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Purpose: The commercial market is saturated with technologies that claim to collect 
proficient, free-living sleep measurements despite a severe lack of independent third-party 
evaluations. Therefore, the present study evaluated the accuracy of various commercial sleep 
technologies during in-home sleeping conditions.
Materials and Methods: Data collection spanned 98 separate nights of ad libitum sleep 
from five healthy adults. Prior to bedtime, participants utilized nine popular sleep devices 
while concurrently wearing a previously validated electroencephalography (EEG)-based 
device. Data collected from the commercial devices were extracted for later comparison 
against EEG to determine degrees of accuracy. Sleep and wake summary outcomes as well as 
sleep staging metrics were evaluated, where available, for each device.
Results: Total sleep time (TST), total wake time (TWT), and sleep efficiency (SE) were 
measured with greater accuracy (lower percent errors) and limited bias by Fitbit Ionic [mean 
absolute percent error, bias (95% confidence interval); TST: 9.90%, 0.25 (−0.11, 0.61); TWT: 
25.64%, −0.17 (−0.28, −0.06); SE: 3.49%, 0.65 (−0.82, 2.12)] and Oura smart ring [TST: 
7.39%, 0.19 (0.04, 0.35); TWT: 36.29%, −0.18 (−0.31, −0.04); SE: 5.42%, 1.66 (0.17, 3.15)], 
whereas all other devices demonstrated a propensity to over or underestimate at least one if 
not all of the aforementioned sleep metrics. No commercial sleep technology appeared to 
accurately quantify sleep stages.
Conclusion: Generally speaking, commercial sleep technologies displayed lower error and 
bias values when quantifying sleep/wake states as compared to sleep staging durations. Still, 
these findings revealed that there is a remarkably high degree of variability in the accuracy of 
commercial sleep technologies, which further emphasizes that continuous evaluations of 
newly developed sleep technologies are vital. End-users may then be able to determine more 
accurately which sleep device is most suited for their desired application(s).
Keywords: wearables, consumer sleep technologies, sleep duration, sleep efficiency, sleep 
staging

Introduction
With proper adherence to formal guidelines and recommendations, a healthy indi-
vidual spends nearly one-third of their adult life sleeping.1 Provided the undeniable 
importance of adequate sleep durations,1,2 quantifying trends in sleep behavior 
introduces an opportunity for enhanced self-monitoring over one's health despite 
discernible challenges the scientific community has yet to overcome, such as device 
accuracy and scant third-party validations.3–5 In the budding era of individualized 
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health monitoring, primarily as a result of technological 
developments related to smartphones and wearable tech-
nologies such as photoplethysmography (PPG),3,6 there is 
a resulting need for effective and actionable personalized 
sleep monitoring.7

Traditionally, human sleep studies are conducted in labora-
tories or hospital clinic settings using a technique called poly-
somnography (PSG), which requires a tremendous amount of 
hardware, staff, and subject-matter expertise to ensure satisfac-
tory data are collected.8 PSG utilizes multi-lead electroence-
phalography (EEG), electromyography (EMG), and electro- 
oculography (EOG) to quantify brain, muscle, and eye activity, 
respectively.5,6,8,9 In addition to concurrent recording of 
respiration and pulse oximetry that are used to aid in the 
diagnosis of sleep disorders, PSG is used to collect signals 
necessary to differentiate wakefulness and sleep, and to clas-
sify sleep stages based on combinations of various physiologi-
cal states.5,6,9 While PSG does provide in-depth sleep and sleep 
staging information, it also possess multiple limitations. PSG 
data collection is particularly burdensome, expensive, and 
time-consuming for everyone involved, thus decreasing its 
practicality for utility in various research objectives, including 
at-home monitoring.3–6,9 Additionally, many PSG sleep stu-
dies are initiated for a clinical purpose, such as sleep apnea 
investigation,10 and data from clinical subjects are unlikely to 
represent the entire population of sleep device users. To 
account for the aforementioned shortcomings inherent to 
PSG, other sleep assessments have been developed and often 
comprises subjective measures of sleep, such as the Pittsburgh 
Sleep Quality Index or sleep diaries, which provide greater 
degrees of practicality via ease of use, although their limita-
tions primarily manifest in the form of poor veracity.11,12 

Subjective methods of assessing sleep that attempt to charac-
terize one’s personal perception(s) of their sleep do indeed 
offer valuable insights (eg, at home sleeping and not in 
a laboratory), granted the ability to accurately and objectively 
quantify sleep during routine sleeping conditions is still 
justified.

The middle ground between the highly definitive PSG and 
more convenient but less informative subjective sleep mea-
sures is actigraphy, which utilizes physical movement data that 
is later processed by the researcher or clinician to differentiate 
sleep and wake states.13–16 Although actigraphy is widely 
accepted as being much more accommodating to routine 
sleep monitoring, particularly in the general population as 
compared to PSG, there are still inherent limitations to this 
methodology as well.4,17 For example, actigraphy relies heav-
ily on wrist movement to differentiate sleep episodes from 

daily activity. Awakenings that occur after sleep onset may 
not yield robust enough wrist movements such that this brief 
moment of wakefulness may be wrongfully characterized as 
sleep, which lends to consistent overestimation of sleep and 
underestimation of wake during actigraphic sleep 
assessments.18–20 Further, insight on physical movement pat-
terns alone are insufficient to categorize sleep into stages thus 
actigraphy is merely limited to reporting sleep and wake dura-
tions. Actigraphy also lacks a user-interface for real-time feed-
back on sleep behaviors thus engagement between the user and 
their personal data is restricted.

The aforementioned limitations associated with PSG, sub-
jective sleep surveys and diaries, as well as actigraphy, exposes 
the necessity for a new middle ground: a technology capable of 
considerable accuracy and simplicity with instantaneous bio-
feedback for the clinical, research and consumer bases 
alike.4,17 For instance, those in high performing populations 
(eg, athletics, military, first responders) may use automated, 
real-time feedback on their sleep quantity and quality to assist 
in determining their daily workload capacities, ultimately in an 
effort to optimize daily readiness and performance. Recent 
proliferations to the wearable technology consumer market 
provide possible alternatives to objective sleep monitoring 
that would significantly mitigate the existing limitations to 
other strategies for measuring sleep. Indeed, the number of 
technologies purporting to measure sleep quantity and quality 
continues to demonstrate exponential growth as they elude 
thorough independent third-party verifications of device claims 
in an effort to reach the consumer market faster.3–5,7

Despite the diversified wearable market, few commercial 
companies prioritize third-party assessments of their devices’ 
advertised capabilities,3–6 which range from claims to accu-
rately measure total sleep time (TST) and total wake time 
(TWT) within a sleep opportunity to more rigorous derivations 
such as sleep staging (eg, duration of deep sleep). Sleep effi-
ciency (SE), a percentage value that denotes the amount of 
TST relative to time in bed (sleep opportunity) is another 
common metric reported by commercial sleep devices. 
Additionally, many of these technologies report measures of 
heart rate [eg, mean heart rate during sleep], as fluctuations in 
nighttime cardiovascular physiology serves as a strong indica-
tor for sleep quality and recovery, or lack thereof.21,22 Still, the 
mere reporting of these various physiological metrics (sleep 
and/or heart rate) may be severely limited by the accuracy in 
the computation of the variables. Previously, PPG technologies 
demonstrated vulnerability to error, most notably through 
motion artifacts23,24 and poor reliability across various skin 
complexions.23,25,26 Undeterred by the lack of validation, 
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manufacturers continue developing sleep technologies despite 
the limited public knowledge regarding their accuracy and 
reliability.3–5,27

Therefore, the purpose of this study was to evaluate the 
sleep metrics reported by several commercial devices, which 
were compared to a previously validated home-based EEG 
sleep device.28,29 Differing from most research that aims to 
assess device veracity, the assessment of sleep in a free-living 
environment provides the opportunity to attest to the accuracy 
of various technologies in the environment in which their use is 
most sought. Sleep laboratories, where current gold-standard 
device validations occur, present many limitations for evaluat-
ing commercial sleep technologies. Not only are devices gen-
erally donned immediately prior to getting into bed but the 
unfamiliar setting and scheduling as part of PSG evaluation 
undoubtedly has an effect on accurate assessments of normal 
sleep patterns. As such, it is possible that device accuracy 
outside of the sleep laboratory may present differently as 
compared to much of the published literature that exists. 
Indeed, there is a recognized gap in the literature that examines 
the efficacy of commercial sleep technologies in their intended 
environments (free-living) as a solution for convenient and 
routine objective sleep monitoring.17 Third-party reporting 
on commercial device accuracy for sleep monitoring affords 
consumers (eg, researchers, clinicians, general population) the 
ability to make informed decisions on optimal strategies for 
quantifying trends in at-home sleep behavior and physiology.

