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Abstract: Calcifying nanoparticles (CNPs, previously called nanobacteria) are self-propagating, 

cultivable macromolecular complexes. Their extraordinary characteristic is that they can 

aggregate carbonate apatite on their envelope from soluble calcium and phosphorus at 

physiologic concentrations and display cytotoxic effects on murine and human fibroblast cell 

lines. The question arises whether CNPs contribute to the degeneration of pulp tissue and thus 

result in clinically significant human dental pulp stones as nidies. This study evaluates CNPs’ 

effects upon human dental pulp cells (HDPCs, the host cells in pulp tissue). We observed 

the ultrastructural variation of HDPCs attacked by CNPs. The spatial relationship of HDPCs 

and CNPs after coculture was also identified by immunofluroscence staining. Furthermore, 

it was verified by MTT viability assay that CNPs isolated from dental pulp stones exerted 

cytotoxic effect on HDPCs. Therefore, it could be concluded that the existence of CNPs might 

interfere with the normal physiologic function of the cells, and that might lead to dental pulp 

calcification. Elucidation of the cytotoxic characteristics of CNPs may offer a new perspective 

for understanding the etiology of human dental pulp stones.
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Introduction
Calcifying nanoparticles (CNPs) are self-propagating, cultivable macromolecular 

complexes, previously called nanobacteria.1,2 The defining characteristics for CNPs 

are their ability to aggregate calcium and phosphate on their outer envelope at 

physiologic concentrations and conditions.3 Therefore it precipitates CNPs as a 

potential etiological factor involved in various pathological calcification diseases in 

human beings, such as kidney stones,4–7 calcified arteries,8–10 human breast cancer,11 

and gallbladder stones.12,13

As there is a close relationship between CNPs and pathological calcification diseases 

in human beings, it is essential to clarify their effect on cultured mammalian cells. 

Çiftçioglu and Kajander14 firstly reported that four out of six nanobacteria isolates from 

different sera exerted a cytotoxic effect on 3T6 fibroblasts verified by MTT viability 

assay, lactate dehygrogenase release, and direct microscopy. In nanobacteria-infected 

fibroblasts, electron microscopy revealed intra- and extracellular acicular crystal 

deposits, stainable with von Kossa staining and resembling calcospherules found in 

 pathological  calcification.3 The authors suggested that the nanobacteria had a special 

way of invading mammalian cells and were an important cause of cell vacuoliza-

tion and poor growth.3,14 In 2009, Zhang et al15 claimed that gingival epithelial cells 

exposed to CNPs showed gross  vacuolization and calcification occurring in intracellular 
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vacuoles. This finding indicated CNPs’ role in pathologic 

calcification of primary cultured human gingival epithelial 

cells in vitro.

Pulp stones are discrete calcifications and are among 

changes that include more diffuse pulp calcifications such 

as dystrophic calcification.16 Stones may exist freely within 

the pulp tissue or be attached to or embedded in dentine.17 

More often than not, the existence of pulp stones may lead to 

narrowing or obstruction of the access to the apical point in 

the root canal; this is one of the most important factors lead-

ing to the failure of root canal therapy and loss of the teeth. 

We have discovered the close relationship between CNPs and 

dental pulp calcification in a former investigation,18 which 

indicated that CNPs might possibly play an important role in 

the formation of dental pulp stones. This finding significantly 

expanded our expectations to explain the formation of 

dental pulp calcification, of which the etiology until now 

was ambiguous.19–22 As far as we know today, pulp calci-

fication is a type of chronic regressive degeneration of the 

pulp tissue; however, what leads to this devolution remains 

unclear. Dystrophic calcification is found to be of a variable 

degree, and this might originate from the impairment of the 

host cells.16 Therefore, it could be hypothesized that CNPs 

might have particular potency on human dental pulp cells 

(HDPCs). Those cells suffered from the encroachment after 

accumulative effect and resulted in a progressive deposition 

of calcified masses. To better understand CNPs’ potential 

effect on cultured HDPCs based on this hypothesis, it is 

essential to evaluate the undermining mechanism of their 

co-interaction, qualitatively and quantitatively.

