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Introduction: Physical, chemical, thermal injuries along with infectious diseases lead to 
acute pain with associated inflammation, being the primary cause of hospital visits. 
Moreover, neuropathic pain associated with diabetes is a serious chronic disease leading to 
high morbidity and poor quality of life.
Objective: Earlier multiple sulphonamides have been reported to have an antinociceptive 
and antiallodynic profile. 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide (4-FBS), 
a synthetic sulfonamide with reported carbonic anhydrase inhibitory activity, was investi-
gated for its potential effects in mice model of acute and diabetic neuropathic pain.
Methods and Results: 4-FBS was given orally (p.o.) one hour before the test and then 
mice were screened for antinociceptive activity by using the tail immersion test, which 
showed significant antinociceptive effect at both 20 and 40 mg/kg doses. To explore the 
possible mechanisms, thermal analgesia of 4-FBS was reversed by the 5HT3 antagonist 
ondansetron 1mg/kg intraperitoneally (i.p.) and by the µ receptor antagonist naloxone (1 mg/ 
kg i.p.), implying possible involvement of serotonergic and opioidergic pathways in the 
analgesic effect of 4-FBS. Diabetes was induced in mice by a single dose of streptozotocin 
(STZ) 200 mg/kg i.p. After two weeks, animals first became hyperalgesic and progressively 
allodynic in the fourth week, which was evaluated through behavioral parameters like 
thermal and mechanical tests. 4-FBS at 20 and 40 mg/kg p.o. significantly reversed diabetes- 
induced hyperalgesia and allodynia at 30, 60, 90, and 120 minutes.
Conclusion: These findings are significant and promising while further studies are war-
ranted to explore the exact molecular mechanism and the potential of 4-FBS in diabetic 
neuropathic pain.
Keywords: sulfonamides, streptozotocin; STZ, antinociception, diabetes mellitus; DM, 
neuropathic pain, von Frey filaments

Introduction
Physical, thermal, and chemical noxious stimuli, and infectious diseases, are the 
leading cause of pain and associated inflammation.1,2 Acute pain is a protective 
mechanism of homeostasis but has considerable distress that leads to poor quality 
of life. Tissue and nerve damage translates into intensified pain states, which are 
driven by afferent traffic caused by otherwise harmless or slightly aversive mechan-
ical and thermal stimuli evoking a behavioral response consistent with a more 
pronounced stimulus.3,4 Non-steroidal anti-inflammatory drugs (NSAIDs) are 
usually used for the treatment of mild to moderate painful states, but these drugs 
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are associated with lasting side effects including gastric 
ulceration and subsequent bleeding.5 Opiates have also 
been used as narcotic analgesics but are coupled with 
serious adverse effects, primarily tolerance, and continued 
use is translated in the form of addiction and dependence.6

Diabetic peripheral neuropathy (DPN) is one of the 
leading causes of morbidity, affecting 30–50% individuals 
presented with diabetes mellitus (DM) and also contributes 
a greater cost to the health care systems of both developed 
and developing countries.7,8 The structural deformity of 
the peripheral nervous system and abnormal functioning of 
nerves that supply to organs develops a complex and 
unique pattern of symptoms and signs that are character-
istic of diabetic neuropathy. These involve stocking-glove 
pattern of pain, burning pain especially at nights, lancinat-
ing or sharp pain, heightened pain response to touch, and 
pain from non-noxious stimuli or allodynia. All of these 
symptoms are called positive symptoms of DPN, while 
negative symptoms include numbness, cold, and loss of 
sensory sensation.9,10 Despite the prevalence of DPN and 
its contribution to disease burden on societies, several 
treatment options only relate to glucose control and weight 
loss. The currently available centrally acting drugs for 
DPN, like antidepressants, anticonvulsants, and opioids, 
produce the serious risk of use dependence and 
addiction.11

Research over recent decades has been conducted to look 
for non-opioid analgesics that can act via a central 
mechanism.12 Many studies indicate that the serotonergic 
pathway, primarily the 5-HT1A receptor activation, leads to 
a novel mechanism mimicking central neuroadaptive analge-
sic action upon receiving nociceptive stimulation.13