Materials and Methods
All procedures contained herein were approved by the 
Institutional Review Board of West Virginia University 
for human subject’s research and were compliant with 
the Declaration of Helsinki guidelines. Written consent 
was obtained from each participant prior to engagement.

Inclusion/Exclusion Criteria
Inclusion into the study required participants to be considered 
“low risk” based on the American College of Sports Medicine 
(ACSM) Risk Stratification.30 While these guidelines are gen-
erally used for health screening prior to exercise testing, they 
also encompass many risk factors pertaining to overall health 
and disease. Pre-screened subjects were excluded from the 
study if the risk stratifications deemed them as anything other 
than “low risk.” The ACSM classification requires individuals 
to present with no signs or symptoms of cardiovascular, meta-
bolic, or renal disease, as well as identify obese, sedentary, 
hypertensive, or pre-diabetic individuals and those who smoke, 
have dyslipidemia, or a family history of heart disease. These 

criteria were used to ensure participants were healthy in an 
attempt to utilize a representative subset of the general 
(healthy) population. Further, individuals with known sleep 
or circadian rhythm disorders were also excluded.

Subjects
In the present study, five healthy adults, two males (ages 
41 and 26 years) and three females (ages 22, 23, and 27 
years), volunteered to participate for a combined total of 
98 nights. Participants underwent an initial health screen-
ing followed by informed consent and a familiarization 
session to ensure all were adept at operating the various 
sleep devices. Enrollment was organized such that no more 
than two participants were enrolled in parallel (equipment 
resources only allowed for the utilization of two Sleep 
Profilers simultaneously) at any given time. Participation 
in the study continued for as long as the participants were 
willing to wear the various devices while sleeping, which 
ranged from 12 to 25 nights. The average duration of 
enrollment per participant was 19.6 nights.

Validation Standard: Free-Living 
Electroencephalography
Due to the limitations presented by PSG for in-home sleep 
monitoring, the Sleep Profiler (Advanced Brain Monitoring, 
California, United States), a technology deemed substantially 
equivalent to PSG by the FDA,34 was utilized as the in-home 
standard for accurate data collection in the present study. 
Previous research efforts successfully validated the Sleep 
Profiler against the industry accepted gold standard, 
PSG.28,29 This take-home EEG sleep device affixes to the 
forehead for collection of physiological data from three fron-
topolar channels, which generate output signals for EEG, 
EOG, and EMG.28 Additionally, the technology is equipped 
with infrared PPG, a three-axis accelerometer, and an acoustic 
microphone.

Commercial Sleep Devices
A total of eight, popular commercial sleep devices were 
assessed, which included the Apple Watch Series 3 (Apple, 
Cupertino, California, United States), Beddit Sleep Monitor 
3.0 (previously Beddit, Espoo, Finland, manufacturing now 
owned by Apple), Fatigue Science Readiband (Fatigue 
Science, Vancouver, British Columbia), Fitbit Ionic (Fitbit, 
San Francisco, California, United States), Garmin Vivosmart 
4 (Garmin, Olathe, Kansas, United States), 2nd generation 
Oura smart ring (ŌURA, Oulu, Finland), Polar A370 (Polar, 
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Kempele, Finland), and the WHOOP Strap 2.0 (WHOOP, 
Boston, Massachusetts, United States). Each device syncs via 
Bluetooth to a commercially developed smartphone applica-
tion respective to each device. All applications were a product 
of the device manufacturer, except for the Apple Watch in 
which two third-party applications, SleepWatch (Bodymatter 
Incorporated, Newport Beach, California, United States) and 
Sleep++ (Cross Forward Consulting, LLC, Herndon, Virginia, 

United States), were concurrently used for interpretation of 
data. Therefore, nine separate commercial sleep entities were 
examined comprising eight tangible devices; due to the 
remaining potential for significant variation in the two Apple 
Watch applications’ ability to interpret data, separate analyses 
were conducted thus the two applications were treated as 
separate devices. Relevant technical specifications that pertain 
to the mechanisms of each tangible device are listed in Table 1.

Table 1 Technical Specifications for Sleep Monitoring Devices

Device Name Device Type Measurement 
Strategy

PPG 
Technicalities

Battery 
Life

Sleep Profiler Head mounted wearable EEG (5 channel) 

EOG 

EMG 
PPG 

3D Accelerometer 

Acoustic Microphone

Contact PPG 

Infrared 

Reflective

30 hours

Apple Watch Series 3 Wrist-based wearable PPG 

Accelerometer 
Gyroscope

Contact PPG 

Green LED & 
Infrared  

Reflective

18 hours

Beddit Sleep Monitor 3.0 Mattress affixed monitor (placed under upper 

body)

Piezoelectric force 

sensor 

Capacitive touch sensor

N/A N/A

Fatigue Science Readiband Wrist-based wearable 3D Accelerometer N/A 30 days

FitBit Ionic Wrist-based wearable PPG 

Accelerometer

Contact PPG 

Red LED & Infrared  

Reflective

5 days

Garmin Vivosmart 4 Wrist-based wearable PPG 

Accelerometer

Contact PPG 

Green LED 
Reflective

7 days

Oura Smart Ring (2nd 
Gen.)

Finger-based wearable PPG  
3D Accelerometer 

Gyroscope 

NTC temperature 
sensors

Contact PPG 
Infrared  

Transmission

7 days

Polar A370 Wrist-based wearable PPG  
Accelerometer

Contact PPG 
Green LED 

Reflective

4 days

WHOOP Strap 2.0 Wrist-based wearable PPG 

3D Accelerometer 

3-Axis Gyroscope

Contact PPG 

Green LED 

Reflective

2 days

Notes: Table 1 includes a summary of the technical specifications for the validated Sleep Profiler as well as the various commercial sleep monitoring technologies. Device 
specifications, which to our knowledge are accurate, were derived from the respective company website and/or support centers. 
Abbreviations: EEG, electroencephalography; EMG, electromyography; EOG, electrooculography; Gen, generation; LED, light emitting diode; N/A, not available; NTC, 
negative temperature coefficient; PPG, photoplethysmography; 3D, three dimensional.
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Experimental Design
To assess device accuracy for quantifying sleep quantity 
and quality, participants were asked to utilize several 
commercial devices concurrent to the Sleep Profiler. 
Since commercial sleep technologies are machines that 
attempt to quantify sleep metrics, they do so indiscrimi-
nately such that they will deliver objective assessments 
whenever they properly donned by any human being. 
Therefore, to provide these technologies with an ideal 
environment to perform optimally, the number of human 
subjects was small whereas the iterations to generate 
a total of 98 sleep nights for analysis was not. Similar 
experimental designs were deployed in previous investi-
gations that sought to examine the accuracies of com-
mercial technologies.31–33 Participants were sized for 
their devices and then instructed on proper placement 
and usage of each technology. They were also provided 
a Wi-Fi enabled 6th generation iPod Touch that con-
tained all of the commercial smartphone applications, 
which synced with the respective devices after each 
night of sleep. The Beddit, Oura smart ring, and 
Fatigue Science Readiband were used on randomized 
nights in addition to the Sleep Profiler. The wrist-based 
devices that utilized PPG (Apple Watch Series 3, Fitbit 
Ionic, Garmin Vivosmart 4, Polar A370, WHOOP Strap 
2.0) were alternated nightly to mitigate sensor 
interference.

Participants were instructed to don all devices approxi-
mately 30 minutes before getting into bed. The Sleep 
Profiler was put on at the same time as the other devices 
but was not powered on until the individual went to bed. 
This schedule of events was vital for assessing the accu-
racy of each device in determining the state of its user, and 
thus, was meant to allow for some room in measurement 
variability. The finger in which the Oura ring was worn 
and the wrist for which the wrist-based devices were worn 
was not specified; however, once the decision was made 
by the participant they were encouraged to maintain con-
sistent placement throughout the duration of the study. In 
order to minimize any potential issues with optical inter-
ference between PPG devices, only one PPG device was 
allowed to be worn on each wrist. The combination of 
sensors was randomized, and the subject was given 
instructions on which devices to utilize each night. 
Following each night, all devices that utilized a battery 
were fully charged to ensure consistency in battery level 
throughout each trial.

