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Purpose: Platinum resistance is a primary barrier to improving the survival rate of ovarian 
cancer. The relationship between mtDNA somatic mutations and response to platinum-based 
chemotherapy in ovarian cancer has not been well clarified.
Patients and Methods: Here, we employed the next-generation sequencing (NGS) plat-
form to identify mtDNA mutations of the unrelated high-grade serous ovarian cancer 
(HGSOC) patients.
Results: We identified 569 germline variants and 28 mtDNA somatic mutations, and found 
the platinum-sensitive relapsed HGSOC patients had more synonymous mutations while the 
platinum-resistant relapsed HGSOC patients had more missense mutations in the mtDNA 
somatic mutations. Meanwhile, we found that the HGSOC patients who harbored hetero-
plasmic pathogenic mtDNA somatic mutations had significantly higher prevalence of both 
platinum-resistance and relapse than those without (80.0% versus 16.7%, p=0.035). 
Additionally, we observed that the tumor tissues had significantly higher lactate-to- 
pyruvate (L/P) ratio than the paired nontumor tissues (p<0.001), and L/P ratio of tumors 
with any heteroplasmic pathogenic mtDNA mutations was significantly higher than that of 
the tumors free of pathogenic mtDNA mutations (p=0.025).
Conclusion: Our findings indicate that these heteroplasmic pathogenic mtDNA somatic 
mutations may cause decreased respiratory chain activity and lead to the metabolism 
remodeling that seem to be beneficial for progression of both platinum-based chemotherapy 
resistance and relapse.
Keywords: high-grade serous ovarian cancer, chemotherapy, heteroplasmy, mitochondrial 
DNA mutation

Introduction
Ovarian cancer makes up about 4.5% of cancer-associated deaths in women world-
wide and is the deadliest gynecologic malignant cancer.1 As a heterogeneous disease, 
ovarian cancer can originate form epithelial, germ cell or stromal components, at least 
85% of all ovarian cancer is epithelial ovarian cancer (EOC). It is classified into five 
histological subtypes: serous, endometrioid, mucinous, clear cell and undifferentiated 
carcinomas.2 In fact, the majority (60–80%) of patients are diagnosed with serous 
ovarian cancer (SOC). Approximately 50% EOC patients are characterized as high- 
grade serous adenocarcinoma (HGSOC) who have advanced-stage disease 
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(International Federation of Gynecology and Obstetrics/ 
FIGO stage III or IV) at presentation.3

Currently the standard treatment for ovarian cancer 
remains debulking surgery and platinum-based che-
motherapy. Although HGSOC is a chemo-sensitive dis-
ease, the major obstacle of platinum-based 
chemotherapy in HGSOC is the high incidence of 
intrinsic and acquired platinum resistance of tumor 
cells, which can result in treatment failure, disease 
relapse and even death.4 The platinum drugs are used 
extensively for treating many human cancers.5 The 
cytotoxic effect of the drugs is a multi-step process, 
and they work by entering cancer cells, targeting DNA 
molecules, producing various DNA adducts and dou-
ble/single-strand breaks and interfering with DNA 
repair, subsequently blocking DNA replication and 
transcription and ultimately killing cancer cells by 
activating the apoptotic cascade.6 Therefore, factors, 
including the altered uptake, transport and metabolism 
of the drugs, enhanced repair capacity for platinum- 
related DNA damages, and the inhibition of apoptotic 
signaling, have been described as contributing to the 
platinum-resistance of cancer cells.6 In addition, 
research has shown that mitochondria can also play 
an important role in the oncogenesis as well as che-
motherapy resistance,7–9 other studies have suggested 
that the heteroplasmic functional mutations in their 
own set of genetic material (mtDNA) are significant 
molecular events in behavior of cancers evolution 
including acquiring chemotherapy resistance.10−14 So 
far, the relationship between pathogenic heteroplasmic 
mtDNA mutations and their response to platinum-based 
chemotherapy remains largely unknown, and their is 
still a lack of systematic analysis regarding the spec-
trum of mtDNA mutation in ovarian cancer cells. The 
role of mtDNA somatic mutations in cancer develop-
ment and progression, and drug resistance are not con-
clusive, and more work is needed to be done. In the 
present study, to further determine the spectrum of 
mtDNA variants and its association with platinum- 
resistance and recurrence, we sequenced the whole 
mtDNA genome and investigated the tumor cell meta-
bolism in HGSOC. The results suggest that the patho-
genic heteroplasmic mutations of mtDNA-encoded 
genes are frequently molecular events in HGSOC, and 
they could be related to the platinum chemoresistance 
and relapse of ovarian cancer.

