaps some advances in safety and tolerability,80 

second-generation protease inhibitors taken once a day 

(at present TPR and BPR have to be taken orally three 

times a day) are in Phase II trials. Some of these new-wave 

NS3 protease inhibitors include the following: BI-201335 

(Boehringer Ingelheim, Ingelheim am Rhein, Germany), 

BMS-650032 (Bristol-Myers Squibb, New York, NY), 

GS-9256 (Gilead, Foster City, CA), Danoprevir/R7227/

ITMN191 (InterMune, Brisbane, CA/Roche) and NS3/

NS4 A inhibitors ABT-450 (Abbott, Abbott Park, IL/

Novartis), and Vaniprevir/MK7009 (Merck) among many  

others.

A conclusion extracted from the clinical trials using DAAs 

has been that in order to improve efficacy, reduce duration 

of treatment, and facilitate accomplishment of treatment, 

response-guided therapies should be faced by using predic-

tive values. Virologic response rates have been shown to 

depend on various baseline host and viral factors such as age, 

weight, gender, race, liver enzymes, stage of fibrosis, HCV 

genotype, and HCV RNA concentration at baseline10,11,81–85 

and also on treatment factors at the time of HCV RNA 

clearance. Among chronically infected patients, response 

to treatment differs, even among cases with similar HCV 

RNA levels and identical viral genotypes,10,11,86,87  suggesting 

that other factors should be taken into consideration. A 

recent genome-wide association study with 1671 individuals 

infected with HCV genotype 1 showed that genetic variation 

in the IL28B gene, which encodes IFN-λ, is associated with 

spontaneous HCV clearance88 and therapy response to SOC 

treatment.89–91 Particularly, the presence of a C/C genotype 

in the SNP rs12979860 located on chromosome 19q13 was 

strongly associated with an SVR. The corresponding SVR 

rates being ∼80% for the C/C genotype, ∼40% for the T/C 

genotype, and ∼30% for the T/T genotype aimed at identifying 

genetic contributions to anti-HCV response.89,92 It has been 

recently shown that rs12979860 genotype is a significant 

predictor of SOC response in CHC patients independent of 

HCV genotype and other covariates.93 Interestingly, in a ran-

dom multiethnic population of 455 patients, the C-allele fre-

quency was ∼90% in East Asian patients, ∼55% in European 

American patients, and just ∼25% in African–Americans. This 

finding finally sheds some light on the precise mechanisms 

that are behind the significantly lower SVR rates obtained in 

African–Americans compared with Caucasians94,95 and the 

higher SVR rates consistently reported in trials of anti-HCV 

therapy conducted in Asia.96 The association between SNPs 

in the IL28B region and SVR in HCV-1-infected patients has 

been confirmed by different studies.20,88–90,95 A more fine map-

ping revealed seven SNPs associated with NVR: rs8105790, 

rs11881222, rs8103142, rs28416813, rs4803219, rs8099917, 

and rs724866891 that need further analysis.

NS3 helicase
The carboxy terminal, two-thirds of NS3, constitutes the 

helicase domain, which is also essential for the replication 

of viral RNA. The helicase domain might stimulate the activ-

ity of NS5B polymerase, resolve RNA secondary structure 

immediately prior to replication by the polymerase, and/or 

separate newly synthesized double-stranded RNA into posi-

tive and negative strands. Two tropolone derivatives, BTN10 
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and BTN11,97–100 and trixsalen101 have significant antiviral 

activity in the HCV replicon system.

NS4A
NS4A is part of the NS3 protease structure and acts as a 

 membrane anchoring the replication complex. No  structural 

information is known, except that the central  portion binds 

to NS3. It may be a ‘druggable’ target.

NS4B
NS4B possibly has an important activity in the formation 

of membranous web structure and assembly of replication 

complex and/or NTPase. It is among the key players in 

the HCV replication cycle and hypothesized to bind RNA. 