Sulfonamide derivatives have been documented to have 
diuretic,14 antiepileptic,15 analgesic and antiallodynic,16 

anti-cancer,17 hepatoprotective, and GABAA modulatory 
activities.18 Additionally, sulfonamides have been docu-
mented to inhibit neuropathic pain, reverse mechanical 
hyperalgesia, and allodynia in a dose-dependent manner.19 

Additionally, the carbonic anhydrase inhibitory effects of 
sulphonamides have been reported to reverse oxaliplatin- 
induced allodynia through reversing oxaliplatin-induced 
decrement in intracellular pH in mouse dorsal root ganglion 
(DRG) neurons.20 4-FBS has been reported to have a dual 
inhibitory effect on alkaline phosphatase and carbonic 
anhydrase,21 and recent data suggest carbonic anhydrase 
inhibitors as a potential newer drug target for the manage-
ment of neuropathic pain.19 Keeping in view this diverse 
pharmacological profile of 4-FBS (alkaline phosphatase 

and carbonic anhydrase inhibitory effect), this study was 
designed to explore the potential of 4-FBS in a murine 
model of acute pain and diabetes-induced neuropathic pain.

Materials and Methods
Animals
Male BALB/c (n=6/group) mice 8- to 12-weeks-old 
(24–30 g), obtained from the National Institute of Health, 
Pakistan were randomly housed six (6) per cage and main-
tained at temperature 24 ± 1°C with 12 h dark/light cycle 
in the animal house facility of COMSATS University 
Islamabad, Abbottabad Campus. Standard rodent chow 
diet and water were provided ad libitum. All the beha-
vioral experiments were performed during the light cycle 
from 8:00 am to 2:00 pm, to avoid disturbance in the 
diurnal rhythm. The experimentation on animals was per-
formed in compliance with the UK Animals (Scientific 
Procedures) Act 1986 and accordance with the rules and 
ethics set by the Ethical Committee of COMSATS 
University Islamabad, Abbottabad campus under the 
approval Letter number PHM.Eth/cs-M04/11-34.

Treatment Schedule
Mice (n=6/group) were divided into five groups. All 
groups received streptozotocin (STZ) as a single high 
dose of 200 mg/kg i.p. once except the vehicle control 
group.22–24 Group, I served as a positive control (STZ 
group). Group II dimethyl sulfoxide (DMSO 5%) p.o. 
remained as a vehicle control group. Group III received 
gabapentin 75 mg/kg i.p. as the standard, while group IV 
and V received 4-FBS suspension 20 and 40 mg/kg p.o. 
via oral gavage dissolved in DMSO 5% to diabetic neuro-
pathic mice and pain behavioral parameters like allodynia 
and hyperalgesia were evaluated at different time interval 
30, 60, 90 and 120 minutes (min).

Drugs and Chemicals
Sulfonamide compound, i.e., 4-FBS was provided by 
Mariya Al Rashida,21 STZ was purchased from Sigma 
(St. Louis, MO, USA), naloxone 0.3 mg/mL (Brand 
name NALOX by Haji Medicines Co), ondansetron 
8 mg/4mL (ONSET by Pharmedic Pvt Ltd) were pur-
chased from the model retail pharmacy established in 
Ayub Teaching Hospital Abbottabad, Pakistan. One-touch 
basic blood glucose monitoring system by a Life scan was 
used for measuring blood glucose levels.
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Tail Immersion Test
In the tail immersion test, a noxious pain stimulus was 
used to quantify thermal pain in naïve male BALB/c mice 
treated with 4-FBS 20 and 40 mg/kg against the normal 
saline group. About 1/3rd of the mouse tail was immersed 
into hot water which was maintained at 54± 0.5ᴼC (nox-
ious pain stimulus for mice) and test recording (tail flick) 
was noted at 30, 60, 90, and 120 min. The time between 
the application of thermal stimulus and response, i.e., tail- 
flick latency was noted via digital stopwatch. A 15 seconds 
(s) cut-off time was set to avoid tissue injury.25,26

Reversal of Analgesia by Naloxone and 
Ondansetron
To explore the possible involvement of serotonergic27 and 
opioidergic pathways,28 selected groups of mice (n=6/ 
group) were given 4-FBS 20 mg/kg p.o. separately. After 
one hour, the same mice received naloxone 1mg/kg i.p, 
while other 4-FBS treated group received ondansetron 
1mg/kg i.p. and tail-flick latency was quantified against 
normal saline as described earlier.25,26