All devices, aside from the Sleep Profiler, were 
returned to the laboratory at the end of the enrollment 
period for data export. The Sleep Profiler was returned to 
the research laboratory every three days for data export 
and memory clearance to ensure data quality and enable 
additional nights of data collection. Data from the Sleep 
Profiler were uploaded for processing by the Advanced 
Brain Monitoring (Advanced Brain Monitoring, Carlsbad, 
California, United States) interface.28 The Advanced Brain 
Monitoring interface uses an algorithm to analyze the 
various data streams collected by the Sleep Profiler; 
while reports provide hypnograms depicting the staging 
patterns throughout the night, only the nightly totals were 
used to summarize each sleep stage. Each commercial 
device assessed that attempted to stage sleep did so via 
automatic algorithms that classified sleep as either “light” 
or “deep.” While most companies fail to disclose details 
regarding their algorithms, in most cases, “light sleep” 
refers to the aggregation of N1 and N2, whereas “deep 
sleep” generally refers to N3.17 Considering this, the Sleep 
Profiler reports of N1 and N2 were summated as “light 
sleep” and N3 was used as comparison for “deep sleep.” 
Data from each commercial device were manually 
extracted from its respective app. All data were then 
organized into a centralized database in version 16 of 
Microsoft Excel (Microsoft, Redmond, Washington, 
United States) for later analysis.

Lastly, it is worth noting that the collection of data 
from all commercial technologies occurred in a manner 
consistent with what is directly available to the consumer 
following the initial device purchase through use of the 
corresponding smartphone application (app). Regardless of 
device, additional settings or modes were not utilized 
throughout the study. Due to the lack of available epoch 
data manufacturers often provide to the consumer, aside 
from the Sleep Profiler, no raw or epoch-specific data were 
requested, acquired, or used for data analysis. Data avail-
able via the respective application for each device were 
merely recorded and compiled for statistical analysis. All 
data were manually extracted from each device’s smart-
phone application and compiled into Microsoft Excel. 
Although true device validations are only accomplished 
via direct epoch by epoch comparisons to PSG, a position 
statement from the Sleep Research Society on wearable 
sleep technologies acknowledged that real-world assess-
ments (eg, longitudinal at-home monitoring) for accuracy 
of commercial sleep technologies is a gap in the extant 
sleep wearables literature.17
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Statistical Analysis
Comparisons between the commercial devices and the 
Sleep Profiler were made for any “Yes” listings in Table 2 
as these were sleep variables concomitantly tracked by the 
respective devices. Due to the varying enrollment periods, 
the number of nights assessed for each device also varies 
and are, where relevant, denoted in the tables that are later 
described. Variables of interest included TST, TWT, SE, as 
well as durations for light, deep, and REM sleep such that 
each of these metrics were extracted when and where the 
opportunity (commercial sleep technology) presented itself. 
In order to evaluate device performance relative to the Sleep 
Profiler, absolute percent error (APE) calculations were 
executed as well as Bland–Altman analyses, which exposed 
instances in which a commercial sleep technology had 
a propensity for over or underestimating a sleep metric.

Commercial sleep technologies attempting to quantify 
sleep stage durations tend to broadly group the stages as 
light, deep, and rapid eye movement (REM) sleep. This 
differs from the more specific differentiation between the 
three stages of non-REM sleep and REM sleep as the latter 
classification strategy is characterized by subtle changes in 
brain wave activity,35 which presumably extends beyond 
the scope of most commercial sleep technologies. 
Therefore, device evaluations were executed for light, 
deep and REM sleep. Furthermore, for each of the afore-
mentioned comparisons, the absolute percent error (APE) 
was calculated as

jDevice Measurement � Sleep Profilerj
Sleep Profiler

� 100 

For the calculation listed above, “Device Measurement” 
refers to each of the commercial technologies assessed. 
The summary statistics for APE for each sleep variable 
derived from each device were also calculated.36,37 It 
should be noted that the magnitude of percent errors 
using this method of APE calculation will be influenced 
by the overall value of the metric being assessed. For 
instance, sleep efficiency values have low standard devia-
tions on a percentage basis of the mean, so APE values 
will be much smaller for all devices in SE compared to 
metrics, like TWT and sleep staging durations, where there 
are much higher standard deviations. Since this study aims 
to not only assess validity of sleep data but to compare 
devices to one another, APE values are utilized but care 
should be taken in interpreting these values, which is 
detailed in the results below. The three sleep summary 
metrics of TST, TWT, and SE are all related as discussed 
above, and are available for the majority of the devices. 
Thus, a “composite” ranking method using these three 
variables was desired to help assess the consistency of 
device performance across those three metrics. In other 
words, an assessment of whether the same device(s) 
ranked near the top with respect to each metric. 
Kendall’s coefficient of concordance (Kendall’s W) may 
be used to answer this question.38 Traditionally, Kendall’s 
W is used to quantify “human” inter-observer agreement, 
and has been used extensively in literature, with applica-
tions in digital imagery39 and ecology.40 In this case, TST, 
TWT, and SE act as the “observers” who “rate” how well 
(or not) the device measures the sleep metrics compared to 
the Sleep Profiler. Once Kendall’s W was calculated, 
a hypothesis test was constructed to determine if signifi-
cant concordance (consistency in device performance) was 
achieved. In the case of a significant result, the three 
rankings per device were summed together to create an 
overall “composite” score, with lower-scoring devices 
(justifiably) being the top performers.

Another procedure of interest included Bland–Altman 
analyses. Previous research implemented this strategy in 
other wearable device validation publications.32,37,41–45, 

A Bland–Altman analysis provides worthy visualizations 
of the bias (whether the device over/underestimates the 
Sleep Profiler) and Limits of Agreement (LOA; range) 
between the Sleep Profiler and device measurement.46 

An individual Bland–Altman analysis was executed for 
each sleep metric and device combination, with propor-
tional biases (respective r2 and p-values) applied to On the 
individual level, further analysis on the bias included 

Table 2 Sleep Assessment Variables by Device

Device TST TWT SE Light 
Time

DeepTime REM 
Time

Beddit Yes Yes Yes No No No

Fatigue 

Science

Yes Yes Yes No No No

Fitbit Yes Yes Yes Yes Yes Yes

Garmin Yes Yes Yes Yes Yes Yes

Oura Yes Yes Yes Yes Yes Yes

Polar Yes Yes Yes No No No

Sleep++ Yes No No No No No

SleepWatch Yes No No No No No

WHOOP Yes Yes Yes Yes Yes Yes

Note: Table 2 differentiates the sleep variables reported by each of the various 
technologies utilized herein. 
Abbreviations: REM, rapid eye movement; SE, sleep efficiency; TST, total sleep 
time; TWT, total wake time.
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a significance test to determine if the mean bias signifi-
cantly differed from 0 (the value which represents “unbia-
sedness”). This was achieved by performing a two-sided, 
one-sample t-test on the differences in measurements 
between the device and Sleep Profiler with respect to 
each metric. Since there were a total of 55 sleep metric 
and device combinations where Sleep Profiler comparisons 
were possible, an adjustment to account for multiple com-
parisons was deemed necessary. Thus, a Bonferroni cor-
rection was applied such that each resulting p-value was 
multiplied by 55 to create an “adjusted” p-value to com-
pare to the selected significance level of 0.05. Results 
where p < 0.05 indicate that the mean bias is significantly 
different from 0 for measurements from the sleep metric 
and device combination in question. The sign of the mean 
bias can then be examined to determine whether the mea-
surements over/underestimate the Sleep Profiler.

Another potential type of bias that can occur within an 
individual Bland–Altman analysis is called proportional 
bias, which is tested by constructing a simple linear regres-
sion model using the difference in device and Sleep 
Profiler measurement as the outcome variable, and the 
average of the device and Sleep Profiler measurements as 
the independent variable. Significance was assessed by 
performing a t-test using the resulting R2 value. As before, 
a Bonferroni correction (for 35 comparisons) was applied 
to each p-value. A significant result (p < 0.05) indicates 
that the R2 value is greater than 0, which means that the 
difference between the two devices is dependent on the 
average.