In this study, we observed the ultrastructural variation 

of HDPC attacked by CNPs through transmission electron 

microscopy (TEM) and the spatial relationship of HDPCs and 

CNPs after coculture by immunofluroscence staining. Further-

more, CNPs’ cytotoxic effect on HDPCs was verified by MTT 

viability assay. From these experiments, it could be concluded 

that CNPs might invade HDPCs and exert biological effects on 

the attacking cells that might result in pulp calcification.

Method and material
culture of hDPcs
HDPCs (human dental pulp cells) were obtained from 22 

healthy third molars (19- to 27-year-old patients) which 

were extracted during normal treatment at the Hospital of 

 Stomatology, Sun Yat-sen University, Guangzhou, China. 

Protocol was reviewed and approved, and informed  consents 

were obtained from the tissue donors with approval of the 

ethical committee of the Hospital of Stomatology, Sun 

 Yat-sen University. The primary HDPCs were cultured as 

 previously reported by Gronthos et al.23 Teeth were placed into 

phosphate-buffered saline (PBS) and scored sagittally with a 

sterile diamond bur flushed with PBS. The pooling pulp tis-

sue was collected and rinsed once in PBS and cut into 2 mm3 

cubes using a dental surgical knife. Next, the fragmented 

pulp tissue was digested with 3 mg mL−1 type I collagenase 

(Sigma-Aldrich, St Louis, MO) and 4 mg mL−1 dispase (Sigma-

Aldrich) for 30 minutes at 37°C. The resultant suspension 

was then centrifuged to collect the released cells. These cells 

were subsequently cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) (Gibco, Carlsbad, CA), supplemented with 

10% fetal bovine serum (FBS) (Hyclone, Logan, UT), at 37°C 

in a humidified atmosphere of 5% CO
2
. All experiments were 

performed on HDPCs between passages 5 and 8.

culture of cNPs
CNPs were isolated from the collected dental pulp stones as 

described in previous studies.4,18 Samples were immersed in 

0.3 µg mL−1 tetracycline and then demineralized in 1 mol L−1 

HCl for 30 minutes, then powdered and  neutralized with 

0.5 mol L−1 Tris (pH 10.5; Sigma-Aldrich). Suspensions 

were centrifuged at 14,000 g for 15 minutes in a Minispin 

Centrifuge and sterile-filtered through 0.22 µm Millipore 

filters (Millipore, Billerica, MA). The filtrate was cultured 

in a flask containing DMEM with 10% FBS. Subcultures 

were carried out with a rubber scraper in serum-contained 

DMEM after 4 weeks of initial inoculation and subse-

quently after every day. Those after 2∼3 subcultures were 

scraped and harvested by centrifugation at 20,000 g for 

45 minutes at 4°C, washed with PBS (pH 7.2–7.4), and then 

resuspended by rigorous mixing for later use. The harvested 

CNP pallets were weighed and defined as the following 

concentration: 5.0 mg mL−1, 2.5 mg mL−1, 0.5 mg mL−1, 

attenuated by DMEM containing 2% r-FBS.

Invasion of cNPs on hDPcs
100 µL suspension of 2.5 mg mL−1 CNPs was applied to the 

flask containing HDPCs and cocultured for 48 hours in the 

conditions for culturing mammal cells. Cells were digested by 

0.25% trypsin (Invitrogen, Carlsbad, CA) and 0.02% EDTA 

(Invitrogen) and collected by centrifugation to deposit cell 

pellets for the following analysis.