Patients and Methods
Subjects and Tissue Samples
All patients were clinically diagnosed sporadic HGSOC and 
underwent primary treatment in the Department of 
Gynecologic Oncology, Jiangsu Cancer Hospital and signed 
their informed consent for the study. The experimental pro-
cedure was approved by the Ethics Committee of Jiangsu 
Cancer Hospital. Tissue samples were obtained upon 
informed consent from the patients (age 44–68 years) at the 
time of primary debulking surgery. Tumor and corresponding 
surrounding non-tumor tissue samples were confirmed by 
senior oncologists and pathologists, and immediately 
removed, dissected, snap-frozen in liquid nitrogen and stored 
at −80°C. In addition, whole blood samples were collected in 
citrate-anticoagulated tube from each patient and used to 
confirm the identified mtDNA variants.

The clinical evaluation criterion for platinum response 
of patients was as follows: the patients who initially 
respond to first-line platinum-based chemotherapy and 
subsequently relapse more than 6 months after the initial 
chemotherapy have been categorized as “platinum- 
sensitive”, and the patients who relapse/progress within 6 
months after first-line platinum-based chemotherapy have 
been identified as “platinum-resistant, relapsed”.

Whole Mitochondrial Genome Sequence 
Analysis and Pathogenic Assessment
We adopted a commercialized next-generation sequencing 
(NGS) technique, VariantPro Mitochondrial Panel (LC 
Sciences, Hangzhou, China) to rapidly determined the pos-
sible mtDNA sequence variants. Firstly, the NGS mtDNA- 
targeted library preparation was accomplished by multiplex 
PCR-based technology with mitochondrial specific primer 
sets provided by LC Sciences (Hangzhou, China). The PCR 
amplified products were purified by Agen-court AMPure XP 
beads (Beckman Coulter Genomics, UK), and diluted to 20 
pmol/L, then directly sequenced on the Illumina Hiseq X Ten 
platform based on the Paired-End 150 (PE150) strategy.

Prior to aligning sequence reads, the cleaned, paired-end 
sequence reads were produced by removing the low-quality 
reads with a cutoff score of Q20. Then we used this work-
flow to process the raw reads that included mapping the 
sequence reads to mitochondrial genome reference sequence 
(rCRS reference) with Burrows–Wheeler Alignment (BWA) 
program, combining mapped and unmapped reads to do 
a local realignment around the edges of base indels often 
results in misaligned bases creating false positive variant 
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calls, recording the aligned reads that were uniquely mapped 
to the mitochondrial genome in order to avoid possible 
effects of nuclear mitochondrial sequences (NumtS), apply-
ing Genome Analysis ToolKit (GATK) caller to identify 
mtDNA variants with recalibration of gaussian mixture 
model, and utilizing ANNOVAR to annotate bio-functional 
information of the identified variants.

The sequence variants identified in both tumor and 
matched non-tumor tissues were scored as germline var-
iants, and any mtDNA sequence differences between 
tumor and matched non-tumor tissues were scored as 
somatic mutations. All mtDNA somatic mutations were 
crosschecked and confirmed by comparing with the 
mtDNA sequences of blood cells form the same patients. 
The sequence variants have taken an approach to deter-
mine homoplasmic and heteroplasmic levels based on 
allele counts of sequence reads via GATK recalibration. 
Each mtDNA variant was checked against the MITOMAP 
database.15,16 The variants that were not recorded in the 
MITOMAP were labeled as novel mtDNA variants. 
Instead, the variants that appeared in the MITOMAP 
were registered as polymorphisms or mutations.