The present investigation sought to examine objective data 
derived from the commercial devices. However, to account for 
user error (eg, forgot to charge battery, device placement 
shifted during the night), we elected to examine for extreme 
outliers. The Tukey boxplot-based outlier detection rule was 
used (with respect to APE) to check for extreme outliers.47 

The rule incorporated herein labels a datapoint as an extreme 
outlier if it is outside of the outer fence of the boxplot. The 
outer fence of a boxplot is defined as 3*Interquartile Range 
(IQR) above the third quartile, or 3*IQR below the first 
quartile (eg, Q1 – 3*IQR and Q3 + 3*IQR).48 This is in 
contrast to the traditional rule using inner fences, where one 
would utilize 1.5*IQR to identify outliers. Using the more 
traditional rule, too many observations would have to be 
removed, which significantly changes the analysis of how 
well the device performed. A total of 55 extreme outliers 
(across all metrics) were identified according to the aforemen-
tioned 3*IQR rule for detection, which explains why there are 

discrepancies in trial numbers by a respective device observed 
in the tables and figures to follow. For a descriptive table that 
provides additional details on the context of extreme outliers 
by individual subjects and devices that were identified, please 
refer to the supplemental materials (Table S1 and S2, respec-
tively). Moreover, in an attempt to better clarify data outliers 
and incongruencies in trial numbers, Kruska Wallis tests were 
used to assess for differences in APE across subjects per 
variable, with Steel-Dwass multiple comparisons where 
appropriate.49 Results are also included in the Supplemental 
Materials (Tables S3–5 and Figures S1–3).

All analyses were conducted using R version 4.0.0.50 

Data pre-processing was handled using the tidyverse 
package,51 whereas plots were constructed using the 
gridExtra package52 along with the tidyverse packages. 
To assist with the calculation of Bland–Altman statistics, 
the blandr and rstatix packages were utilized.53,54

Results
First, an assessment as to whether or not error distributions 
were consistent across participants was executed. With 
respect to TST, significant differences were observed 
(Kruskal Wallis Test Statistic = 54.48, df = 4, p<0.001). 
However, the Steel-Dwass method identified subject 4 as 
the only participant with significant differences from the 
rest (See Table S6 in supplemental materials). None of the 
remaining subjects had significantly different error distri-
butions from each other. Further details on individual 
variations for TST, TWT, and SE can be found in 
Supplemental Tables S3–S6.

APE analysis for TST is depicted as box plots in Figure 1. 
The precise APE summary values for TST for each device 
are listed in Table 3, which includes notation of the total 
number of nights the various devices were worn. The largest 
MAPE values observed were 21.94% (Garmin) and 22.84% 
(SleepWatch) whereas the smallest MAPE values were 
7.39% (Oura) and 8.78% (WHOOP). Per the Bland– 
Altman plots (Figure 2A–I) and summary statistics for TST 
(Table 4), Beddit (p < 0.001), Fatigue Science (p < 0.001), 
and Sleep++ (p = 0.01) were the only devices whose mea-
sures resulted in a significant bias. Further examination of 
proportional biases (Table 5) revealed that significance was 
not reached for any of the devices.

Consistent trends across all devices were observed in 
their failure to determine the amount of time its user was 
awake rather than sleeping. TWT was measured by seven 
of the devices: Beddit, Fatigue Science, Fitbit, Garmin, 
Oura, Polar, and WHOOP (Figure 3). Measurements for 
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TWT, across all devices, demonstrated a much higher 
variability in error margins as compared to TST, with 
MAPE values that range from 25.64% (Fitbit) to 89.04% 
(Garmin), as observed in Table 3. Per Figure 4A–G and 
Table 4, all devices underestimated TWT, with all devices 
other than Fitbit (p = 0.11) and Oura (p = 0.40) exhibiting 
a significant bias. Additionally, proportional bias analysis 
demonstrated that Garmin significantly underestimated 
TWT as TWT durations increased (p < 0.001), whereas 
all other devices did not reach statistical significance 
(Table 5). Granted, after the aforementioned outlier 
removal Garmin still possessed a high leverage point that 
presumably influenced reaching significance (Figure 4D).

Similarly, as sleep efficiency is directly proportional to 
TST relative to TWT, consistent trends observed in both 
TST and TWT were generally well reflected in the findings 
for SE. Indeed, SE calculations illustrated a lower varia-
bility in the margins of error as compared to TST and 
TWT (see Figure 5), and the unit of percent rather than 
time is a factor in this difference. For example, MAPE for 
SE ranges from 3.49% (Fitbit) to 12.15% (Garmin), which 
is expanded in Table 3. Albeit consistent in trends that 
were synonymous to TWT, Fitbit and Oura were the only 

two devices that did not significantly differ from the mea-
sures compared to the Sleep Profiler for SE (according to 
Bland–Altman; see Figure 6A–G and Table 4). In fact, the 
same five devices that significantly underestimated TWT 
also significantly overestimated SE. With respect to the 
examination of proportional bias, there were no remark-
able differences between any of the devices compared to 
the Sleep Profiler (Table 5).

Provided that it is possible to have two devices that 
report the same exact SE value despite different TST and 
TWT values, Kendall’s W was calculated for MdAPE 
(0.94) as well as MAPE (0.87). The high degree of con-
cordance for MAPE suggests that the summated rankings 
reveal an accurate depiction for how well the devices 
performed across TST, TWT, and SE (see Table 6). With 
respect to MAPE, Fitbit and Oura tied for the lowest (most 
accurate) summated ranking as these two devices outper-
formed all others with Garmin eliciting the highest (least 
accurate) ranking.

With regard to sleep staging, degrees of variability and 
inaccuracy vary by stage. The devices that purported to 
divide sleep into subcategories (eg, sleep stages) were 
Fitbit, Garmin, Oura, and WHOOP, which all categorized 
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Device Comparison: TST

Figure 1 TST boxplots: absolute percent error by device. 
Notes: Figure 1 depicts a box plot representation of absolute percent error (APE) for each commercial device that reported on total sleep time. 
Abbreviation: TST, total sleep time.
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sleep into either light, deep, or REM sleep. Collectively, 
measures of the time spent in light sleep reported the 
lowest margin of error of the three sleep stages with an 
overall MAPE of 24.45% across all trials and devices. As 
observed in Figure 7, there was relatively low spread and 
minimal differences between the four devices. For light 
sleep, device MAPE values ranged from 13.48% 
(WHOOP) to 40.85% (Garmin; see Table 7 for additional 
APE statistics). The aforementioned MAPE values were 
well depicted in conjunction to the bias demonstrated in 
the respective Bland–Altman plots for light sleep for each 
device (see supplemental materials Figure S2A–D). 
Measurements of light sleep obtained from WHOOP 
were much less biased and illustrated strong consistency 
between trials. In contrast, the other devices demonstrated 
greater inaccuracy and variability between trials. Fitbit 
(−0.38 hours), Oura (−0.49 hours), and WHOOP (−0.17 
hours) slightly underestimated the time spent in light 
sleep, whereas Garmin reported an overestimation in 
light sleep (0.56 hours), as seen in Table 8. However, 

none of the devices demonstrated enough statistical evi-
dence of biased measurements, as all confidence intervals 
for bias contained zero suggesting the sample of measure-
ments are nonbiased with respect to the Sleep Profiler.

Ability to estimate deep sleep was remarkably poor for all 
devices (see Table 7 and Figure 8). Collectively, all devices 
reported a MAPE of 67.96% across trials, whereas MAPE 
for each device ranged from 46.19% (WHOOP), to 133.54% 
(Garmin), which may be observed in Table 7. Overall, APE 
was substantially higher for deep sleep estimations as com-
pared to light sleep. As depicted in the Bland–Altman plots 
for each device (see supplemental materials Figure S3A–D), 
WHOOP, Fitbit, and Oura illustrated fairly similar degrees of 
variability between trials, whereas Garmin demonstrated 
a much larger spread with respect to its LOA. All devices 
exhibited a bias that indicated a tendency to overestimate 
deep sleep to some degree; however, Oura was the only 
device to reach significance (p = 0.01) for its propensity to 
overestimate (0.33 hours) the deep sleep stage compared to 
the Sleep Profiler (see Table 8). Although Garmin reported 

Table 3 Absolute Percent Error Executive Summary Statistics: All Devices

Metric Device n MAPE Min. (%) MdAPE Max. (%) IQR

TST Oura 59 7.39 0.19 5.01 35.65 7.77
WHOOP 32 8.78 0.00 8.80 20.92 9.79

Fitbit 27 9.90 0.33 4.34 50.07 6.95
Fatigue Science 65 10.35 0.18 7.01 51.94 10.66

