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Purpose: Glioblastoma (GBM) is the most commonly diagnosed primary brain tumor in 
adults. Despite a variety of advances in the understanding of GBM cancer biology during 
recent decades, very few of them were applied into treatment, and the survival rate of GBM 
patients has not been improved majorly due to the low chemosensitivity to temozolomide 
(TMZ) or low radiosensitivity. Therefore, it is urgent to elucidate mechanisms of TMZ- and 
IR-resistance and develop novel therapeutic strategies to improve GBM treatment.
Methods: TMZ- and IR-resistant cell lines were acquired by continuous exposing parental 
GBM cells to TMZ or IR for 3 months. Cell viability was determined by using 
Sulforhodamine B (SRB) assay. Protein and mRNA expression were examined by Western 
blotting assay and quantitative polymerase chain reaction (qPCR) assay, respectively. 
Homologous recombination (HR) and nonhomologous end joining (NHEJ) efficiency were 
measured by HR and NHEJ reporter assay. Cell apoptosis was determined by Caspase3/7 
activity. Autophagy was analyzed using CYTO-ID® Autophagy detection kit. Tumor growth 
was examined by U87 xenograft mice model.
Results: DNA repair efficiency of non-homologous end joining (NHEJ) pathway is sig-
nificantly increased in TMZ- and IR-resistant GBM cells. Importantly, APLF, which is one of 
the DNA end processing factors in NHEJ, is upregulated in TMZ- and IR-resistant GBM 
cells and patients. APLF deficiency significantly decreases NHEJ efficiency and improves 
cell sensitivity to TMZ and IR both in vitro and in vivo.
Conclusion: Our study provides evidence for APLF serving as a promising, novel target in 
GBM chemo- and radio-therapy.
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Introduction
Glioblastomas (GBMs) are generally fatal, malignant brain tumors.1 It is deemed 
the most common and aggressive form of primary brain tumor in adults with about 
one year median survival and less than 10% 5-year survival rate.2 The current first- 
line therapy after surgical resection is a combination of radiotherapy and che-
motherapy with temozolomide (TMZ).3–5 However, a majority of GBM patients 
developed either intrinsic or acquired chemoresistance to TMZ.6–9 Unfortunately, 
there are very limited alternative chemotherapeutic drugs for GBM and the TMZ- 
resistant patients are left without therapeutic strategies.7 Therefore, it is critical to 
elucidate the mechanisms of TMZ resistance in GBM and identify novel methods to 
improve GBM therapy. TMZ acts as an alkylating agent that methylates DNA at O6 
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and N7 position of guanine, and O3 position of adenine.10 

O6-meG, which is the main contribution of cytotoxicity, 
can be directly reversed by O6-methylguanine methyl 
transferase (MGMT).11 The mutation of DNA triggers 
mismatch repair (MMR) to generate a nick and leads to 
DNA double stand break during second round 
replication.12

DNA double-strand break (DSB) is extremely toxic for 
cell survival and that is the strategy of variety of che-
motherapeutic compounds and radiotherapy.13 Therefore, 
understanding the contribution of DSB repair in TMZ- 
resistance may provide new therapeutic targets. There are 
two major DSB repair pathways in human, homologous 
recombination (HR) and non-homologous end joining 
(NHEJ).14–16 HR is considered to be an error-free DSB 
repair pathway because it incorporates sister chromatid as 
template during polymerizing the gap. This dependence of 
template limits HR in late S to G2 phase when sister 
chromatids are available.17 On the other hand, NHEJ 
does not require templates to join DNA ends so it can be 
performed throughout the whole cell cycle.18 The essential 
factors of NHEJ include Ku70/80 heterodimer, DNA- 
PKcs, XRCC4, XLF and Ligase IV.18 The pathway is 
initiated by Ku-DNA interaction followed by recruitment 
of other NHEJ key factors by Ku.19 NHEJ is not a simple 
end-to-end joining pathway but requires ligatable DNA 
ends. Therefore, DNA end processing factors are impor-
tant acquisitions of NHEJ, such as Artemis, PNKP, TDP1, 
WRN and APLF.20–25

Aprataxin-and-PNK-Like Factor (APLF) was identified 
in 2007 as a novel component of NHEJ.26 It promotes 
efficient NHEJ followed by ionizing radiation, especially 
during the first few hours after DNA damage.27 It suggests 
that APLF would serve as a promising target to reduce 
both chemo- and radioresistance generated by NHEJ. Our 
study found that APLF contributes to NHEJ efficiency in 
GBM cell lines. Importantly, we observed that APLF 
deficiency can significantly sensitize GBM cells to TMZ 
and IR, indicating that APLF is a promising target for 
GBM treatments.