Immunofluorescence confocal  
microscope observation
Pallets of collected cells were fixed in 3.7% formaldehyde 

for 15 minutes, and then washed twice with 0.01 mol L−1 
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PBS (pH 7.2–7.4) for 5 minutes, and then one drop was 

applied to the coverlip. Endogenous peroxidase was blocked 

with 3% H
2
O

2
 in methanol for 15 minutes. After being 

blocked in 5% bovine serum albumin for 30 minutes, cells 

were incubated with IgG1 class anti-CNP mAbs, 8D10 

(Nanobac Oy, Kuopio, Finland) overnight at 4°C and 

washed twice. The cells were then incubated in tris-buffered 

saline containing TRITC-labeled red-conjugated anti-

mouse secondary antibodies (Wuhan Boshide, China) for 

30 minutes at 37°C and washed twice. Subsequently, cells 

were applied with rabbit anti-human vimentin polyclonal 

antibody overnight and then with FITC-labeled secondary 

antibodies as above. Finally, coverlips were stained with 

10 µg mL−1 Hoechst33258 (Sigma-Aldrich) for 10 minutes 

and then washed three times for 15 minutes in PBS. After 

being mounted, coverlips were viewed through LSM510 

laser scanning confocal microscope (LSCM, Zeiss, Wetzlar, 

Germany) at a scanning thickness of 1 µm. Negative control 

went through the same process except that the coculture step 

was replaced with PBS.

Transmission electron microscope observation
Pellets were fixed in a 2.5% glutaraldehyde solution at 4°C 

for 24 hours, and then post-fixed in 1% osmium tetroxide 

for 1 hour and dehydrated in a graded series of ethanol. 

Cells were embedded in epon-araldite. Ultrathin sections 

were cut with ultramicrotomy (LKB, Bromma, Sweden) and 

collected onto copper grids and stained with 2.5% uranyl 

acetate in absolute ethanol and lead citrate. All sections 

were examined by TEM (Hitachi H-600; Hitachi, Tokyo, 

Japan).

evaluation for cytotoxic effect
The def ined concentrations of CNPs (5.0, 2.5, and 

0.5 mg mL−1) were used to determine the cytotoxic effect on 

cell proliferation. Firstly, HDPCs were plated at 2 × 104 cell 

mL−1 in 96-well plates and washed five times with 500 µL 

PBS. Then cells were cultured again in a serum-free medium 

for at least 15 hours to remove any effect of the remaining 

steroid hormones. Secondly, media was replaced with fresh 

DMEM containing the indicated concentrations of CNPs 

through the 0.22-µm Millipore filter. Each concentration 

contained six replicate wells and a control well. Finally, 

after 24, 48, and 72 hours of coculture, 20 µL MTT (5 g L−1) 

(Sigma-Aldrich) was added to each well, and cells were 

incubated for 4 hours. Supernatant in each well was then 

removed and 150 µL dimethyl sulfoxide (Sigma-Aldrich) 

was added to dissolve the formed formazan crystals for 

10 minutes. Cell proliferation was detected quantitatively 

using a microplate reader (Infinit, Tecan, Austria) on optical 

density (OD) value at 490 nm. After 72 hours’ coculture, 

HDPCs attacked by CNPs were viewed under inverted phase 

contrast microscope (Axiovert 40; Zeiss).

Descriptive data are given as means ± standard  deviation. 

Data were analyzed using the SPSS statistical package 

(version 17.0; SPSS Inc., Chicago, IL). The multiple group 

means were compared by one-way analysis of variance 

(ANOVA), and differences were considered significant at 

P  0.05 level.

Results
Immunostaining for the coculture
The topological distributions of red-labeled CNPs, green-

labeled HDPCs, and blue-labeled nuclei of the HDPCs were 

visualized distinctly (Figure 1A and 1B). The merged image 

(Figure 1C) clearly reflects the physical initial between the 

HDPCs and CNPs. It shows the initial invasion of CNPs on 

HDPCs. Some particles stuck to the outer membranes of 

the cells or invaded a specific site in the cytoplasm, or even 

entered the nucleus of the cells. For the negative control 

(Figure 1D and 1E), green and blue fluorescence signals were 

visible, but the red-labeled CNPs were small and trivial and 

were distributed in the noncell region. The merged image 

(Figure 1F) shows these red fluorescence signals had com-

pletely disappeared.