Polar 19 10.89 0.70 10.19 38.34 8.98

Beddit 38 11.11 0.15 10.43 23.77 8.87
Sleep++ 16 15.61 0.90 15.01 41.74 15.31

Garmin 21 21.94 0.89 15.42 85.69 16.68

SleepWatch 13 22.84 0.64 20.64 54.68 26.48

TWT Fitbit 27 25.64 0.00 25.00 79.17 22.41
Oura 60 36.29 1.37 31.67 116.13 32.88

Fatigue Science 70 43.73 3.23 42.55 140.58 37.44

Polar 19 54.69 9.68 53.62 88.43 30.50
WHOOP 33 60.34 3.85 70.21 100.00 30.97

Beddit 40 62.37 2.13 66.74 125.35 31.40

Garmin 21 89.04 57.90 93.64 100.00 12.49

SE Fitbit 28 3.49 0.25 3.44 12.78 3.18

Oura 60 5.42 0.01 4.79 19.21 4.74
Fatigue Science 69 6.52 0.13 5.56 18.46 7.43

Polar 19 9.03 0.04 5.50 28.48 8.49

WHOOP 32 10.00 0.04 9.24 35.17 7.75
Beddit 40 10.18 0.17 9.40 30.60 10.24

Garmin 20 12.15 7.24 11.74 23.05 3.76

Notes: Table 3 includes the APE summary statistics for all devices that reported on each respective measure of sleep. Data presented are for TST, TWT, and SE, and are 
sorted lowest-to-highest for each metric based upon MAPE. 
Abbreviations: APE, absolute percent error; IQR, interquartile range; MAPE, mean absolute percent error; Max, maximum; MdAPE, median absolute percent error; Min, 
minimum; n, number of trials; SE, sleep efficiency; TST, total sleep time; TWT, total wake time.
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the largest degree of bias, the bias was insignificant, which is 
attributable to the lower number of trials assessed as well as 
greater variability as evidenced by the remarkably large LOA 
range (6.1 hours), even after extreme outlier removal. 
Garmin’s LOA range was nearly triple that of the other 
three devices reporting deep sleep. The large LOA range 
exhibited by Garmin for deep sleep contributed to a larger 
standard error around the bias estimate thus eliciting a wider 
confidence interval.

The third sleep stage that was estimated by the commercial 
devices, that is the amount of time spent in REM sleep, 
demonstrated greater degrees of inaccuracy and variability 
between trials relative to the other two stages reported by the 
commercial devices (deep and light sleep). All devices 
reported multiple measures that skewed the spread, even 
after removal of the extreme outliers (Figure 9). Commercial 
devices ranged from a MAPE of 57.83% (WHOOP) to 
79.73% (Oura; see Table 7) and the four devices collectively 

Figure 2 (A–I) TST Bland–Altman plots for all devices. 
Notes: Figure 2 depicts individual Bland–Altman plots for all commercial sleep technologies that measured TST. (A) Beddit; (B) Fatigue Science; (C) Fitbit; (D) Garmin; (E) 
Oura; (F) Polar; (G) Sleep++; (H) SleepWatch; (I) WHOOP. 
Abbreviation: TST, total sleep time.
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reported a MAPE of 72.09% across all trials, suggesting 
remarkably poor accuracy at measuring REM sleep. The 
Bland–Altman analysis for each device (see supplemental 
materials Figure S4A–D) further exposed device inaccuracies 
with respect to REM sleep (Table 8). The bias indicated for 
each device that they all overestimated REM sleep time, 
despite none of them reaching significance (see Table 8), 
a likely result of the aforementioned degree of high variability 
observed in each device. To further examine proportional 
biases discovered for each of the devices with respect to 
light, deep, and REM sleep, please also refer the supplemental 
materials (Table S7).

Discussion
Growing public intrigue related to self-monitoring trends in 
sleep parameters stimulated a large number of companies to 
develop in-home sleep technologies with limited oversight for 
device accuracy.3–5 Provided the scarcity of third-party 

validations for the majority of these devices, the present 
study examined the validity of numerous commercial devices 
for quantifying sleep metrics by executing direct comparisons 
to a home-based FDA 510(k) approved EEG-based device 
(Sleep Profiler).28 The main finding was that among all of 
the metrics that are reported by commercial sleep technolo-
gies, there is a large variation in accuracy across not only 
devices but across the metrics themselves as compared directly 
to the Sleep Profiler. For non-staging sleep metrics (TST, 
TWT, and SE), Fitbit and Oura reported lower error values 
overall (eg, MAPE ≤ 10%) and reported equal summated 
rankings (5) via Kendall’s W that considers all three metrics, 
placing both devices atop the rankings. However, when asses-
sing accuracy of sleep staging, all the commercial devices 
tested struggled with accuracy. With the exception of one 
device on light sleep duration (WHOOP), all devices showed 
>20% MAPE for all sleep staging durations, with over half of 
the measures exceeding 40% MAPE. High inaccuracy in sleep 

Table 4 Bland–Altman Executive Sleep Summary Statistics: All Devices

Metric Device n Bias 
(95% CI)

Adjusted p-value Lower LOA 
(95% CI)

Upper LOA 
(95% CI)

LOA Range

TST Beddit 38 0.50 (0.31–0.68) <0.001* −0.61 (−0.92, −0.30) 1.61 (1.30, 1.92) 2.22
Oura 59 0.19 (0.04, 0.35) 0.444 −0.94 (−1.19, −0.69) 1.33 (1.07, 1.58) 2.27
WHOOP 32 0.27 (0.05, 0.49) 0.609 −0.92 (−1.29, −0.56) 1.46 (1.10, 1.83) 2.39

Sleep++ 16 0.80 (0.44, 1.16) 0.01* −0.54 (−1.12, 0.04) 2.14 (1.55, 2.72) 2.68

Fatigue Science 65 0.48 (0.31, 0.66) <0.001* −0.89 (−1.18, −0.60) 1.85 (1.56, 2.14) 2.74
Polar 19 0.08 (−0.35, 0.50) 1 −1.65 (−2.34, −0.96) 1.80 (1.11, 2.49) 3.46

Fitbit 27 0.25 (−0.11, 0.61) 1 −1.54 (−2.14, −0.94) 2.05 (1.45, 2.64) 3.59

SleepWatch 13 1.17 (0.55, 1.78) 0.048* −0.83 (−1.80, 0.14) 3.16 (2.19, 4.13) 3.99
Garmin 21 1.10 (0.46, 1.73) 0.062 −1.64 (−2.67, −0.60) 3.83 (2.79, 4.86) 5.46

TWT Fitbit 27 −0.17 (−0.28, −0.06) 0.109 −0.71 (−0.89, −0.53) 0.37 (0.19, 0.55) 1.08
Polar 19 −0.55 (−0.74, −0.37) <0.001* −1.31 (−1.62, −1.01) 0.21 (−0.10, 0.51) 1.52

Garmin 21 −0.86 (−1.07, −0.65) <0.001* −1.78 (−2.12, −1.43) 0.06 (−0.29, 0.40) 1.83
WHOOP 33 −0.59 (−0.76, −0.42) <0.001* −1.53 (−1.82, −1.25) 0.35 (0.07, 0.64) 1.89

Beddit 40 −0.58 (−0.73, −0.42) <0.001* −1.53 (−1.78, −1.27) 0.37 (0.11, 0.63) 1.89

Oura 60 −0.18 (−0.31, −0.04) 0.399 −1.21 (−1.44, −0.98) 0.85 (−0.63, 1.08) 2.07
Fatigue Science 70 −0.29 (−0.41, −0.16) <0.001* −1.32 (−1.53, −1.11) 0.75 (0.54, 0.96) 2.07

SE Garmin 20 10.6 (9.26, 11.94) <0.001* 4.99 (2.81, 7.17) 16.21 (14.03, 18.39) 11.21
Fitbit 28 0.65 (−0.82, 2.12) 1 −6.79 (−9.22, −4.36) 8.09 (5.66, 10.52) 14.88

Fatigue Science 69 4.24 (2.94, 5.54) <0.001* −6.38 (−8.57, −4.18) 14.86 (12.66, 17.05) 21.23

Polar 19 7.53 (4.88, 10.18) <0.001* −3.24 (−7.54, 1.06) 18.30 (14.00, 22.59) 21.54
Oura 60 1.66 (0.17, 3.15) 1 −9.61 (−12.11, −7.11) 12.93 (10.43, 15.43) 22.54