Methods and Materials
Cell Lines and Cell Cultures
U87 (ATCC, HTB-14) and T98G cells (ATCC, CRL-1690) 
were cultured at 37°C in 5% CO2 atmosphere in EMEM 
(ATCC 30–2003) with 10% FBS for less than 2 months. 
U87 and T98G TMZ-resistant cells were generated by 

incubating with 50 to 100 μM TMZ for 3 months.28 To 
create IR-resistant GBM cells, we expose U87 and T98G 
cells to 1 to 2 Gy IR twice a week for 2 months.

Reagents
TMZ was purchased from sigma (T2577). siAPLF was 
purchased from Dharmacom (J-018493-17-0002 and 
J-018493-17-0002). APLF mammalian expression vector 
(pcDNA3.1(+)) used as negative control was purchased 
from ThermoFisher Scientific (V79020). Autophagy 
detecting Cyto-ID Green dye was purchased from Enzo 
Life Sciences (ENZ-KIT175-0050). Crystal violate was 
purchased from sigma (C0775).

Cell Viability Assay
Cells were seed at 3x103 cells/well and cultured for over-
night to allow adherence. Cells were incubated with drug for 
72h and the cell viability was detected by using 
Sulforhodamine B (SRB) assay.29 Cells were fixed by 100 
µL/well of 10% trichloroacetic acid at 4°C for 1 hour. Plate 
was washed and air dried for 1 hour at room temperature 
(RT). Cells were stained by 100 µL/well 0.02% SRB in 1% 
acetate acid for 1 hour at RT. Plates were washed for 3 times 
with 200 µL/well 1% acetate acid and air dried. 200 µL/well 
of 10 mM tris-HCl, pH 10.5 was added in each well to 
extract SRB with 1 hour shaking on an orbital shaker. The 
absorbance was measured at 510 nm by microplate reader 
(Thermo Scientific).

qPCR
QRT-PCR was performed according to previous studies.30 

Briefly, Total RNA was extracted from cells by using 
RNeasy Mini Kit (QIAGEN). Complementary DNA was 
synthesized using TaqMan™ Reverse Transcription 
Reagents (ThermoFisher Scientific). Gene expression for 
APLF was performed using quantitative RT-PCR (qPCR) 
with Fast SYBR™ Green Master Mix (ThermoFisher 
Scientific) and human GAPDH was used as the internal 
normalization control. Each assay was repeated in tripli-
cate on a Thermal Cycler Eco qPCR system (Eppendorf). 
APLF primers: 5ʹ-3ʹ CAAGGAAGCCCTGAAATAACC; 
3ʹ-5ʹ CTGAAAGCTCTGCATTCACCT. Patients who did 
not exhibit significant anti-tumor effect observed by CT or 
MRI after 5 weeks of TMZ treatment (75mg/m2/day) were 
determined as TMZ-resistant patients. Studies involving 
patient samples were approved by the Shandong Cancer 
Hospital, and all patients provided informed consent, in 
accordance with the Declaration of Helsinki.
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Knockout APLF in U87 Cells by Using 
CRISPR/Cas9
Cas9 along with APLF guide RNA plasmid was con-
structed by ligating oligonucleotide duplexes, which tar-
gets exon1 of APLF, into BbsI cut pX330-U6-Chimeric 
_BB-CBh-hSpCas9 (Addgene #42,230). The plasmid was 
transfected into U87 cell line along with pcDNA3.1.puro 
by lipofectamine 2000 and incubated for 3 days. Cells 
successfully transfected with APLF KO plasmid were 
selected by puromycin for 3 days. Cells were harvested 
and seeded in 10 cm plate at concentrations of 10–100 
cells/mL and incubated for 2 weeks. Induvial clones were 
passaged, expanded and screened for APLF expression. 
We randomly picked 2 APLF KO clones for further 
studies.