The pathogenic potential of each possible non- 
synonymous change was inferred based on the rCRS and 
predicted using SIFT and PolyPhen-2 platforms. The 
pathogenic effect of newly observed tRNA mutations 
were evaluated by MitoTIP system.

Lactic Acid and Pyruvate Measurements
The levels of lactic acid and pyruvate were measured 
using the commercial kit (Nanjing Jiancheng 
Bioengineering Institute, China) as directed by the manu-
facturer’s instructions.

Statistical Analysis
The data was analyzed using SPSS statistical software 
(SPSS Inc.). Continuous variable comparison was con-
ducted by Student’s t-test or Mann–Whitney test. The 
categorical variable was analyzed using Chi-squared or 
Fisher’s exact test. In all cases, p-value less than 0.05 
was considered statistically significant.

Results
Spectrum of Mitochondrial Genome 
Variants in HGSOC
We sequenced the entire mitochondrial genome of the 16 
unrelated HGSOC tumors and their corresponding 

matched non-tumor cells. By comparing the rCRS, 597 
sequence variants at 256 different nucleotide loci were 
identified (Table 1, S1-2). Of which, the 569 sequence 
variants at 237 different nucleotide loci were supposed to 
be the germline variants (Table S1). All observed germline 
variants were reported as the polymorphisms in the 
MITOMAP with recording of GeneBank frequency. Note 
that the nucleotide position (np) 514–523 region of rCRS 
is a typical microsatellite sequence containing a stretch of 
five CA dinucleotide repeats, termed np514-523 CA 
repeats. However, a stable variant containing four CA- 
repeats at this sequence region was found in five cases of 
soc5, soc11, soc14, soc17 and soc19 (Table S1).

Additionally, 28 sequence variants at 24 different 
nucleotide loci of mtDNA only presented in the tumor 
tissues (Table S2), not in any matched non-tumor cells. 
These variants could be categorized as mtDNA somatic 
mutations, and 15 variants were recorded in the 
MITOMAP, and 13 variants were new-found mutations 
(Table S2).

Characteristics of Germline mtDNA Variants
Most of the germline variants (95.6%, 544/569) were 
homoplasmic, and the remaining 4.4% variants (25/569) 
were heteroplasmic (Table 1). Especially at the np 
303–309 region, which was a polycytidine stretch 
(C-tract, C7) from np303 to np309 in rRCS and termed 
D310 C-tract, the 12 of 16 cases carrying heteroplasmic 
variants were in this sequence region (Table S1). The 
mtDNA of the 12 cases represented a mixture of variant 
repeats with various length of consecutive stretch of 
C residues (C8, C9, C11, or C12) (Table S1).

The details of all subjects’ germline mtDNA variant 
distribution are illustrated in Figure 1. 46.7% variants 
(266/569) were detected in non-protein coding region, 
and 53.3% variants (303/569) were found in protein- 
coding region. Of the 266 variants in non-coding region, 
67.3% (179), 27.8% (74), 3.8% (10) and 1.1% (3) variants 
located in D-loop, rRNA gene, tRNA gene and intergenic 
regions, respectively. In the 303 germline variants of pro-
tein-coding region, most of them (64.4%, 195/303) were 
synonymous mutations and the remaining variants (35.6%, 
108/303) were non-synonymous mutations that included 
non-synonymous variants, and missense and truncating 
mutations.

Seen from the perspective of DNA base changes, the 
subjects had base transitions amount to 87.3% (497/569) 
of all germline variants, while base transversions and 
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small indels only made up 5.1% (29/569) and 7.6% (43/ 
569), respectively (Table S3). Of these, base transitions 
had considerably more base changes of A:T to G:C than 
G:C to A:T, 62.6% (311/497) against 37.4% (186/497) 
(Table S3). Compared with the A:T to G:C mutations 
(transitions), the G:C to A:T transitions were mostly 
located in protein coding regions (49.8% vs 71.5%, p < 
0.001), in those cases of transitions were mainly synon-
ymous mutations (Table S3). There were four types for 
transversions, A:T to C:G, A:T to T:A, G:C to T:A and G: 
C to C:G, account for 2.1%, 1.2%, 1.2% and 0.5%, respec-
tively (Table S3). Of those transversions, 14/29 and 15/29 
of variants resided in d-loop and protein-coding regions, 
respectively (Table S3). However, all 43 small indels were 
resided in non-protein coding regions (Table S3).

