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Purpose: Stem cell therapy for ischemic stroke has shown success in experimental settings, 
but its translation into clinical practice is challenging. The choroid plexus (CP) plays 
a regulatory role in neural regeneration. Mesenchymal stem cells (MSCs) promote neurogen-
esis in the ventricular–subventricular zone. However, it is unclear whether MSCs interact 
with the CP in brain tissue repair.
Methods: Rat (r)MSCs were labeled with iron oxide nanoparticles (IONs) and transduced 
with red fluorescent protein, and then injected into the brain of rats with ischemic stroke and 
monitored over time by magnetic resonance imaging. The functional recovery of rats was 
determined by the corner test score, Modified Neurological Severity score, and stroke 
volume. MSCs and CP were also co-cultured for 14 days, and the medium was analyzed 
with a cytokine array.
Results: In vivo imaging and histologic analysis revealed that ION-labeled MSCs were 
mainly located at the injection site and migrated to the infarct area and to the CP. Functional 
recovery was greater in rats treated with MSCs as compared to those that received mock 
treatment. Bidirectional enhancement of proliferation in MSCs and CP was observed in the 
co-culture; moreover, MSCs migrated to the CP. Cytokine analysis revealed elevated levels 
of proliferation- and adhesion-related cytokines and chemokines in the culture medium. 
Wikipathway predictions indicated that insulin-like growth factor 1/Akt signaling 
(WP3675), chemokine signaling pathway (WP2292), and spinal cord injury (WP2432) are 
involved in the increased proliferation and migration of MSCs co-cultured with the CP.
Conclusion: Crosstalk with the CP enhances MSC proliferation and migration in a transwell 
assay. Moreover, MRI reveals MSC migration towards the CP in an ischemic stroke model. 
The secreted factors resulting from this interaction have therapeutic potential for promoting 
functional recovery in the brain after ischemic stroke.
Keywords: iron oxide nanoparticles, cell therapy, mesenchymal stem cell, choroid plexus, 
brain stroke

Introduction
Stroke is the second leading cause of death and disability worldwide.1 Preclinical 
studies have demonstrated the feasibility of stem cell-based therapy for restoring brain 
function after stroke or ischemic injury or in degenerative brain diseases.2,3 However, 
translation of these findings to clinical settings remains challenging, in part because of 
the technical difficulty of stem cell delivery and limited choice of injection sites.4,5 
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Additionally, the exact localization and fate of implanted 
cells are not known. Iron oxide nanoparticles (IONs), one 
of the few types of nanoparticle that are approved for clinical 
applications, have been used to label mesenchymal stem 
cells (MSCs).6 Ferucarbotran (Bayer, Leverkusen, 
Germany) is an ION that has the advantage of a simple 
protocol for cell labeling that does not require 
a transfecting agent. Moreover, Ferucarbotran-labeled 
MSCs have the capacity for osteogenic, adipogenic, chon-
drogenic, and neurogenic differentiation, making them ideal 
candidates for cell-based therapy.7,8

Injecting MSCs into the caudate putamen near the ven-
tricular–subventricular zone (V–SVZ) promotes neurogen-
esis in this area, which is the source of neurons in the adult 
brain.9,10 The secretome of MSCs has clinical potential for 
regenerative therapy in stroke.11 MSCs secrete numerous 
chemokines, growth factors, and cytokines such as vascular 
endothelial growth factor (VEGF), insulin-like growth fac-
tor (IGF)-1, basic fibroblast growth factor (bFGF), trans-
forming growth factor (TGF)-β1, nerve growth factor 
(NGF), placental growth factor, stromal-derived growth 
factor (SDF)-1 (also known as C-X-C motif chemokine 
[CXCL]12), monocyte chemoattractant protein (MCP)-1 
(also known as C-C motif chemokine ligand [CCL]2), and 
interleukin (IL)-6, IL-8, IL-10, and IL-13;12–15 they also 
secrete hepatocyte growth factor (HGF), growth and differ-
entiation factor (GDF)-15, and IGF-binding protein 
(IGFBP)-5, which are involved in protection against oxida-
tive stress.16–18 MSCs have been used in the treatment of 
stroke and contribute to the restoration of brain function by 
modulating immunity, angiogenesis, neurogenesis, and cell 
death.11,19 However, the optimal cell source, route and 
timing of administration, and microenvironment remain 
unknown.20,21