DSB Reporter Assay
NHEJ and HR reporters were previously described.31,32 

Briefly, 10 μg of NHEJ reporter or HR reporter cassette 
were linearized by 50 U of NheI in a 50 μL reaction for 4 
hours in 37°C water bath. Linearized DNA was gel pur-
ified and 1 μg of clean and linearized plasmid was trans-
fected into U87 cells by using Lipofectamine3000 
according to manufacturer’s instruction. Cells with chro-
mosomally integrated reporter were selected by 1 mg/mL 
geneticin 3 days after transfection for 2 weeks. Stable 
transfected cells were seeded at 3x105 cells/mL in 
a 6-well plate and 2µg/well of I-SceI coding plasmid was 
transfected into the cell by lipofectamine 3000 and incu-
bated for 48h. Cells were harvest and GFP positive cells, 
which indicating successful NHEJ repair, were count by 
flow cytometry (BD FACSCelesta™ Flow Cytometer).

Western Blot Assay
Protein samples were denatured by using SDS-PAGE sam-
ple buffer, boiled for 5 min. The samples were then loaded 
and separated on a 7% polyacrylamide gel (29:1) (BIO- 
RAD, 1,610,156) at 120 V for 1.5 hour on electrophoresis 
apparatus (BioRad). Separated samples were transferred to 
nitrocellulose membrane at 100v at 4°C for 1 hour. 
Membrane was blocked by 3% non-fat milk solution dilute 
in PBS with 0.1% Tween20 and probed by relevant anti-
body followed by HRP-conjugated rabbit secondary anti-
body. The protein signal was developed by 
SuperSignalTM west pico PLUS Chemiluminescent 
Substrate (ThermoFisher Scientific #34,580) and detected 
by ChemiDocTM (BioRad).33

Colony Formation Assay
Cells were seeded in 6-well plates at a concentration of 
500 cells/well and cultured for overnight to allow adher-
ence. The cells were subsequently treated with 1Gy of IR 
and cultured for 10 days. The colonies were washed with 
PBS, fixed with 4% paraformaldehyde for 10 min and 
stained with 0.01% crystal violate (Sigma) at room tem-
perature for 30 min. The colonies were then washed with 
dH2O. Images were captured under a stereomicroscope 
and quantified.

Animals
Female BALB/c nude mice (5 weeks old, 18 ± 2 g) were 
purchased from Jiangsu ALF Biotechnology Co., LTD. 
(Nanjing, China). 5x106 U87-TR or U87-TR-KO cells 
were subcutaneously injected to generate tumor xenograft 
model. Treatments were given when the tumors were 
approximately 100 mm3 in volume. Mice were treated 
with vehicle or TMZ (7.5mg/kg/day) intraperitoneally for 
2 weeks. Tumor volume and body weight were measured 
with a caliper every 3 days using the formula, volume=-
length x width2/2. All the animal experiments were author-
ized by the Laboratory Animal Care and Ethical 
Committee of the Shandong Cancer Hospital and 
Institute, and were performed following the Guide for the 
Care and Use of Laboratory Animals (8th edition, 2011, 
National Academies Press (US)).

Statistical Analysis
Data are expressed as the means ± standard deviations 
from 3 independent experiments. Comparisons between 2 
groups and multiple groups were conducted using the 
Student’s t-test and one-way ANOVA. Differences were 
considered significant at a p value<0.05. Prism7 software 
was used for performing all statistical analysis (GraphPad 
Software, La Jolla, CA, USA).