A nucleotide binding motif was identified within NS4B to 

bind and hydrolyze GTP,102 and it is suggested that it may 

also bind polynucleotide structures. It is a hydrophobic and 

poorly structured protein and may represent a challenge for 

biochemical analysis and antiviral targeting. In fact, ATPases 

and GTPases have previously been targeted successfully. 

Recently, high-throughput screening for inhibitors of the 

RNA binding function has identified an H1 histamine recep-

tor antagonist (clemizole hydrochloride) that substantially 

inhibits HCV replication in cell culture. This approach for 

drug discovery seems useful when dealing with membrane-

bound protein targets.103

NS5A
NS5A is a multifunctional protein with critical viral key 

functions, regulation of HCV RNA replication, virus 

assembly, multiple viral–viral and viral–host protein interac-

tions, modulation of cellular signaling pathways, and IFN 

response.104 It contains a putative IFN sensitivity-determining 

region and may play a role in resistance to IFN-α.105 As a 

multifunctional protein required for in vivo and in vitro rep-

lication with unknown human homologues, NS5A represents 

an attractive target for therapeutic intervention. Proof of 

principle for NS5A as a viable target has been demonstrated 

in early clinical trials in HCV-infected subjects. Two potent 

NS5A DAAs compounds, AZD-7295 (AstraZeneca, Madrid, 

Spain) and BMS-790052 (Bristol-Myers Squibb), have been 

evaluated in Phase II clinical trials. BMS-790052 has shown 

strong activity against several genotypes106 in replicon and 

JFH-1 systems, and it has demonstrated a rapid and robust 

HCV RNA decline (∼3.6 log 10) in clinical trials with no 

signs of adverse effects.107 Promising results from clinical tri-

als provide the basis for designing second-generation NS5A 

polymerase inhibitors.108

NS5B, RNA-dependent RNA polymerase
Although protease inhibitors are expected to reach the market 

first, investigational agents that block other HCV enzymes, 

such as NS5B protein, are of special interest because NS5B 

specifically catalyzes viral RNA synthesis and genome 

replication. Proof of principle for NS5B as viable target has 

been demonstrated in clinical trials. Inhibitors of HCV NS5B 

RNA-dependent RNA polymerase (RdRp) are divided into 

two classes: nucleoside and nonnucleoside inhibitors (NI 

and NNI, respectively). Nucleoside polymerase inhibitors in 

particular appear to have a high genetic barrier to resistance, 

but the nonnucleosides also offer great promise in combina-

tion with other drugs.

NI: In their active triphosphate forms, NI metabolites act as 

nonobligate chain terminators while competing with the natu-

ral substrate nucleotides for the HCV NS5B RdRp, thereby 

reducing the efficiency of further RNA elongation through 

steric resistance. To date, many NI polymerase inhibitors 

are under early stages of clinical investigation,32,80 and the 

most advanced ones, which are in Phase II, include RG-7128 

(Pharmasset, Princeton, NJ/Roche),  PSI-7977 ( Pharmasset/

Roche), Tegobuvir (Gilead), and IDX184 (Idenix Pharma-

ceuticals, Cambridge, MA).