WHOOP 32 7.38 (4.99, 9.76) <0.001* −5.59 (−9.55, −1.63) 20.35 (16.39, 24.31) 25.94

Beddit 40 7.20 (4.91, 9.48) <0.001* −6.80 (−10.61, −2.99) 21.19 (17.38, 25.00) 27.99

Notes: Table 4 includes Bland–Altman summary statistics, which assesses the degree of bias between reports of the Sleep Profiler and a given device, for all devices across 
the three sleep summary metrics. Significant results are indicated with a “*”, and in these cases, there is enough evidence to conclude that the device is not “unbiased” thus 
demonstrating a tendency to overestimate or underestimate a given metric. Data presented for each individual metric are sorted lowest-to-highest based upon the range 
between upper and lower LOA. 
Abbreviations: CI, confidence interval; LOA, limits of agreement; n, number of trials; SE, sleep efficiency; TST, total sleep time; TWT, total wake time.
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staging in these technologies is not surprising, as measuring 
brain electrical signals (via EEG) is the most accurate way to 
assess sleep stages. None of the commercial devices tested 
incorporated EEG-based measures, and all rely on a sensor or 
combination of sensors including accelerometers and PPG 
optical sensors to estimate sleep stages. Based on the data 
presented, non-sleep staging data (sleep/wake summary 
metrics only) should be considered while using commercial 
non-EEG-based sleep devices, and even then, great care and 
consideration should be taken when selecting a commercial 
device for these metrics.

Sleep monitoring that requires high-resolution sleep 
data (eg, sleep staging) is traditionally measured with the 
PSG technique.8,9 PSG, however, requires specialized 
equipment and skilled technicians to conduct the overnight 

procedure usually in a research laboratory or hospital 
clinic setting. Further, the novel environment combined 
with the need for multiple leads placed on the head, face 
and body can often result in disrupted sleep. Consequently, 
for many instances, PSG is not recommended due to the 
potential to disrupt sleep (eg, insomnia profiles) and/or 
impracticality in conducting longitudinal studies. While 
we recognize it is not the conventional criterion for asses-
sing accuracy of sleep monitoring, the use of the Sleep 
Profiler rather than PSG in the current study provided 
multiple benefits. Previous research on the collection and 
automated algorithmic scoring of the Sleep Profiler data 
has shown to have comparable degrees of agreement 
between autostaging and manual scoring of PSG, and 
further, comparable accuracy margins as compared to 
agreement variation between PSG technicians when scor-
ing the same assessment.28 Assessments of technologies 
using the Sleep Profiler allowed for data collection in an 
innate environment without significantly sacrificing vera-
city, ultimately aiding in the assessment of the commercial 
devices in their intended environment.

Device Performance
Results derived from the aforementioned analyses agree 
with previous research evaluating device performance of 
commercial sleep technologies that report on similar 
metrics. This notion holds especially true for objectively 
measuring sleep stages as it is apparent (supported by 
current and previous literature) that sleep staging is not 
accurately measured by the commercial sleep technologies 
assessed. Of greater concern, there is a consistent pattern 
in the extant literature in which the commercial sleep 
technology market reveals a large degree of volatility 
with respect to accurately quantifying sleep. For example, 
similarly significant overestimations of TST and under-
estimations of TWT by the Garmin Vivosmart were 
observed herein and previously, even though prior studies 
utilized older models of the Vivosmart device.37 

Additionally, negligible biases for TST and SE were 
observed for the Fitbit Ionic wrist device in the present 
study whereas previous models of Fitbit devices overesti-
mated both metrics.55 Varying findings stem from remark-
ably few opportunities that exist for direct comparisons, 
which is due to any combination of upgrades in device 
models, differing statistical analysis strategies, or a pure 
lack of previous, independent, third-party investigation. 
Moreover, industry-accepted standards for sufficient levels 
of device accuracy are not established thus interpreting 

Table 5 Bland–Altman Proportional Bias Summary Statistics: All 
Devices

Metric Device R2 Adjusted p-value

TST Beddit 0.073 1
Fatigue Science 0.042 1
Fitbit 0.041 1

Garmin 0.189 1

Oura 0.003 1
Polar 0.073 1

Sleep++ 0.007 1

SleepWatch 0.038 1
WHOOP 0.032 1

TWT Beddit 0.083 1
Fatigue Science 0.001 1

Fitbit 0.188 0.828
Garmin 0.753 < 0.001*

Oura 0.003 1

Polar 0.256 0.951
WHOOP 0.188 0.410

SE Beddit 0.006 1
Fatigue Science 0.046 1

Fitbit 0.012 1

Garmin 0.266 0.42
Oura 0.115 0.281

Polar 0.303 0.513

WHOOP 0.036 1

Notes: Table 5 includes Bland–Altman summary statistics for proportional biases, 
which assesses the degree of proportionality with respect to the bias between 
reports of the Sleep Profiler and a given device, for all devices across the three 
sleep summary metrics. Significant results are indicated with a “*”, and in these 
cases, there is enough evidence to conclude that the device is not “proportionally 
unbiased” thus demonstrating a tendency to overestimate or underestimate at 
higher or lower magnitudes for a given metric. Data presented for each individual 
metric are sorted alphabetically by device for each of the three sleep metrics 
displayed. 
Abbreviations: SE, sleep efficiency; TST, total sleep time; TWT, total wake time.
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whether or not a device is “accurate enough” is impossible 
until there is a greater volume of research on these various 
devices as they are continually released to the public. 
Future research should also consider surveying various 
end-users (eg, clinicians, practitioners, general consumers) 
to determine thresholds by which individuals deem a sleep 
device as being accurate or inaccurate.

Device Considerations
Although all of the devices assessed conclusively elicited 
substantial degrees of inaccuracy in staging sleep metrics, 
it is important to note multiple perspectives. First, the 
commercial sleep devices are targeted for non-clinical 
purposes in the general population. If a clinician is inves-
tigating a potential sleep disorder in a patient, they can use 
a combination of EEG-based take home devices and PSG 
protocols. For the general public, which may include any 
combination of students, sedentary workers, military per-
sonnel, first responders, or athletes, to name a few, it is 
important to understand the intent of utilizing the sleep 
device. This is obviously personalized to the individual but 
one simple perspective is that understanding current sleep 
habits, from the average time you go to bed and wake up, 
to the average amount of time you are awake in bed, can 

be enlightening and potentially utilized as an augmentation 
tool for bettering one’s health. Ideally, this information 
will lead to improved sleep behaviors or lifestyle changes 
and, in which case, it is even more important to measure 
the impact of these changes on subsequent sleep patterns. 
Simple sleep hygiene alterations like going to bed earlier 
and more consistently to increase TST can accurately be 
assessed using some of the technologies tested and 
reported here. Furthermore, some of the technologies 
assessed herein permit the understanding of links between 
nutrient timing (eg, eating habits) to measures like sleep 
efficiency and heart rate during sleep.56 This is where 
consumer education is important, since all technologies 
that report sleep staging do so in consumer facing smart-
phone applications where it is easy to fixate on a sleep 
staging metric despite this value having a high likelihood 
of being inaccurate.

The task at hand requires assessment of different states 
of sleep through miniscule physiological changes. This 
effort, specifically for sleep staging, is a challenge even 
for experts in the field that utilize data from the most 
accurate methods of data collection. In fact, repeated scor-
ing of the same data by different PSG technicians can 
result in agreement differences upwards of 20%.57 

0

50

100

Fitbit Oura Fatigue
Science

Polar Beddit WHOOP Garmin

A
bs

ol
ut

e 
P

er
ce

nt
 E

rr
or

Device Comparison: TWT

Figure 3 TWT time boxplots: absolute percent error by device. 
Note: Figure 3 depicts a box plot representation of absolute percent error (APE) for each commercial device that reported on total wake time. 
Abbreviation: TWT, total wake time.
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Furthermore, in most sleep monitoring technologies, this 
daunting challenge of collecting precise measurements is 
appointed to a device that only costs $80–$300, which is 
a fraction of the costs associated with the breadth of 
equipment and expertise needed for PSG. In order to 
maintain affordability of the various devices, the methods 
of data collection and algorithms utilized by the various 
technologies examined herein vary (see Table 1). While 

computational algorithms are generally withheld by man-
ufacturers, methods of measurement employed by a device 
can have a significant impact on the accuracy of the 
device, and thus inferences drawn from device measure-
ments are questioned. Therefore, due to the diversity of 
inaccurate reports that these devices provide, we recom-
mend those who plan to employ a commercial sleep tech-
nology for general, clinical, or research purposes 

Figure 4 (A–G) TWT Bland–Altman plots for all devices. 
Notes: Figure 4 depicts individual Bland–Altman plots for all commercial sleep technologies that measured TWT. (A) Beddit; (B) Fatigue Science; (C) Fitbit; (D) Garmin; (E) 
Oura; (F) Polar; (G) WHOOP. 
Abbreviation: TWT, total wake time.
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thoroughly evaluate their primary objectives for monitor-
ing prior to purchasing.