Results
Establish TMZ- and Radioresistant GBM 
Cell Lines
To study the mechanism underlying chemo- and radio-
resistance in GBM, we first generated GBM cell lines 
that were resistant to TMZ or ionizing radiation (IR). As 
shown in Figure 1A and B, we successfully increased 
TMZ IC50 by 3.75- and 5.26-folds in U87 and T98G 
cell lines, respectively, by incubating wild type (WT) 
cells with 50 to 100 μM TMZ. To create IR-resistant 
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Figure 1 Establish TMZ-resistant and radioresistant GBM cell lines. (A) Cell viability of U87-WT and U87 TMZ resistant (U87-TR) cells. TMZ concentrations are 0 μM, 50 μM, 100 μM, 
200 μM, 400 μM and 800 μM. Data are represented as mean ± standard deviations (SD) of three independent experiments. (B) Cell viability of T98G -WT and T98G TMZ-resistant 
(T98G-TR) cells. TMZ concentrations are 0 μM, 100 μM, 200 μM, 400 μM, 800 μM and 1600 μM. Data are represented as mean ± SD of three independent experiments. (C) Cell viability 
of U87-WT and U87 IR-resistant (U87-IRR) cells. IR doses are 0 Gy, 1 Gy, 2 Gy, 4 Gy, 8 Gy and 16 Gy. Data are represented as mean ± SD of three independent experiments. (D) Cell 
viability of T98G-WT and T98G IR-resistant (T98G -IRR) cells. IR doses are 0 Gy, 1 Gy, 2 Gy, 4 Gy, 8 Gy and 16 Gy. Data are represented as mean ± SD of three independent experiments. 
(E) Relative DSB repair events in U87-WT, U87 TR, (F) T98G -WT and T98G-TR cells. (G) Relative DSB repair events in U87-WT, U87 IRR, (H) T98G -WT and T98G-IRR cells. 
***P<0.001.
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GBM cells, we expose U87 and T98G cells to 1 to 2 Gy IR 
twice a week for 2 months and measured cell viability 3 
days after IR. We found that U87 IR-resistant cells (U87- 
IRR) and T98G IR-resistant cells (T98G-IRR) had 5.07- 
and 4.62-folds increase of IC50 to IR as compared to their 
parental cell lines (Figure 1C and D). We used these cell 
lines for further molecular mechanism studies.

Both TMZ and IR induce DSBs that require HR or NHEJ 
to prevent cell death. To determine which DSBR pathway is 
activated in response to TMZ and IR treatment, we then 
incorporated well-established, cell-based HR and NHEJ effi-
ciency assay that measures DSBR events on chromosomal 
level.34 As shown in Figure 1E and F, NHEJ was signifi-
cantly upregulated in TMZ-resistant GBM cell lines as com-
pared to the parental cell lines. Similarly, IR-resistant U87 
and T98G cells exhibited increased NHEJ efficiency as com-
pared to WT cells (Figure 1G and H). However, resistant cell 
lines did not exhibit difference in HR efficiency as compared 
to their parental cell lines (Figure 1E–H). These results 
suggest that NHEJ plays an important role in mechanism of 
TMZ- and IR-resistance.

Expression of APLF Positively Correlated 
to TMZ and IR Resistance
To identify which NHEJ factor is misregulated in chemo- 
or radioresistance GBM, we extracted RNA from TMZ 
sensitive- and resistant-patient samples. We next measured 
mRNA expression levels of NHEJ factors by using qPCR 
and we found that APLF was significantly increased in 
patients resistant to TMZ as compared to that in TMZ- 
sensitive patients (Figure 2A). In consistent with DSBR 
efficiency results, mRNA expression of RAD51 and 
BRCA1, which are essential factors of HR, did not change 
in TMZ sensitive- and resistant-patient samples 
(Supplementary Figure 1A and B). To further confirm 
whether protein expression of APLF also increases in 
TMZ-resistant patient sample, we used Western blotting 
assay to compare APLF expression and two representative 
results from TMZ-sensitive and TMZ-resistant samples 
were shown (Figure 2B). Indeed, we observed that both 
TMZ-resistant samples (R1 and R2) showed upregulated 
APLF protein expression as compared to that in TMZ- 
sensitive samples (S1 and S2).

We also used the cell lines generated above to evaluate the 
role of APLF in TMZ- and chemoresistance. We found that 
APLF was upregulated in both TMZ-resistant GBM cell lines 
(U87-TR and T98G-TR) as compared to that in their parental 

cell lines (Figure 2C, Supplementary Figure 2A and B). 
Similarly, we found the APLF expression was increased in IR- 
resistant cell lines (U87-IRR and T98G-IRR) (Figure 2D, 
Supplementary Figure 2C and D). In addition, as shown in 
Supplementary Figure 3A to D, TMZ-resistant cells were 
resistant to IR and vice versa. This could be explained by 
their shared APLF upregulation. Our results suggest that 
APLF is correlated with both IR- and TMZ-resistance in 
GBM. These data indicate that APLF contributes to radio- 
and chemoresistance in GBM.