Bone marrow (BM)-derived cells reportedly migrate 
to the leptomeninges,22 choroid plexus (CP),23 and peri-
vascular spaces22 under noninflammatory conditions. 
Injected cells differentiate into glial fibrillary acidic pro-
tein-positive cells in the CP.23 In the stroke brain, MSCs 
are detected at the infarct and injection sites and in the 
corpus callosum (CC).24–26 MSCs in the hippocampus 
and CP with ependymal cell features have been identi-
fied in Alzheimer mouse models.27 There is increasing 
evidence for the regulatory role of the CP in the brain. 
The CP produces cerebrospinal fluid (CSF) in the V– 
SVZ and promotes the proliferation of neural stem cells 
via secreted factors28 involved in tissue maintenance and 
repair such as TGF-β, GDF-15, glial cell line-derived 

neurotrophic factor (GDNF), IGF-2, NGF, neurotropin 
(NT)-3, NT-4, brain-derived neurotrophic factor 
(BDNF), VEGF, and FGF2.29–31 Furthermore, immune 
cells are recruited by the chemokines CCL2, CXCL8, 
CX3CL1, CCL18, CCL4, CCL15, CCL22, CCL20, 
X-C motif chemokine ligand 1, CCL18, CCL24, CCL3, 
CCL25, CXCL11, CCL19, CXCL12, and CCL5 secreted 
by the CP.32 Thus, the CP is involved in immunomodu-
lation and cell trafficking32 and plays a neuroprotective 
role after stroke,33,34 although it is unclear whether or 
how it interacts with MSCs.

To evaluate the applicability of MSCs to the treatment 
of stroke, the present study investigated the interaction 
between MSCs and CP using a rat stroke model.

Materials and Methods
Red Fluorescent Protein (RFP) 
Transduction and Cell Culture
The psPAX2, pMD2G, and pLAS5w.PtRFP-I2-Puro plas-
mids (RNAi Core at Academia Sinica, Taipei, Taiwan) 
were mixed with PolyJet (SignaGen, Rockville, MD, 
USA) and added to the culture medium of human embryo-
nic kidney (HEK) 293T cells (purchased from ATCC) 
harboring a plasmid encoding a temperature-sensitive 
mutant of the SV40 large T antigen (a gift from Ming- 
Juim Shieh, National Taiwan University) for RFP lenti-
virus production.35 RFP lentiviruses were transduced into 
MSCs isolated from the BM of Sprague-Dawley rats at 
a multiplicity of infection of 50. Clones were cultured in 
medium containing 2 μg/mL puromycin (Millipore, 
Billerica, MA, USA) for 1 week. RFP+ rat (r)MSCs 
were labeled with antibodies against CD29, CD90, 
CD45, and CD 11b/c (all from BioLegend, San Diego, 
CA, USA) and sorted by flow cytometry on 
a FACSCalibur instrument (BD Biosciences, San Jose, 
CA, USA) with an allophycocyanin-A filter. The HEK 
293T cells and rMSCs were cultured in Dulbecco’s 
Modified Eagle’s medium (DMEM; Thermo Fisher 
Scientific, Waltham, MA, USA) containing 10% fetal 
bovine serum (Biologic Industries, Cromwell, CT, USA), 
100 U/mL penicillin, and 100 mg/mL streptomycin 
(Thermo Fisher Scientific) at 37°C in a humidified atmo-
sphere of 5% CO2.

ION Labeling
RFP+ rMSCs (106) were seeded in a 10-cm2 dish and 
cultured overnight before 10 mg Fe/mL Ferucarbotran 
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was added for 24 h. Cells were washed 3 times with 1× 
phosphate-buffered saline (PBS) to remove unbound 
Ferucarbotran and dissociated with trypsin for injection.8

Brain Stroke Model and RFP+ rMSC 
Injection
All animal procedures were approved by the Institutional 
Animal Care and Use Committee of Taipei Tzuchi General 
Hospital (IACUC no. 105-IACUC-003) and were carried 
out in accordance with the updated Guiding Principles for 
the Care and Use of Vertebrate Animals in Research and 
Training.36 The bilateral common carotid artery of 
anesthetized male rats aged 6–8 weeks was exposed by 
shaving the neck hair, sterilizing the skin with 70% alco-
hol, and making an incision in the skin and subcutaneous 
tissue and muscle. The rats were immobilized in 
a stereotactic frame, and the skull in the right retro- 
orbital region was removed. The right middle cerebral 
artery (MCA) infarct model was established by ligating 
the right MCA with a 10–0 nylon suture. Bilateral carotid 
arteries were also ligated for 90 min with surgical clips. 
After 90 min, the suture and clips were removed to induce 
reperfusion injury. In the cell therapy group, 106 ION- 
labeled MSCs in 10 μL saline were locally injected into 
the right CC 1 h after the ischemia–reperfusion procedure 
at the following stereotactic coordinates: anterior–poster-
ior, 0 mm; medial-–lateral, 2.0 mm; and dorsal–ventral, 
3 mm. The control group was injected with 10 μL saline 
by the same procedure as that used for cell injection.