As movement patterns vary with different states of 
wakefulness, accelerometers are often utilized by sleep 
monitoring technologies. Of the devices assessed in this 
study, the Apple Watch Series 3 (measured via Sleep++ 
and SleepWatch apps), Fatigue Science Readiband, Fitbit 
Ionic, Garmin Vivosmart 4, Oura Smart Ring, Polar A370, 
and WHOOP Strap 2.0 were all equipped with acceler-
ometers (see Table 1). Indeed, notable changes in move-
ment occur during the transition between sleep and wake58 

and the technique of estimating sleep and wake states from 
accelerometer-based movement data (termed actigraphy) 
has been used in sleep research for several decades.59 This 
is likely a major reason why commercial devices include 
an accelerometer and report on such metrics as TST, TWT, 
and SE with relatively low levels of inaccuracy and bias. 
When considering the devices examined in the present 
study that incorporated accelerometry into sleep deriva-
tions, only two devices (of the eight total), the Fatigue 
Science Readiband and Sleep++ smartphone app via the 
Apple Watch, reported a significant bias of TST.

Without insight on brain activity, accurately staging 
sleep requires the assessment of far more diminutive 

physiological signals than those required to simply 
determine sleep and wakefulness.58 Many devices 
approach this challenge through use of PPG signals to 
measure changes in heart rate, heart rate variability, and 
respiration rates,4,23,58,60 which additionally enhances 
wakefulness determinations provided by accelerometers. 
Further, devices’ ability to measure mean heart may 
contribute to its ability to estimate sleep stages. 
Although the current study was unable to directly assess 
the accuracy of heart rate measurements in the technol-
ogies assessed due to a lack worthy comparison (eg, 
multi-lead electrocardiography), previous research sug-
gests PPG devices that utilize a red or infrared wave-
length most accurately evaluate physiological signals in 
the presence of little to no movement, as observed 
during sleep.61 This is consistent with trends in our 
findings; the Fitbit Ionic and Oura Smart Ring, both of 
which collect data via PPG at higher wavelengths, pos-
sessed the lowest magnitudes of error when assessing 
TST, TWT, and SE. In fact, these two devices had lower 
error margins than all of the devices that did not utilize 
a method of PPG, and those that utilized PPG but with 
a green LED. Similar assertions were made in the sta-
ging variables where, for example, the Garmin 
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Figure 5 SE boxplots: absolute percent error by device. 
Note: Figure 5 depicts a box plot representation of absolute percent error (APE) for each commercial device that reported on sleep efficiency. 
Abbreviation: SE, sleep efficiency.
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Vivosmart 4, a device that wields PPG via green LED, 
provided remarkably higher margins of error in light and 
deep sleep time as compared to devices that wield PPG 
utilizing red or infrared wavelengths. Still, these are 
merely inferences drawn from the data presented and 
future research should consider incorporating multi-lead 
electrocardiography as an additional device to be worn 
at night so that direct comparisons of heart rate mea-
surements during routine sleeping is possible.

Another aspect worthy of consideration in the present study 
surrounds the sleep data from the Apple Watch, which poses 
substantial limitations and the potential for a great deal of 
variability. Apple does not advertise any of their watches as 
having sleep monitoring capabilities thus it is left up to third- 
party app developers to address this gap.62 With dozens of 
different applications now claiming to monitor sleep via Apple 
Watch, attempts by the developers are made to disseminate 
information to consumers (or researchers), but limited insight 

Figure 6 (A–G) SE Bland–Altman plots for all devices. 
Notes: Figure 6 depicts individual Bland–Altman plots for all commercial sleep technologies that measured SE. (A) Beddit; (B) Fatigue Science; (C) Fitbit; (D) Garmin; (E) 
Oura; (F) Polar; (G) WHOOP. 
Abbreviation: SE, sleep efficiency.
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exists regarding the methods each of these apps employ for 
collection and interpretation of the collected data to determine 
sleep metrics.5,6 Furthermore, sufficient evaluations for any of 
these third-party applications are incomplete (lacking peer 
review) or simply do not exist. While the Apple Watch is 
equipped with the technologies necessary to provide competi-
tive results with competing devices, the algorithms implemen-
ted by third parties may not utilize device capabilities to their 
fullest extent; this likely contributes, at large, to the consis-
tently poor assessments of sleep by Sleep++ and SleepWatch 
observed in the present study. To expand on an issue similar to 

this, the black box effect is rampant in commercial wearable 
technologies.17,63 More specifically, the black box effect refers 
to the notion that there is a severe lack of transparency origi-
nating from companies as it relates to computational strategies 
for health monitoring. As such, the variability in algorithms 
incorporated into objective sleep monitoring devices and the 
confidentiality that most companies possess for this informa-
tion drastically limits understanding for how these conclusions 
are drawn.62

Limitations and Future Directions
A few limitations were apparent in the present study. The 
complexion of participants’ skin tones were not accounted 
for, a variable of which has been shown to affect measures 
obtained via PPG.23,24 Participants all had light skin tones, 
thus the sample excluded relatively darker skins tones, 
which are often associated with high error rates from 
PPG technology that utilize a green LED.23,25,26 

However, the design of the current study should work in 
the favor of PPG accuracy as the data presented could be 
representative of the best case scenario for PPG perfor-
mance. It is also expected that these sleep technologies 
utilize different scoring rules (eg, filtering techniques, data 
signal trimming) that likely differ across technologies. 
Further research should be performed to understand the 
links between scoring approaches and accuracy, which 
would likely necessitate commercial companies being 
willing to share raw data signals. Additionally, because 
this study was an evaluation of the devices as they are 
available to the consumer at the time of the study, we were 
unable to account for any cloud-based firmware updates 
that may have been pushed to a device, during a single 
subject’s data collection.6,17 New device models are 
released at different times for each company as well, so 
to stay exactly current on the most up-to-date models is 
difficult. The most recent devices commercially available 
were procured at the time of the study. This issue lends 
credence to needing validation studies to be continuously 
executed as new technologies emerge, and modifications 
of existing technologies are released. Furthermore, direct 
observations of sleep nights by the researchers were not 
possible since data collection occurred as part of partici-
pants’ normal sleeping routines. Consequently, only the 
aforementioned assurances of data quality, such as an 
initial familiarization session, routine data exports and 
reviews executed by the researchers, as well as extreme 
outlier detection strategies, were capable of practical 
implementation. However, this design lends itself to 

Table 6 Kendall’s Coefficient of Concordance (W): TST, TWT, 
and SE

Device Sum Rank

Fitbit 5

Oura 5

Fatigue Science 10
WHOOP 12

Polar 13

Beddit 18
Garmin 21

Kendall’s W 0.87

Notes: Table 6 includes a summary of Kendall’s Coefficient of Concordance (W) 
based upon ranked MAPE values from each device for TST, TWT, and SE. Device 
rankings from the three sleep metrics were summated (Sum Rank). 
Abbreviations: MAPE, mean absolute percent error; SE, sleep efficiency; TST, 
total sleep time; TWT, total wake time; W, Kendall’s coefficient of concordance.
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Figure 7 Light time boxplots: absolute percent error by device. 
Note: Figure 7 depicts a box plot representation of absolute percent error (APE) 
for each commercial device that reported on light sleep time.
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a true commercial evaluation of technologies, where the 
consumer follows device directions and implements device 
utilization as a part of their daily routine.

As technologies continue to advance, it will be vital for 
concerning parties to continue evaluating the accuracy and 
reliability of new devices and updates to algorithms as they 
are released. Future research should address the dynamic 
nature of the field and continue encouragement towards 
manufacturers to devote a greater degree of prioritization 
towards third-party validations of their devices. 