Characteristics of Somatic mtDNA Mutations
With the exception of soc19, each tumor sample harbored 
one or more somatic mutations, and all identified mtDNA 
somatic mutations were heteroplasmic, and their hetero-
plasmic level varied from 0.08 to 0.82 (Table S2). The 
observed somatic mutations that were resided in d-loop (7 

mutations), rRNA gene (7 mutations), and protein-coding 
regions (14 mutations), respectively (Figure 1). In the 
d-loop region, 5 cases harbored the A to C mutation posi-
tioned at np439 (m.439 A>C) (Table S2). Among those 
five samples, a tumor sample from soc12 had both m.439 
A>C and m.16182 A>C mutations (Table S2). The remain-
ing somatic mutation of the d-loop region 
was m.16183A>C (Table S2).

Seven somatic mutations were found in non-protein 
coding regions (rRNA and tRNA genes) (Table S2). Of 
which, 4 mutations were situated in the MT-RNR1 gene, 2 
mutations were in MT-RNR2 gene, while the other one 
was in tRNA MT-TW gene. The somatic mutation in MT- 
TW gene, m.5540 G>A, was heteroplasmic, scored 16.11 
by MitoTIP system and graded it as possibly pathogenic 
mutation (Table S2). Fourteen heteroplasmic somatic 
mutations of protein-coding genes were detected from 12 
cases, including 4 synonymous mutations (MT-ATP8 p. 
T6T, MT-ND4 p.A131A, MT-ND4 p.V381V and MT- 
CYB p.N74N), 6 missense mutations (MT-ND2 p. 
V115A, MT-CYB p.I78T, MT-ND2 p.I267T, MT-CO1 p. 
G160E, MT-ND5 p.A160T, and MT-ND5 p.A289T; the 

Table 1 Baseline Data of the Study Patients with HGSOC

Patient ID# Age at Diagnosis (Years) FIGO Stage Number of Observed mtDNA Variants 
Homoplasmy/Heteroplasmy

Outcome

Germline Somatic Total

soc1 44 IIIc 25/1 -/3 29 Platinum resistant/relapsed
soc5 53 IIIc 42/2 -/3 47

soc10 47 IIIc 28/4 -/1 33
soc11 63 IIIc 27/1 -/1 29

soc12 66 IV 30/2 -/3 35

soc14 45 III 33/2 -/2 37
soc16 48 IV 30/2 -/2 34

soc21 54 IIIc 40/1 -/1 42

soc23 49 IV 27/1 -/2 30

282/16 -/18 316

soc7 54 IIIc 42/0 -/3 45 Platinum-sensitive
soc15 66 IIIc 32/3 -/2 37

soc17 58 IIIc 34/0 -/2 36
soc18 46 IV 43/1 -/1 45

soc19 51 IIIc 45/2 /0 47

soc20 68 IIIc 27/2 -/1 30
soc24 62 III 39/1 -/1 41

262/9 -/10 281

Total 544/25 -/28 597

Note: Homoplasmy/heteroplasmy represents the number of observed homogeneous and heterogeneous sequence variants in mitochondrial genome. 
Abbreviations: FIGO, International Federation of Gynecology and Obstetrics; HGSOC, high-grade serous adenocarcinoma; mt, mitochondrial.
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latter three mutations were new-found variants in 
MITOMAP), 2 nonsense mutations (MT-ND1 p.W290X 
and MT-CO1 p.G226X), and 2 frameshift mutations (MT- 
ND1 p.T87fs and MT-CO3 p.V91fs). The observed 6 
missense mutations were scored by PolyPhen2 and SIFT, 
and assessed by evolutionary conservation of amino acids 
sequences. Five observed missense mutations were able to 
lead to the non-conservative replacement of an evolutio-
narily conserved amino acid (Figure S1). Those missense 
mutations had highly pathogenic potential and were con-
sidered the probably damaging mutations. Interestingly, 
the tumor cells with those heteroplasmic possible patho-
genic mtDNA mutations had a significantly higher lactate/ 
pyruvate ratio than which without those pathogenic 
mtDNA mutations and the non-tumor cells (p = 0.025 
and p < 0.001, respectively) (Figure 2). The data suggested 
that the high lactate/pyruvate ratio in the tumor cells was 
significantly associated with the heteroplasmic pathogenic 
mtDNA somatic mutations.