NNI: The primary mechanism of action for NNI is spe-

cific targeting of different and less-conserved allosteric 

sites of the HCV NS5B polymerase. Multiple NS5B HCV 

inhibitors are under clinical investigation, and the ones 

that are in Phase II include GS-9190 (Gilead), ABT-333 

(Abbott Laboratories), ANA598 (Anadys Pharmaceuti-

cals, San Diego, CA), BI-207127 (Boehringer Ingelheim), 

ABT-072 (Abbott Laboratories), Filibuvir/PF-00868554 

(Pfizer, New York, NY), VCH-916, and VX-222 (Vertex  

Pharmaceuticals).32,80

SOC-free treatments
Side effects caused by SOC contraindicated treatment of 

many patients. It is clear that monotherapy with a DAA is not 

possible because resistance mutants appear in a few days of 

treatment. In this scenario, researchers are looking at using 

combinations of DAAs targeting different viral functions 

for which there is no cross-resistance, as has been success-

fully applied at preventing resistance in HIV treatment. The 

basic knowledge for this approach is that to get resistance, 

a combination of two drugs needs to be developed, which 

is obviously much less likely than with just one drug.109 At 

this moment, whether SOC-free regimens are possible and, 

if they are, what will be the best combinations of DAAs, 

needs further study.
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The first IFN/RBV-free regimen trial (INFORM-1) was 

performed by combining the HCV protease inhibitor RG7227 

(also known as ITMN-191) with the polymerase inhibitor 

RG7128 (Roche/Genentech, San Francisco, CA) and results 

showed that over the course of a 14-day study, there was an 

HCV viral load reduction below the limit of  quantification in 

63% of subjects enrolled,110 opening the possibility to treat 

patients with contraindications to IFN and/or RBV treat-

ments. Other combinations that are under study include BMS-

650032 (NS3 inhibitor) with BMS-790052 (NS5A inhibitor) 

by Bristol-Myers Squibb or GS9256 (protease inhibitor) with 

tegobuvir (NI NS5B inhibitor) by Gilead80 (Table 3).

Antiviral drug resistance
Antiviral drug resistance mutations, especially to new DAAs, 

cause an important drawback in the treatment of chronic 

infection. The primary factor involved in viral resistance is 

the quasispecies nature of HCV, a consequence of the high 

viral turnover via the error-prone polymerase. HCV has a 

half-life of only 2–5 h, with the production and clearance of 

1010–1012 virions/day in an infected patient.111,112 The enzyme 

used for the HCV for replication (RdRp codified by the NS5B 

genetic region) has poor fidelity and lacks an exonucleolytic 

proofreading mechanism; replication is, therefore, inherently 

error-prone, with an error-rate in the order of 10−3–10−4 muta-

tions/site and genomic replication cycle (corresponding to a 

natural evolutionary rate of 1.5 × 10−3 base substitutions/site/

year).113,114 As a consequence of high mutation rate and high 

level of replication, the virus circulates as a complex mixture 

of different but closely related genomes known as quasispe-

cies in the infected host.115 Quasispecies represents a highly 

dynamic structure with mutants continuously arising, all 

competing but interacting (they may cooperate) and displaying 

different phenotypes and fitness.116 Single mutations at each 

position in the genome arise at least once every day, and in 

consequence, potentially drug-resistant mutants are constantly 

being generated. Since antiviral-resistant mutants are often 

less replication-competent than the corresponding wild-type 

(wt) viruses, they represent minority mutants in the absence 

of drug therapy. During antiviral treatment, such mutants are 

selected and arise as major components of the viral quasispe-

cies contributing to treatment failure. Besides, compensatory 

mutations selected in the same genome contribute to fitness 

recovery.117,118 On stopping the treatment, if such mutations 

are less competitive than others, they might be negatively 

selected and relegated to a minority population, but remaining 

at a higher proportion than before, generating a memory in 

the quasispecies. It has been recently reported that a resistant 

variant may persist for at least 3 years following a 14-day trial 

with DAA monotherapy.119 If the patient is then retreated with 

the same drug or with a cross-reactive one, the HCV-resistant 

variant rapidly emerges, within days, thus contributing to a 

rapid treatment failure.120 Therefore, the use of any DAAs in 

monotherapy should not be ever considered since resistance 

develops within the first day of treatment with the risk of 

selecting mutants that may cross-react with other inhibitors. For 

instance, genotype 1b replicons subjected to a single protease 

inhibitor (ie, TPR or BPR) selected NS3 protease resistant 

variants such as substitutions A156T/A156V and R109 K to 

make the virus resistant to all other inhibitors. Some authors 

argue that in most cases, mutation A156T significantly reduces 

NS3/4A catalytic efficiency, polyprotein processing, and repli-

con fitness, but RNA viruses like HCV having an enormous 

capacity of adaptation and second-site mutations such as 

P89 L, Q86R, and G162R have been described to partially 

reverse A156T-associated defects in polyprotein processing 

and/or replicon fitness, without significantly reducing resis-

tance to the protease inhibitor.121–124 As resistance is a major 

problem, the FDA has restricted the use of monotherapy to 

3 days in early studies and then SOC has to be added.