Additionally, validations on the various sensors of the 
devices (eg, accelerometers, PPG), of which raw data are 
collected and used to estimate various sleep metrics, should 
be conducted. This may provide valuable insight necessary 
for further validation of not only the device itself but also the 
algorithms used for interpretation of collected data. Once 
accuracy and reliability have been confirmed in a general 
population, modifications to algorithms can be explored for 
application to various clinical and diseased populations. 
Moreover, a limitation to not only the present study but 

Table 7 Absolute Percent Error Staging Summary Statistics: All Devices

Metric Device n MAPE Min. (%) MdAPE Max. (%) IQR

Light Time WHOOP 30 13.48 3.09 11.98 51.30 9.96
Fitbit 26 20.41 2.77 20.59 60.91 20.54

Oura 62 25.63 0.60 23.40 88.37 18.34
Garmin 22 40.85 6.15 29.65 159.84 38.54

Deep Time WHOOP 32 46.19 1.64 32.68 142.86 49.08
Fitbit 26 58.82 9.86 42.02 137.84 61.39

Oura 59 60.46 0.00 55.81 184.34 58.41
Garmin 21 133.54 8.73 62.42 561.29 135.33

REM Time Garmin 19 62.06 8.02 46.58 184.51 80.54
WHOOP 30 57.83 3.30 53.72 230.77 47.40

Fitbit 27 79.17 6.91 30.20 311.54 98.80

Oura 56 79.73 3.73 61.08 303.39 74.60

Notes: Table 7 includes APE summary statistics for all devices that reported on each respective measure of sleep staging. Data presented for each individual staging metric 
are sorted lowest-to-highest based upon MAPE. 
Abbreviations: APE, absolute percent error; IQR, interquartile range; MAPE, mean absolute percent error; Max, maximum; MdAPE, median absolute percent error; Min, 
minimum; n, number of trials; REM, rapid eye movement.

Table 8 Bland–Altman Sleep Staging Statistics: All Devices

Metric Device n Bias 
(95% CI)

Adjusted p-value Lower LOA 
(95% CI)

Upper LOA 
(95% CI)

LOA Range

Light Time WHOOP 30 −0.17 (−0.43, 0.08) 1 −1.52 (−1.95, −1.10) 1.17 (0.75, 1.60) 2.70
Fitbit 26 −0.38 (−0.82, 0.06) 1 −2.51 (−3.23, −1.79) 1.75 (1.03, 2.47) 4.26

Oura 62 −0.49 (−0.78, −0.20) 0.05 −2.74 (−3.23, −2.24) 1.76 (1.27, 2.25) 4.50

Garmin 22 0.33 (−0.38, 1.04) 1 −2.81 (−3.97, −1.65) 3.47 (2.31, 4.64) 6.28

Deep Time Fitbit 26 0.15 (−0.09, 0.39) 1 −1.01 (−1.40, −0.61) 1.30 (0.91, 1.70) 2.31
WHOOP 32 0.03 (−0.19, 0.25) 1 −1.16 (−1.52, −0.79) 1.22 (0.86, 1.58) 2.38
Oura 59 0.33 (0.16, 0.49) 0.006* −0.91 (−1.19, −0.63) 1.57 (1.29, 1.84) 2.48

Garmin 21 0.56 (−0.15, 1.26) 1 −2.49 (−3.65, −1.34) 3.61 (2.45, 4.76) 6.10

REM Time WHOOP 30 0.10 (−0.15, 0.35) 1 −1.22 (−1.63, 0.80) 1.42 (1.00, 1.83) 2.63

Garmin 19 −0.05 (−0.49, 0.39) 1 −1.83 (−2.54, −1.12) 1.73 (1.02, 2.44) 3.56

Fitbit 27 0.31 (0.00, 0.62) 1 −1.22 (−1.73, −0.71) 1.83 (1.32, 2.34) 3.05
Oura 56 0.19 (−0.05, 0.42) 1 −1.52 (−1.92, −1.13) 1.90 (1.51, 2.29) 3.42

Notes: Table 8 includes Bland–Altman summary statistics, which assesses the degree of bias between reports of the Sleep Profiler and a given device, for all devices across 
the three sleep staging metrics. Significant results are indicated with a “*”, and in these cases, there is enough evidence to conclude that the device is not “unbiased” thus 
demonstrating a tendency to overestimate or underestimate a given metric. Data presented for each individual staging metric are sorted lowest-to-highest based upon the 
range between upper and lower LOA. 
Abbreviations: CI, confidence interval; LOA, limits of agreement; n, number of trials; REM, rapid eye movement.
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seemingly every other one that seeks to examine commercial 
device accuracies is that they are unable to determine what is 
“accurate enough.” Provided that the intended purpose for 
these technologies will likely vary to a large degree based 
upon the end-user(s), future research should survey various 
application domains so that companies, researchers, and 

consumers can all have a concrete answer to what is “accu-
rate enough.”

Conclusion
The ability to accurately monitor longitudinal trends in sleep 
through commercial sleep technologies presents a valuable 
opportunity to end-users who are interested in tracking this 
information. Considering the unequivocal importance of ade-
quate sleep, a commercial device’s ability to accurately and 
objectively measure sleep characteristics (eg, sleep, wake, 
and stage durations) affords invaluable insights to consu-
mers, researchers, and clinicians alike. However, findings 
from the present study, which align with extant literature, 
reveal large variations between commercial devices; the 
greatest amounts of confidence in device accuracy were 
associated with measurements of TST, TWT, and SE whereas 
little confidence exists in attempts to measure sleep staging 
metrics. Although accurate sleep staging derived from com-
mercial technologies would generate a whole new realm of 
application in sleep research, it does not appear that any of 
the devices tested are capable of such reporting. Thus, we do 
not recommend that these sleep staging metrics are incorpo-
rated into any decision-making as it relates to routine mon-
itoring (eg, consumer-based self-monitoring, clinical sleep 
monitoring) at this time. Yet, there are possibilities for rea-
sonably accurate monitoring of TST, TWT, and SE. The 
Fitbit Ionic wrist device and the Oura Smart Ring possessed 
the lowest degrees of error for these three metrics as they 
were the only devices that provided unbiased estimates in 
each case and elicited the lowest APE values. With that said, 
WHOOP performed similarly to Fitbit and Oura with respect 
to TST, although error margins for TWT and SE were nearly 
doubled. Additionally, WHOOP reported the most accurate 
results among commercial devices analyzed for light and 
deep sleep durations, albeit APE values being relatively 
high. For these reasons, it is advisable that those individuals 
contemplating future sleep monitoring consider the data 
quality of these three devices compared to the others. If the 
primary interest of sleep monitoring is to assess sleep dura-
tions and the general efficiency of that sleep, there first must 
be a foundational understanding that more detailed interpre-
tations of sleep physiology would be possible with distin-
guishing sleep stages, yet no commercial device appears 
capable of accurately doing so. As such, the incorporation 
of devices that report TST, TWT, and SE, may be feasible if 
an end user is aware of or able to determine what their 
acceptable thresholds for error might be. Unfortunately, 
which device is “accurate enough” is a question that remains. 
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Figure 8 Deep time boxplots: absolute percent error by device. 
Note: Figure 8 depicts a box plot representation of absolute percent error (APE) 
for each commercial device that reported on deep sleep time.
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Figure 9 REM time boxplots: absolute percent error by device. 
Note: Figure 9 depicts a box plot representation of absolute percent error (APE) 
for each commercial device that reported on REM time. 
Abbreviation: REM, rapid eye movement.
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As previously mentioned, future investigations must con-
sider this thought and being surveying relevant populations 
for what magnitudes of accuracy (or lack thereof) justify the 
utilization of a particular commercial device.

Abbreviations
APE, absolute percent error; ACSM, American College of 
Sports Medicine; bpm, beats per minute; CI, confidence 
interval; EEG, electroencephalography; EMG, electromyo-
graphy; EOG, electrooculography; eg, exempli gratia; Q1, 
first quartile; FDA, Food and Drug Administration; Gen, 
generation; HR, heart rate; cm, height in centimeters; IQR, 
interquartile range; LED, light emitting diode; LOA, limits 
of agreement; Max, maximum; MAPE, mean 
absolute percent error; MdAPE, median absolute percent 
error; Min, minimum; NTC, negative temperature coeffi-
cient; n, number of trials; PPG, photoplethysmography; 
PSG, polysomnography; REM, rapid eye movement; SE, 
sleep efficiency; app, smartphone application; SD, stan-
dard deviation; Q3, third quartile; TST, total sleep 
time; kg, weight in kilograms; y, years of age.
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