Characteristic Differences Between the Germline 
and Somatic Mutations in HGSOC Patients
We observed that the germline variants of protein-coding 
regions had higher proportion of synonymous mutations 
and lower ratio of functional sequence variants (included 
non-synonymous variants, and missense and truncating 
mutations) when compared with somatic mutations of the 
same regions (34.2% vs 14.3%, p = 0.029; 19.0% vs 

35.7%, p = 0.030) (Figure 1). The G>T and A>C muta-
tions were especially prone in the mtDNA somatic muta-
tions of tumor cells, and they had significant higher 
mutation rate than those in the germline variants (25.0% 
vs 3.3%, p < 0.001) (Table S3).

Heteroplasmic Pathogenic mtDNA 
Somatic Mutation Contributes to 
Platinum Resistance and Relapse of 
HGSOC
In the platinum-resistant relapsed HGSOC patients, we 
observed that 298 germline variants ranged from 26 to 44 
variants per patient with a median of 32, and 18 somatic 
mutations ranged from 1 to 3 mutations per sample (Table 

Figure 2 High lactate/pyruvate ratio was significantly associated with the patho-
genic heteroplasmic mtDNA somatic mutations in the HGSOC tumors. The p-value 
was calculated by Mann–Whitney test.

Figure 1 The distribution of the identified sequence variants in mitochondrial gnome. *p-values less than 0.05.
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1). A total of 271 germline variants were identified in the 
platinum-sensitive HGSOC patients ranged from 29 to 47 
variants per patient with a median of 40, and 10 somatic 
mutations were found in tumor samples of those patients 
ranged from 1 to 3 mutations per sample (Table 1).

We found that the tumor cells from platinum-sensitive 
patients had more somatic synonymous mutations when 
compared with those from platinum-resistant relapsed 
patients (p = 0.004) (Table 2). We further compared the 
mutation frequency of various types of base-substitutions 
between the two groups, and assessed the relationship 
between mtDNA base-substitutions and chemotherapy 
outcome of HGSOC. In both mtDNA germline variants 
and somatic mutations, the occurrence frequency of mole-
cular events for transversions, transitions, or small indels 
in platinum-resistant relapsed patients had no significant 
difference to those in platinum-sensitive patients (Figure 
3A-B). More importantly, we found that, the HGSOC 
patients harbored heteroplasmic pathogenic mtDNA 
somatic mutations experienced a higher incidence of pla-
tinum-resistance and relapse than patients who did not 
carry those pathogenic mtDNA somatic mutations (80% 
vs 16.7%, p = 0.035) (Table 3).

Discussion
Mitochondria are described as the powerhouse in all 
nucleated cells, and they provide much of energy through 
oxidative phosphorylation (OXPHOS). They are regarded 
as the key signaling hub that participate in multiple cellu-
lar processes such as intermediate metabolism, integrated 
cellular stress responses and the regulation of cell death.17 

Studies have documented mitochondria as the master reg-
ulator of danger signaling fundamentally implicated in 
cancer biology.7,17,18 Mitochondrial dysfunction is 
a significant feature in kinds of cancer cells, and it has 
been suspected to play a crucial role in cancer develop-
ment and progression, including metabolism reprogram-
ming, aggressive behavior, and response to chemotherapy 
drugs for a long period.7,17,18 As the semiautonomous 
organelles, mitochondria possesses their own genome, 
mtDNA, along with their own RNA transcription and 
protein translation and assembly machinery.