Induction and Assessment of Diabetic 
Neuropathic Pain
Mice were food-deprived overnight for 16 h before admin-
istration of a single dose of STZ 200 mg/kg to induce β-cell 
necrosis.22,24 Mice were immediately provided food and 
10% sucrose solution to avoid severe hypoglycemia. After 
72 h, mice having random blood glucose levels >250 mg/dl 
were included in the study.24 Blood glucose and body 
weight were measured at a different time interval during 
the experimentation. To avoid infection due to polyuria, 
mice sawdust bedding was changed on alternate days. 
After 4 weeks, on the 29th-day post STZ treatment, animals 
were transferred to a wire mesh cage, given an acclimatiza-
tion period of 15–45 min, and then evaluated for thermal 
hyperalgesia and allodynia.29,30

Assessment of Static Allodynia (Paw 
Withdrawal Threshold (g))
Static allodynia was assessed using von Frey filaments 
ranging from 0.008 to 4 g. For this purpose, mice right 
hind paw was exposed through a mesh floor having a pore 
size of 10×10 cm and an opaque cup was used to avoid 
visual contact. An acclimatization period of 15–45 min 
was given for initial exploration and grooming.29,30 

Filaments were applied for 6–8 seconds on the plantar 

surface of the hind paw perpendicularly until it distorted. 
The careful observation was carried not to touch the less 
sensitive tori (footpads) of mice with filaments. The von 
Frey filament was applied 05 times to the hind paw at 
intervals of several seconds to determine the mean score 
which also served as the pain related score. After this, the 
next filament was introduced in a descending pattern using 
up and down technique.30

Statistics
Data were expressed as means ± S.E.M. Parameters were 
examined for normality with the Shapiro–Wilk normality 
test and all data was found normal. One-way ANOVA was 
followed by Dunnett’s post hoc test. GraphPad Prism 
v.8.3.1 was used for the analysis of data. The statistical 
significance level was set as p< 0.05.

Results
Effects of 4-FBS 20 and 40 mg/kg on 
Acute Thermal Antinociception Activity
As shown in Figures 1 and 2, 4-FBS at 20 and 40 mg/kg p. 
o. significantly *p<0.05, **p<0.01, ***p<0.001 elevated 

Figure 1 Effect of 4-FBS 20 mg/kg on tail flick latency time at different time-points. 
BALB/c mice (n=6/group) were used. The graph shows antinociceptive activity of 
4-FBS 20 mg/kg p.o. in the tail-flick latency time. One way ANOVA followed by 
Dunnett’s test shows significance difference between at 30, 60, 90 and 120 min 
between 4-FBS vs. saline vehicle control, *p<0.05, **p<0.01, ***p<0.001.
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tail-flick latency time at 30, 60, 90, and 120 min, when 
compared with saline group except for 4-FBS 40 mg/kg at 
120 min. One way ANOVA followed by Dunnett’s test 
was used as statistical analysis.

Effects of Ondansetron (1 mg/kg) and 
Naloxone (1 mg/kg) on 4-FBS 20 mg/kg 
Acute Thermal Antinociception Activity
As shown in Figures 3 and 4, two mice groups (n=6) 
received 4-FBS 20 mg/kg p.o. After one hour, they were 
administered ondansetron and naloxone 1 mg/kg i.p. sepa-
rately, which abolished the anti-nociceptive effect of 
4-FBS 20 mg/kg in the tail-flick latency time although 
the result was statistically (unpaired t-test) non- 
significant when compared with normal saline.

Effects of 4-FBS 20 and 40 mg/kg on STZ 
Induced Diabetic Thermal Hyperalgesia
As shown in Figure 5, 4-FBS at 20 and 40 mg/kg p.o. 
significantly **p<0.01, ***p<0.001 increased tail-flick 
latency time in STZ-induced diabetic thermal hyperalgesia 
at different time points of 30, 60 90, and 120 min except 
for 4-FBS 20 mg/kg at 120 min. It is pertinent to mention 

that using one-way ANOVA followed by Dunnett’s test, 
the 4-FBS 20 mg/kg result was comparable to the standard 
drug gabapentin 75 mg/kg at 30, 60, and 90 min, while 
40mg/kg was comparable at time points of 30, 60, 90, and 
120 min.