APLF Contributes to NHEJ Efficiency in 
GBM Cells
Since APLF participates in end processing in NHEJ followed 
by ionizing radiation,35 we hypothesized that APLF contri-
butes to NHEJ efficiency in resistant GBM cells. To evaluate 
the role of APLF in NHEJ, we generated APLF knock-out 
(KO) TMZ- and IR-resistant GBM cells (U87-TR-KO, U87- 
IRR-KO, T98G-TR-KO and T98G-IRR-KO) by using 
CRISPR/Cas 9 technique. As shown in Figure 3A–D, these 
KO cell lines had no detectable APLF protein expression. We 
then compared NHEJ efficiency between APLF-proficient 
and APLF-deficient GBM cells and found that APLF defi-
ciency significantly impaired NHEJ efficiency in TMZ- and 
IR-resistant cells (p<0.001) (Figure 3E–H). It is possible that 
upregulation of NHEJ efficiency in TMZ-resistant cells may 
be regulated by other proteins rather than APLF. To confirm 
APLF is the primary protein contributes to NHEJ efficiency 
in TMZ-resistant cells, we ectopically expressed APLF in 
U87-TR-KO, U87-IRR-KO, T98G-TR-KO and T98G-IRR- 
KO cells (Figure 3A–D) and measured NHEJ efficiency 
subsequently. As shown in Figure 3E–H, we found that 
ectopic expression of APLF in KO cells restored NHEJ 
efficiency to a similar level as in APLF-proficient cells. 
Consistently, HR efficiency was not affected by APLF defi-
ciency in resistant cell lines (Supplementary Figure 4A to D). 
To further confirm that APLF promotes TMZ- and IR 
induced DSB repair in resistant GBM cells, we examined 
expression of γH2AX, which indicates the presence of DSB, 
after TMZ or IR treatment. As shown in Supplementary 
Figure 5A and B, sustained γH2AX was found in APLF- 
deficient cells, and ectopic expression of APLF accelerated 
disappearance of γH2AX, indicating APLF indeed contri-
butes to TMZ- and IR-resistance through enhancing NHEJ 
in GBM.

APLF is an accessory factor of NHEJ and APLF defi-
ciency does not affect NHEJ efficiency significantly. To 
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Figure 2 Expression of APLF positively correlated to TMZ and IR resistance. (A) APLF mRNA expression in GBM patient samples. TMZ sensitive group: n=30. TMZ- 
resistant group: n=40. *p<0.05. (B) Western blot analysis of APLF protein expression in 2 TMZ sensitive and 2 TMZ-resistant patient samples. (C) Western blot analysis of 
APLF protein expression in U87-WT, U87-TR, T98G -WT and T98G-TR cells. (D) Western blot analysis of APLF protein expression in U87-WT, U87-IRR, T98G -WT and 
T98G-IRR cells.
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determine whether the APLF only contributes to NHEJ in 
resistant GBM cells, we knocked down APLF in U87-WT 
and T98G-WT cells (Supplementary Figure 6A and B) and 
measured NHEJ efficiency. We observed that APLF defi-
ciency slightly decreased NHEJ efficiency in WT cells 
(p<0.05), and ectopic expression of APLF rescued NHEJ 
efficiency to the similar level of WT cells (Supplementary 

Figure 6C and D), suggesting APLF has a unique role in 
NHEJ in response to TMZ- and IR-resistance.

APLF Deficiency Improves TMZ- and 
IR-Sensitivity in GBM Cells
To validate whether APLF is a potential target to increase 
sensitivity to TMZ, we measured cell viability in response to 