Figure 1 Immunofluorescent images. The first set is the positive immunofluorescent 
image for the invasion of cNPs and colocalization. The second set is the negative 
control. A, D) The green-conjugated secondary antibody recognized hDPcs and 
the hoechst staining for blue-labeled nuclei of hDPcs. B, E) The blue-labeled 
nucleus of hDPcs and the red-conjugated secondary antibody recognized cNPs.  
C, F) The merged images of the above three colored signals. The invasion of cNPs on 
the cells is shown in C. The red-labeled particles stick to the outer membranes of 
the cells or invade a specific site in the cytoplasm, or even enter the nucleus of the 
cells. In the negative control (E), the red-conjugated cNPs were seldom seen and 
were distributed in the noncell region. The merged view of (F) shows the red signals 
had totally disappeared.
Abbreviations: cNPs, calcifying nanoparticles; hDPc, human dental pulp cell.
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Ultrastructural variation observation
The ultrastructure of the attacked HDPCs was observed by 

TEM. We discovered round or oval-shaped CNPs of diam-

eter 200–400 nm, with a needle-like crystal crust. Particles 

stuck to the outer membranes of the cells (Figure 2A). 

A vacuolus containing mineralization crystals and a swol-

len mitochondrion can be detected in the enlarged  picture 

(Figure 2B). Some particles were also located in the 

cytolysosome, phagocytozed by the cells. The affected cells 

displayed swollen mitochondria and disordered arrange-

ment of the mitochondrial lamellar body (Figure 2C). The 

cells surrounded by CNPs displayed a state of necrosis and 

disintegration. The swollen and vacuolized mitochondria 

were released by the affected cells (Figure 2D). While in 

the control group, the ultrastructure of the cells was normal 

and the CNPs could not be found, either in the interior or 

exterior area of the HDPCs (Figure 2E).

cytotoxic effect of cNPs
Cytotoxic effect of CNPs towards HDPCs was quantitatively 

analyzed by MTT viability-measurement test. MTT results 

showed that the survival and growth of HDPCs was nearly 

the same after 24 hours’ coculture (P  0.05), whereas these 

were obviously restrained after 48 hours’ invasion by CNPs 

of high and medium concentration (P  0.05). The effect 

remained after 72 hours’ invasion for the cells subjected to 

high concentration of CNPs (P  0.05) (Table 1).

Phase contrast microscopic observation showed clearly 

that those cells attacked by the high concentrations of CNPs 

displayed lowered cell density and abnormal morphology. 

Noticeable cell contraction and vacuolization could be 

detected in the cytoplasm of the affected cells (Figure 3A, 

3B, and 3C), compared with the control (Figure 3D).

Discussion
In previous research, we provided microscopic and immu-

nological evidence on CNPs’ close relationship with dental 

pulp stones.18 However, this did not explain the CNPs’ 

etiological role in the formation of the human dental pulp 

stones. In this study, we further investigated the biological 

effect exerted by CNPs on HDPCs to explain the undermining 

mechanism from a microcosmic point of view.

In this study, two to three subcultures of CNPs were chosen 

for two reasons. Firstly, subcultures increase the amount of the 

particles and therefore met the need for the whole experiment. 

Furthermore, this would not significantly affect the virulence 

characteristics for CNPs, for their reported cytotoxity decreases 

along with the subculture.14 For the preparation of CNPs, they 

were first scraped, ultrasonic conditioned, and well distributed 

to verify the correct concentrations and intensify their biologi-

cal characteristics. To prevent contamination by other bacteria 

or fungi, all the particle suspensions were filtered through 

0.22 µm minispores in the coculture process.

It was reported that CNPs could infect several kinds of cells 

in human beings and adhere to 3T6 cells within 15 minutes after 

their addition. These particles appeared to be in intracellular 

vacuoles, possibly endosomes and lysosomes.14 With the 

immunostaining technique, we constructed images to view 

cells, nuclei, and CNPs respectively by different fluorescence 

labels and furthermore used the merged view on CNP 

distribution in situ. It revealed for the first time the interaction 

between the CNPs and HDPCs. They could either stick to the 

outer membranes of the cells or invade a specific site in the 

cytoplasm, or even enter the nucleus of the cells. Immunoflu-

orescent images proved the invasion of CNPs on HDPCs.