Human mtDNA is a 16,569-base pair (bp) long closed 
circular genome with 37 genes coding 13 oxidative respira-
tory chain subunits, 22 transfer RNAs (tRNAs) and 2 ribo-
somal RNAs (rRNAs). Mutations of mtDNA, germline and 
somatic, have been reported as frequent events in various 
types of human cancer.11,19,20 Multiple studies have indi-
cated that some germline polymorphisms in mtDNA d-loop 
region may be related to an increased risk of the 
malignancies.21,22 Cancer cells are very different from nor-
mal cells, and they use aerobic glycolysis, called warburg 
effect, to generate energy and metabolic intermediates for 
the rapid proliferation and aggressiveness.23 A series of 
studies suggested that some pathogenic somatic mtDNA 
mutations of cancer cells can confer cancerogenesis, and 
promote aggressiveness in vitro and in vivo by changing 
mitochondrial metabolism, and activating anti-apoptotic and 
oncogenic signaling pathways.7,10,13,24–28 Theoretically, the 
pathogenic mtDNA mutations can cause damage to mito-
chondria, and the degree for damaged mitochondrial 
depends on burden of the mtDNA mutations that is 

Table 2 Distribution of mtDNA Variants (Germline and Somatic) in Mitochondrial Genome, Stratified According to the Prognosis of 
HGSOC Patients Undergoing Platinum-Based Chemotherapy

Total Upstream ncRNA Exonic Protein Coding Exonic

Non-Syn Syn

Germline variants
Platinum-resistant/relapsed 298 (100) 96 (32.2) 46 (15.4) 56 (18.8) 100 (33.6)

Platinum-sensitive 271 (100) 86 (31.7) 38 (14.0) 52 (19.2) 95 (35.1)
p-value 0.902 0.635 0.904 0.707

Somatic mutations
Platinum-resistant/relapsed 18 (100) 5 (27.8) 5 (27.8) 8 (44.4) 0 (0)

Platinum-sensitive 10 (100) 2 (20.0) 2 (20.0) 2 (20.0) 4 (40.0)

p-value 0.649 0.649 0.196 0.004

Notes: Number (%); non-syn includes nonsynonymous variants, and missense and truncating mutations; syn, synonymous variants; upstream denotes the control region and 
intergenic regions of mtDNA genes; ncRNA exonic represents the regions of non-coding genes (rRNAs and tRNAs); p-values comparing the frequency of observed variants 
of upstream, ncRNA exonic and protein coding exonic regions between platinum-resistant/relapsed and platinum-sensitive tumors. Bold, p-values less than 0.05. 
Abbreviations: HGSOC, high-grade serous adenocarcinoma; Syn, synonymous; Non-Syn, non-synonymous.
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known as mutation load. The different levels of mtDNA 
mutation loads have been linked to diametrically opposite 
bioenergetic and biological consequences.29 Studies demon-
strated that cancer cells with homoplasmic disruptive muta-
tions or high mutational load of mtDNA-encoded genes 
presented with a consequent heavy mitochondrial respira-
tion impairment and displayed the features of sluggish 
growth and indolent biological behavior.30,31 In contrast to 
that a mild heteroplasmic burden of pathogenic mutations in 
mtDNA cannot completely injure mitochondrial metabo-
lism and their biological function, and they promote the 
reprograming of bioenergetic/biosynthetic profile of cancer 
cells and push tumor progression through mitochondrial 
stress response and oncogenic signaling pathway, respec-
tively, activated by pathogenic mtDNA mutations-involved 

mitochondrial dysfunctions.10−14 There was evidence that 
the mild heteroplasmic mutational burden was able to con-
fer the aggressive and chemoresistant phenotype of cancer 
cells. All these explained that mtDNA genes whose disrup-
tive mutations have the janiform janus-faced impact on the 
tumor development and progression, including metabolic 
reprogramming, metastatic capability acquisition, and the 
chemotherapeutic response.18 Consistent with these, we 
observed that platinum-resistance and relapse are more pre-
valent in patients who had a mild heteroplasmic pathogenic 
somatic mtDNA mutation than in those without (p = 0.035). 
(Table 3). It indicats that mitochondrial dysfunction caused 
by heteroplasmic pathogenic mtDNA somatic mutation 
might contribute to platinum chemotherapy resistance and 
recurrence of HGSOC.

Figure 3 Base change characteristic differences between the mtDNA germline variants (A) and the mtDNA somatic mutations (B), stratified according to the prognosis of 
HGSOC patients undergoing platinum-based chemotherapy. 
Abbreviations: HGSOC, high-grade serous adenocarcinoma; mt, mitochondrial.