Figure 3 APLF contributes to NHEJ efficiency in GBM cells. (A) Western blot analysis of APLF protein expression in U87-TR, APLF-deficient U87-TR (U87-TR-KO) and 
U87-TR-KO with APLF ectopic expression cells (U87-TR-KO+APLF). (B) Western blot analysis of APLF protein expression in T98G-TR, APLF-deficient T98G-TR (T98G- 
TR-KO) and T98G-TR-KO with APLF ectopic expression cells (T98G-TR-KO+APLF). (C) Western blot analysis of APLF protein expression in U87-IRR, APLF-deficient U87- 
IRR (U87-IRR-KO) and U87-IRR-KO with APLF ectopic expression cells (U87-IRR-KO+APLF). (D) Western blot analysis of APLF protein expression in T98G-IRR, APLF- 
deficient T98G-IRR (T98G-IRR-KO) and T98G-IRR-KO with APLF ectopic expression cells (T98G-IRR-KO+APLF). (E) Quantification of GFP cells result from successful 
NHEJ events in U87-TR, U87-TR-KO, U87-TR-KO+APLF, (F) T98G-TR, T98G-TR-KO, T98G-TR-KO+APLF, (G) U87-IRR, U87-IRR-KO, U87-IRR-KO+APLF, (H) T98G-IRR, 
T98G-IRR-KO and T98G-IRR-KO+APLF cell lines. Each result represents 3 independent experiments. ***p<0.001.
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TMZ and IR in U87-TR-KO and T98G-TR-KO cells. We 
found that APLF deficiency exhibited excellent synergy with 
TMZ, and expression of APLF restored TMZ resistance, 
suggesting APLF sensitizes GBM cells to TMZ (Figure 4A 
and B). Similarly, APLF deficiency also significantly re- 
sensitized U87-IRR and T98G-IRR cells to IR (Figure 4C 
and D). To further verify the effect of APLF deficiency on 
cell reproductivity to IR, we analyzed colony formation in 
the absence and presence of APLF. As shown in Figure 4E 
and F, U87-IRR-KO and T98G-IRR-KO cells are signifi-
cantly more sensitive to IR as compared to their parental 
cell lines. Our results indicate that APLF deficiency over-
comes chemo- and radioresistance in GBM.

APLF Deficiency Induces Apoptosis in 
Response to TMZ and IR
To determine the cause of increased cell death in APLF- 
deficient cells induced by TMZ and IR, we analyzed 
autophagy and apoptosis activity after TMZ or IR treat-
ment in APLF proficient and deficient resistant GBM cells. 
As shown in Supplementary Figure 7A and B, autophagy 
induced by TMZ or IR was not further increased by APLF 
deficiency. To investigate whether APLF deficiency results 
in synergy with TMZ to inhibit cell growth via the induc-
tion of apoptosis, we measured Caspase3/7 activity after 
TMZ treatment in APLF proficient and deficient TMZ- 
resistant GBM cells. As shown in Figure 5A and B, 
Caspase 3/7 activity was promoted in U87-TR-KO and 
T98G-TR-KO cells as compared to that in U87-TR and 
T98G-TR cells, respectively. Similar results were observed 
in IR-resistant GBM cells (Figure 5C and D), indicating 
induced apoptosis in APLF-deficient cells after exposure 
to TMZ or IR. These data suggest that APLF is 
a promising target to overcome TMZ and IR resistance 
in GBM.

APLF Deficiency Overcomes 
TMZ-Resistance in vivo
To further validate the effect of APLF deficiency on over-
coming resistance to TMZ in GBM, we compare tumor 
growth inhibition in response to TMZ between U87-TR 
and U87-TR-KO xenograft models. The U87-TR and U87- 
TR-KO cells were subcutaneously implanted in female 
nude mice, and the TMZ treatment was initiated when 
the tumor volume reached 100mm3. In consistent with 
the in vitro cell-based assay, combination of APLF and 
TMZ resulted in very promising synergy in suppression of 

tumor growth without detectable toxicity (Figure 6A–C). 
We also noted that U87-TR and U87-TR-KO groups had 
no significant difference in tumor volume, indicating 
APLF deficiency alone does not affect tumor growth.

Together our data suggest that APLF is potential target 
and inhibition of ALPF is a promising strategy to over-
come chemo- and radioresistance in GBM.

Discussion
In this study, we demonstrated the role of APLF in NHEJ in 
GBM cells that APLF deficiency significantly impaired 
NHEJ efficiency. We found that APLF expression is posi-
tively correlated with TMZ resistance in GBM patients and 
in laboratory GBM cell lines. Similarly, APLF is upregulated 
in IR-resistant GBM cells. We further showed that APLF 
deficiency generates great improvement of sensitivity to 
TMZ and IR in U87 and T98G cell lines. Our results provide 
evidences to demonstrate that APLF can be served as a novel 
target for GBM treatment after surgical resection. The lim-
itation of this study is xenograft mice model with subcuta-
neous injection of human cells. We will use intracranial 
orthotopic model in future development of APLF inhibitors.