Effects of 4-FBS 20 and 40 mg/kg on STZ 
Induced Diabetic Static Allodynia
As shown in Figures 6 and 7, oral administration of 4-FBS 
20 mg/kg to diabetic mice resulted in a significant **p<0.01, 
***p<0.001 reversal of static allodynia by increasing paw 
withdrawal threshold at 30, 60, 90 min, while 4-FBS at 
40 mg/kg increased paw withdrawal at 60, 90, 120 min. 
Application of one-way ANOVA followed by Dunnett’s 

Figure 2 Effect of 4-FBS 20 mg/kg on tail flick latency time at different time-points. 
BALB/c mice (n=6/group) were used. The graph shows the antinociceptive activity 
of 4-FBS 40 mg/kg p.o. in tail-flick latency time. One way ANOVA followed by 
Dunnett’s test shows significance difference at 30, 60 and 90 except 120 min 
between 4-FBS vs. saline vehicle control, *p<0.05, **p<0.01, ***p<0.001.

Figure 3 Shows partial reversal by ondansetron, 1mg/kg in tail flick latency proto-
col. Pain threshold was observed in 4-FBS 20mg/kg treated mice but it was 
statistically non-significant when compared with the saline vehicle control group.

Figure 4 Shows that naloxone, 1mg/kg shows partial reversal of analgesia in tail 
flick latency protocol. Pain threshold was observed in 4-FBS at 20mg/kg treated 
mice, which was statistically non-significant when compared with the saline vehicle 
control group.
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test showed the response at 4-FBS 20 mg/kg 120 min and 
4-FBS 40 mg/kg 30 min only as non-significant, although 
considerable paw withdrawal latency can be observed.

Discussion
Our findings showed that 4-FBS has significant antihyper-
algesic, and antiallodynic effects in the murine model of 
diabetic neuropathic pain Figures 5–7. The compound also 
showed an analgesic effect in the acute thermal pain mice 
model at 30, 60, 90, and 120 minutes, which is a significant 
effect in terms of both potency and longevity (Figures 1 and 
2). To ascertain the mechanism and involvement of seroto-
nergic pathways, we tried to reverse the effect with ondanse-
tron. Serotonergic receptors agonists specifically have been 
documented to reverse both hyperalgesia and allodynia in 
neuropathic pain models.31,32 The thermal pain effect was 
reversed with ondansetron dose, implying the role of seroto-
nergic pathways primarily 5HT3 receptors in Figure 3. 
Serotonin plays a diverse role in pain modulation and control; 
primarily 5HT1B antagonists are used clinically in pain, for 
instance, tramadol, which partially imparts its analgesia by 
blocking 5HT1B.33 Tramadol along with other opiates are 
extensively used for the management of acute, chronic, and 
neuropathic pain.34–36 Additionally, tramadol has a serotonin 
reuptake inhibitor (SRI) effect that contributes to its analge-
sic effect.36 Studies have also documented that, tramadol 

Figure 5 Effect of 4-FBS 20 and 40mg/kg on tail flick latency time at different time- 
points. BALB/c mice (n=6/group) were used. 4-FBS at 20 and 40mg/kg shows 
significant antihyperalgesic activity in the mouse tail-flick latency time. One way 
ANOVA followed by Dunnett’s test shows significance difference between STZ 
control and 4-FBS 20mg +STZ group at all-time intervals except for 120 min while 
4-FBS 40mg +STZ group at all-time. *p<0.05, **p<0.01, ***p<0.001.

Figure 6 Effect of 4-FBS 20 mg/kg on paw withdrawal threshold time at different 
time-points. BALB/c mice (n=6/group) were used. 4-FBS at 20 mg/kg shows sig-
nificant antiallodynic activity in the paw withdrawal threshold. One way ANOVA 
followed by Dunnett’s test shows significance difference between STZ control and 
4-FBS 20mg +STZ group at all-time intervals except for 120 min. *p<0.05, **p<0.01, 
***p<0.001.

Figure 7 Effect of 4-FBS 40 mg/kg on paw withdrawal threshold time at different 
time-points. BALB/c mice (n=6/group) were used. 4-FBS at 40 mg/kg shows sig-
nificant antiallodynic activity in the paw withdrawal threshold (n=6). One way 
ANOVA followed by Dunnett’s test shows significance difference between STZ 
control and 4-FBS 20mg +STZ group at all-time intervals except for 30 min. 
*p<0.05, **p<0.01, ***p<0.001.
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analgesia quality and duration were reversed by 
ondansetron.27,37 More detailed receptor-specific studies are 
warranted using specified receptor antagonists for broader 
mechanistic studies. The acute thermal effect was also 
reversed by naloxone, implying some interactions with opioi-
dergic pathways in Figure 4. It is pertinent to mention that 
reversal was made with 1 mg/kg naloxone and more studies 
are warranted to ascertain the involvement of specific opioid 
receptors.