Key issues relevant to the development of resistance 

include the number of mutations needed to introduce the 

required coding change(s), the replication capacity of the 

variant virus, the prevalence of the variant within the quasi-

species, the level of resistance that it confers to the virus, and 

the potency and bioavailability of the antiviral agent.125 Other 

viral factors include viral quasispecies heterogeneity and, 

to a less extent, specific mutations within the core, E2, and 

NS5 A coding regions. The availability of recently developed 

platforms for massive parallel high-throughput sequencing 

of both viral populations and host polymorphisms (ie, IL28 

and MHC haplotypes for HCV), especially those capable of 

clonally sequencing long fragments (ie, 454/Roche), should 

facilitate optimization of treatment.

Table 3 SOC-free DAA combinations

Agent 1 Agent 2 Phase of  
development

RG7227 (ITMN-191) 
(Danoprevir)  
(protease inhibitor)

RG7128  
(polymerase inhibitor)

Phase I

BMS-650032  
(protease inhibitor)

BMS-790052  
(NS5A inhibitor)

Phase I

GS9256  
(protease inhibitor)

Tegobuvir  
(polymerase inhibitor)

Phase II

Telaprevir  
(protease inhibitor)

vX-222  
(polymerase inhibitor)

Phase II
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Conclusion
Persistent HCV infection is a leading cause of chronic hepa-

titis, cirrhosis, and HCC and the major indication for liver 

transplantation in adults. In contrast to HBV and HIV, HCV 

can be permanently eradicated from the infected host. Current 

SOC with pegylated IFN-α 2 and RBV for 48 weeks eradi-

cates infection in ∼50% of HCV genotype 1-infected patients 

and is associated with significant side effects, which limit its 

effectiveness in many cases (ie, dialysis and HIV-infected 

patients, transplant recipients, etc.), and are frequently asso-

ciated with poor compliance or treatment discontinuation, 

requiring specialized and frequent monitoring.

In recent years, host (IL-28B polymorphisms, MHC hap-

lotypes, and several polymorphisms in cytokine/chemokines 

and IFN signaling pathways) and viral factors (genotype, 

viral load, quasispecies complexity, and mutations in viral-

encoded proteins) have been strongly associated with SOC 

treatment outcome. Hence, accurately predicting response to 

SOC (and to any available DAA) will require  identification 

of host and viral factors independently associated with 

treatment outcome to design cost-effective, individualized 

treatment strategies.

To overcome the limited efficacy of SOC, more than 50 

DAAs, designed to target viral-encoded proteins essential 

in the HCV life cycle (ie, NS3 protease, NS5B polymerase, 

NS5A, etc.), are currently under development. Phase III trials 

have just been completed for two protease inhibitors (TPR 

and BPR) and have shown a highly significant increase in 

viral eradication rates when given in association with SOC 

treatment. The rapid selection of resistant mutants associ-

ated with the high mutation rate of HCV have clearly shown 

that DAAs cannot be given in monotherapy and SOC–DAA 

combinations will be required in the near future.

Nonetheless, the ultimate goal of HCV treatment (HCV 

eradication in every patient within the shortest time interval 

and minimum side effects) will imply the design of IFN-free 

specifically targeted anti-HCV treatment (STAT-C) strate-

gies with a combination of DAAs targeting different steps 

of the HCV life cycle.
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