It has been decades that TMZ resistance is believed to 
be associated with MGMT and MMR36,37 because MGMT 
directly removes the methylation generated by TMZ and 
MMR is the pathway to recognize the mutant DNA. Thus, 
acquired TMZ resistance has been correlated with upregu-
lated MGMT,38 In addition, loss of MMR by mutation of 
MMR key factors can impair TMZ treatment by lack of 
DNA strand breaks.6 However, they are not the mechan-
isms that can explain all the cases. The somatic genomic 
landscape of GBM showed that only about half of GBM 
patients express MGMT,39 and only a small portion of 
GBM patients showed MMR deficiency,38,40 indicating 
that mechanisms of TMZ resistance are still unclear and 
new yet undiscovered mechanisms remain to be found. 
DSBs can be generated as a result of MMR after TMZ 
treatment that require DSB repair pathways.41 In addition, 
the most severe DNA lesion induced by IR are DSBs, 
which are repaired by HR or NHEJ.42 Therefore, DSB 
repair pathway might play an important and frequently 
underestimated role in TMZ and IR-resistance mechanism 
in GBM.

Gil Del Alcazar et al found that HR mediates acquired 
TMZ resistance in GBM via inducing dissolution of Rad51 
foci.43 However, specific HR efficiency was not deter-
mined in the TMZ-resistant GBM cells, and participation 
of NHEJ was not excluded in the study. We focused on 
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NHEJ because it is the DNA repair pathway to join the 
most toxic DNA lesions in cells and it can be used regard-
less of cell cycle. The study of NHEJ in GBM is very 

limited. Liu et al found that DNA-PKcs inhibition can 
sensitize GBM cells to carbon ions indicating impaired 
NHEJ contributes to GBM treatment. Since NHEJ is so 

Figure 4 APLF deficiency improves TMZ- and IR-sensitivity in GBM cells. (A) Cell viability of U87-TR, U87-TR-KO and U87-TR-KO+APLF cells to TMZ. TMZ concentrations are 0 μM, 
25 μM, 50 μM, 100 μM and 200 μM, 400 μM and 800 μM. Data are represented as mean ± SD of three independent experiments. **p < 0.01, ***p < 0.001. (B) Cell viability of T98G-TR, 
T98G-TR-KO and T98G-TR-KO+APLF cells to TMZ. TMZ concentrations are 0 μM, 100 μM, 200 μM, 400 μM, 800 μM and 1600 μM. Data are represented as mean ± SD of three 
independent experiments. **p<0.01, ***p<0.001. (C) Cell viability of U87-IRR, U87-IRR-KO and U87-IRR-KO+APLF cells to IR. IR doses are 0 Gy, 1 Gy, 2 Gy, 4 Gy and 8 Gy and 16 Gy. 
Data are represented as mean ± SD of three independent experiments. **p < 0.01, ***p < 0.001. (D) Cell viability of T98G-IRR, T98G-IRR-KO and T98G-IRR-KO+APLF cells to IR. IR 
concentrations are doses are 0 Gy, 1 Gy, 2 Gy, 4 Gy and 8 Gy and 16 Gy. Data are represented as mean ± SD of three independent experiments. **p<0.01, ***p<0.001. (E) Left, digital 
image showing colonies produced by U87-IRR, U87-IRR-KO (F) T98G-IRR and T98G-IRR-KO cells in response to IR. Cells were irradiated with or without 1 Gy of IR and incubated for 
10 days. Right, quantification of colonies. Data are represented as mean ± SD of three independent experiments. ***p<0.001.
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universally important, DNA-PKcs, Ku, XRCC4, Ligase IV 
or XLF deficiency, which leads to complete loss of NHEJ, 
would be toxic for GBM treatment. Therefore, our group is 
interested in NHEJ accessory, yet important protein: 
APLF. APLF deficiency results in reduced DNA ligation 
in human and in DT40 cells.35,44,45 Importantly, repair rate 
of γ ray-induced DSB is reduced at early stage in APLF- 
deficient human cells.44 Although neither APLF deficiency 
human cells nor MEFs significantly affect sensitivity to 
DNA damaging agents,44 APLF overexpression signifi-
cantly increased resistance to IR and TMZ in resistant 