Earlier studies have reported that some sulfonamides 
have analgesic, antihyperalgesic and antiallodynic effects, 
as well as a carbonic anhydrase inhibitory effect.17,19 In 
modulation of pain and hyperalgesia, dopamine plays 
a major role in different areas of the brain including basal 
ganglia,38 and it is one of the main sensitive pathways 
implicated in pain management.39 Dopamine D1 receptor 
antagonist SCH-23,390 attenuate prostaglandin E2 (PGE2) 
induced hyperalgesia and neuropathic allodynia.40 

Computationally, 4-FBS is a D1 receptor antagonist (sup-
port file 1) and it may be suggested that its anti-nociceptive, 
anti-allodynic activity is due to its antagonistic activity on 
the D1 receptor. Further studies are warranted to validate 
both the behavioral and in-silico studies on receptor level 
using D1 receptor antagonist.

Diabetic neuropathic pain (DPN) is manifested via distal 
symmetrical polyneuropathy, which is characterized by 
numbness, stabbing sensations, tingling pain, and weakness 
of nerves in a stocking-and-glove pattern, beginning in the 
distal extremities. DPN leads to substantial pain, hyperalge-
sia, and allodynia which leads to poor quality of life and has 
been reported to have involvement of the peripheral nervous 
system and alter central pain processing.41 The polymorphic 
nature of this disease deleteriously affects different areas in 
the central nervous system compromising the performance of 
other body systems. Overexpression of cyclooxygenases 
seen in diabetes significantly contributes to the severity of 
pain, hyperalgesia, and discomfort.42,43 Its comorbidities 
including depression, anxiety, and insomnia make the treat-
ment regimen problematic and challenging.8,44 At present, 
more than 415 million people suffer from diabetes worldwide 
and 30–50% have chronic diabetic neuropathy, and approxi-
mately 15% with allodynia.44,45 4-FBS significantly amelio-
rated thermal hyperalgesia at all doses in the animal model of 
DPN Figure 5 except at 120 min for 4-FBS 20 mg/kg. The 
compounds also showed a significant antiallodynic effect in 
diabetic neuropathic pain by reversing mechanical allodynia 
(Figures 6 and 7) except at 120 min for 4-FBS 20 mg/kg and 
30 min for 4-FBS 40 mg/kg. Very few compounds have such 

a profile of reversing diverse types of pain and the compound 
effects resembling that of opiates.

4-FBS is a Carbonic anhydrase inhibitor21 and has been 
documented for a diverse role in neuropathic pain.19 Diabetic 
neuropathy leads to hyperalgesia and progressively results in 
allodynia. DPN is characterized by peripheral nerve injury, 
which negatively modulates spinal γ-aminobutyric (GABA)- 
ergic neuronal networks and causes a significant decrease in 
the neuron-specific potassium-chloride (K+-Cl−) co- 
transporter (KCC2), that translates in hyperalgesia and 
allodynia.10 Carbonic anhydrase inhibitors (CAIs) have 
been documented to decrease the bicarbonate-dependent 
depolarization of γ-aminobutyric (GABA) GABAA recep-
tors, producing antiallodynic effects in neuropathic pain.18,19

Acetazolamide along with many other carbonic anhy-
drase inhibitors has been reported for a role in the manage-
ment of neuropathic pain through various pathways.16 

4-FBS has been reported to have a carbonic anhydrase 
inhibitory effect21 and this effect might be contributing 
partially to the analgesic properties of 4-FBS in the acute 
pain model as well as in diabetic neuropathic pain includ-
ing both hyperalgesia and allodynia.

Limitations
These are purely behavioral studies and require more 
specific studies at the molecular level to explore the invol-
vement of any specific opioid receptor, serotonergic recep-
tor, or carbonic anhydrase inhibitory effects for its 
analgesic, antihyperalgesic and anti-allodynic, role in neu-
ropathic pain models.
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