Table 3 The Relationship of Pathogenic mtDNA Somatic Mutations with Platinum Resistance and Relapse of HGSOC

No. of 
Patients 
(%)

No. of Platinum- Resistant/Relapsed 
Patients (%)

p-value

Carry pathogenic heteroplasmic mtDNA somatic 
mutations

10 (100) 8 (80.0) 0.035*

DO NOT carry any pathogenic mtDNA somatic 
mutations

6 (100) 1 (16.7)

Note: *By Fisher exact test. Bold, p-values less than 0.05. 
Abbreviations: HGSOC, high-grade serous adenocarcinoma; mt, mitochondrial.
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In order to understand whether mtDNA mutations and 
dysfunctional mitochondria underlay the platinum- 
resistance and recurrence of ovarian cancer, whole 
mtDNA sequencing was performed. We observed those 
unrelated HGSOC patients carrying as many as 36 germ-
line variants each, and most of the germline variants 
(95.6%) were homoplasmic (Table 1). It is accommodated 
with the viewpoint that mtDNA presents a highly recog-
nizable identity to molecular evolution.32,33 Compared 
with the germline variants, each tumor sample from the 
HGSOC patients had fewer somatic mtDNA mutations 
(Table 1), and all of them were heteroplasmic. It is inter-
esting that the G>T and A>C mutations were especially 
prone in the tumor cells (Table S3). Considering that the 
A:T→C:G and G:C→T:A base-substitution mutations 
mainly caused by oxidative conversion of guanine to 
8-oxo-guanine (GO) during DNA replication process, the 
phenomenon of accumulation of oxidative damage-derived 
G>T and A>C somatic mutations in the tumor samples 
suggested that the tumor cells are facing even severe 
challenge of oxidative stress.

Among the somatic mutations in tumor cells, 64.3% (9/ 
14) of somatic mutations in protein encoding region (77.8% 
of them are new-found mutations) were predominantly 
detected in the conserved regions of the targeted protein 
that had a high potential of causing damage to OXPHOS 
activities (Table S2). Predictors of amino acid changed 
pathogenic potential PolyPhen2 and SIFT revealed all 5 
tumor-specific missense mutations to be probably damaging. 
Proof of mitochondrial functional impairment was obtained 
through assessment of lactate/pyruvate ratio, which was 
used to reflect a metabolic shift of the aerobic oxidation to 
glycolysis of tumor cells. We found that the tumor cells with 
any possibly pathogenic mtDNA mutations, including mis-
sense, nonsense, frame-shift mutations and tRNA mutation 
with a high MitoTIP score, had a significantly higher lactate/ 
pyruvate ratio than those without them and the non-tumor 
cells (p = 0.025 and p < 0.001, respectively) (Figure 2). It 
indicated that metabolic shift of the aerobic oxidation to 
glycolysis in tumor cells was associated with heteroplasmic 
pathogenic somatic mtDNA mutations. It is worth mention-
ing that 62.5% (10/16) of tumor samples harbored such 
pathogenic heteroplasmic mtDNA somatic mutations. 
Obviously, the result is consistent with the previously 
reported that heteroplasmic possibly damaging mtDNA 
mutations are high frequent molecular events in human 
cancers.11,19,20 By comparing and analyzing the characteris-
tics of sequence variants between platinum-resistant 

relapsed and platinum-sensitive patients, the result has estab-
lished a high frequency of pathogenic heteroplasmic 
mtDNA somatic mutations in HGSOC.

Conclusion
Consistent with the mentioned theoretical analysis, these 
results suggested that mild pathogenic heteroplasmic 
mtDNA mutations frequently occur in the HGSOC and 
likely confer a selective advantage for tumor cells in 
development and progression such as acquisition of plati-
num-based chemotherapy resistance. Further molecular 
evolution and genetic research through single-cell analysis 
in the area would be needed. Moreover, our results also 
implied that the mild load of pathogenic mtDNA muta-
tions in the tumor cells may be a potential biomarker for 
predicting development of chemoresistance and 
recurrence.
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