GBM cells. These observations suggest a specific role of 
APLF participating in mechanism of IR and TMZ resis-
tance. Ku proteins are highly abundant in human cells, 
whereas expression of other NHEJ core factors is 
limited.46 To efficiently repair DSB induced by IR or 
TMZ in resistant cells, over expressed APLF might be 
recruited by Ku and fast assembles NHEJ factors to 
resolve DSB. This might explain elevated NHEJ efficiency 
in IR and TMZ-resistant GBM cells.

NHEJ key factors, such as Ku70/80, DNAPKcs and 
Ligase IV, are overexpressed in various types of cancer.47–49 

Figure 5 APLF deficiency induces apoptosis in response to TMZ and IR. (A) Relative Caspase 3/7 activity in U87-TR, U87-TR-KO and U87-TR-KO+APLF cells after 
exposure to TMZ (100 μM). **p<0.01, ***p<0.001, NS: not significant. (B) Relative Caspase 3/7 activity in T98G-TR, T98G-TR-KO and T98G-TR-KO+APLF cells after 
exposure to TMZ (200 μM). **p<0.01, ***p<0.001, NS: not significant. (C) Relative Caspase 3/7 activity in U87-IRR, U87-IRR-KO and U87-IRR-KO+APLF cells after 
exposure to IR (4 Gy). ***p<0.001, NS: not significant. (D) Relative Caspase 3/7 activity in T98G-IRR, T98G-IRR-KO and T98G-IRR-KO+APLF cells after exposure to IR (4 
Gy). ***p<0.001, NS: not significant.
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NHEJ also plays an important role in providing chemoresis-
tance and IR resistance in cancer cells.50,51 Therefore, NHEJ 
inhibitors can be used as anti-cancer drugs and sensitizers to 
radiations and DSB inducing agents. Most well studied NHEJ 
inhibitors target NHEJ factors that show enzymatic activities. 
For example, NU7026, AZD7648 and VX-984 are selective 
DNAPKcs inhibitors. Both AZD7648 and VX-984 are under 

evaluation in early phase of clinical trials as anti-cancer drugs 
(AZD7648: NCT03907969; VX-984: NCT02644278). SCR7 
was developed as a Ligase IV inhibitor that impairs NHEJ by 
interfering Ligase IV-DNA binding.51 However, it was then 
demonstrated neither specific nor potent in vitro.52 Since 
NHEJ is one of the major DSB repair pathways, inhibition 
of NHEJ key factors may not generate selective obliteration of 

Figure 6 APLF deficiency overcomes TMZ-resistance in vivo. (A) Photograph of tumors dissected from mice at day 15 in U87-TR and U87-TR-KO xenograft. Female BALB/ 
c nude mice were treated intraperitoneally with vehicle (DMSO), TMZ (7.5mg/kg/day) for 15 days. (B) Tumor size and (C) body weight of U87-TR and U87-TR-KO 
xenograft during treatment. **p<0.01.
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cancer cells. This prompted us to identify NHEJ factors that 
specifically contribute to chemo- or IR-resistance, but not 
deplete NHEJ.

APLF does not exhibit enzymatic activity; therefore, 
it is unlikely to develop APLF inhibitor using conven-
tional substrate-product high throughput screening. The 
most important role of APLF in NHEJ is achieved by 
interacting with Ku80, XRCC4-Ligase4 and XLF, our 
group will use luciferase-based high throughput screening 
to identify small molecules that disrupt APLF interaction 
with Ku80, XRCC4 or XLF. Recent study found that 
expression of APLF is upregulated in breast cancer, and 
APLF knockdown induced apoptosis, inhibited cell pro-
liferative and delayed DSB repair in MDAMB-231 
cells.53 Our group, for the first time, demonstrated the 
role of APLF in IR- and TMZ-resistant GBM cells. 
Therefore, APLF inhibitors have a great potential to be 
used as sensitizers for IR or chemotherapeutic agents in 
various type of cancer.
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