To identify the effect of this biological invasion, we 

observed the attacked cells through TEM. These round or 

oval-shaped particles, 200–400 nm in diameter, were seen. 

They closely resembled those found in other pathological 

calcification diseases.24–26 The attacked cells displayed abnor-

mally, showing signs of vacuolar degeneration, membrane 

structural necrosis, mitochondrial swelling, etc. This indicated 

that the ultrastructure of the cells was severely damaged and 

A B

C D E

Figure 2 TeM images on the ultrastructure of the affected cells. A) The cNPs, 
diameter of 200–400 nm, with needle-like crystals, stuck to the outer membranes 
of the cells. B) The enlarged scale of Figure 2A, showing the vacuolus containing 
mineralization crystals and swollen mitochondrion (TeM × 25,000). C) some 
particles located in the cytolysosome, phagocytosed by the hDPcs. The affected 
cells show swollen mitochondria and a disordered arrangement of the mitochondrial 
lamellar body. D) cells surrounded by cNPs, showing necrosis and disintegration. 
released vacuolized mitochondria can be seen (TeM × 25,000). E) The negative 
control, showing the normal ultrastructure of the cells (TeM × 20,000).
Abbreviations: cNPs, calcifying nanoparticles; hDPc, human dental pulp cell; 
TeM, transmission electron microscopy.
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physiologic function was in disorder after the infection. From 

the view of the particles located in the cytolysosome, it could be 

concluded that CNPs could invade HDPCs through a receptor-

mediated endocytosis. There might exist a special cell adhesion 

molecule in the outer membrane of the CNPs that may induce 

the originally nonphagocytic human dental cells to become 

phagocytic and thus result in the  impairment of the cells.14 Inter-

estingly, we also detected vacuoli containing mineralization 

crystals, which indicated the cells’ tendency for crystal deposits. 

It could be inferred that the existence of CNPs might promote 

the calcification as  crystallization of the nuclei, which leads 

to the  formation of biogenic apatite structures or mineraliza-

tion degeneration of the cells. It reminded us that pathological 

 calcification was not merely a passive consequence, but to some 

extent, occurred as a  positive feedback loop of calcification and 

inflammation driving disease progression forward.

Quantitative assay of CNPs’ cytotoxic effect was followed 

by MTT test to measure cell viability. As the metabolic activity 

of the CNPs was about 100th of that of common organisms,27 

the environment for the coculture with different concentrations 

of CNPs could be regarded as similar and comparable. MTT 

results showed that the survival of HDPCs was obviously 

restrained after 48 hours’ coculture for high and medium 

concentrations, and the effect remained after 72 hours’ invasion 

by a high concentration of CNPs. This result was partially in 

agreement with the previous report that “the cytotoxity of CNPs 

was dependent on the concentration and the coculture time”.14 

We proposed two possible reasons contributing to this result. 

Firstly, to prevent other contamination, the addition of CNPs 

was filtered, not directly applied. Positive pressure in the filter 

process might reduce their cytotoxic effect, and thus the dif-

ference in the 24-hour period could not be found. Secondly, as 

HDPCs are located in a nutritional environment, the OD value 

we measured was the result of the proliferation and the inhibi-

tion effect. After 48 hours’ coculture, the proliferation might 

outweigh the inhibition effect, so the difference was no longer 

significant for the cells cocultured with medium concentration 

of CNPs. Phase contrast microscopic observation on variations 

in the morphology and the amount of the cells proved once 

again the cytotoxic effect of CNPs on growing HDPCs.

To summarize, we report for the first time the interaction of 

CNPs with HDPCs. The presence of CNPs was proved as an 

active invader that interferes with the normal physiologic function 

of the cells and therefore might play a causative role in inducing 

calcification in the pulp tissue. However this is just a prelimi-

nary investigation; whether CNPs are nidies for calculi and 

contribute to the development of clinically significant human 

dental pulp stones needs to be further investigated, and more 

work is needed on whether it fulfills of Koch’s postulates.
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