Behavioral Analysis After Ischemia– 
Reperfusion Injury
Modified Neurological Severity score (mNSS) assessment 
and the corner test were performed weekly after ischemia– 
reperfusion injury by an experienced investigator who was 
blinded to the experimental design during testing. The 
mNSS evaluates the sensory and motor aspects of brain 
function.37,38 Rats that failed in the walking, righting, 
placing, balance, and body resistance tests were assigned 
a score of 1; scores of 1–6, 7–12, and 13–18 indicated 
mild, moderate, and severe injury, respectively, with 
a score of 18 indicating maximum disability.

Sensorimotor disability after ischemia–reperfusion 
injury was evaluated with the corner test.39 Briefly, the 
rat was positioned in front of 2 boards angled at 30°; when 
it walked into the corner, vibrissae stimulation was applied 
to direct the rat to turn or rear to one side (right or left). 

Normal rats turned or reared at equal frequencies to the 
left and right but rats with right MCA occlusion turned 
more frequently to the right side because of a loss of 
vibrissae sensation and left-side rearing disability. Each 
rat was evaluated weekly after the surgery up to 15 
times. A score of 7 indicated no neurologic deficit, 
whereas a score of 15 indicated severe sensorimotor 
disability.

In vivo Magnetic Resonance Imaging (MRI)
ION-labeled RFP+ rMSCs were visualized by MRI 35 
days after MCA occlusion surgery. Rats were anesthetized 
with isoflurane, and T2 images were acquired using a 7T 
MRI system (Biospec 70/30; Bruker, Ettlingen, Germany) 
with the following parameters: repetition time/echo 
time=5000/56 ms; resolution=256×256 pixels; slice 
thickness=5 mm; and field of view=30×30 cm2. Initial 
infarct volume differed across rats and was normalized to 
compare the recovery of stroke volume, which was calcu-
lated as (100 – [DXstroke volume/D1stroke volume]).

Histology and Prussian Blue (PB) Staining
Rat brains were collected at poststroke day 35 and 
embedded in paraffin for sectioning at a thickness of 5 
μm. After serial rehydration, sections were incubated with 
PB (Millipore) for 20 min and then counterstained with 
nuclear fast red (Millipore) for 5 min before light micro-
scopy observation.

CP Isolation
The CP was isolated from 6-week-old rats that were not 
injected with rMSCs. The brain was placed with the dorsal 
side facing upward and fixed using a clamp. Another 
clamp was placed across the midline of the hemisphere, 
penetrating the cortex and CC in the lateral ventricle 
(approximately 3.3-mm deep). A twister was used to 
clamp the CC and strip it from the lateral ventricle. The 
isolated CP was treated with 0.75% collagenase II at 37°C 
with rotation at 20 rpm for 30–60 min. After enzymatic 
digestion, the tissue was centrifuged at 1500 rpm at 4°C 
for 10 min and washed 3 times with 1× PBS. The collected 
cells were cultured in DMEM/F12 (1:1) containing 10% 
fetal bovine serum, 4 mM L-glutamine, 5 μg/mL insulin, 
200 ng/mL hydrocortisone, 20 μM cytosine arabinoside, 
100 g/mL penicillin/streptomycin, and 10 ng/mL epider-
mal growth factor.
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Co-Culture of rMSCs and CP
To assess the pro-proliferative effect of the CP on rMSCs, 
3×103 rMSCs were seeded on a 50 μg/mL laminin-coated 
transwell membrane (Costar, Cambridge, MA, USA). The 
well beneath the membrane was seeded with 0.027 g CP or 
filled with culture medium only as a negative control. To 
evaluate the reverse effect (ie, the ability of rMSCs to 
induce proliferation in the CP), 8×103 rMSCs were seeded 
in the well and 0.027 g CP was placed on the 50 μg/mL 
laminin-coated transwell membrane. After 14 days of co- 
culture, the samples were stained with 10% crystal violet 
for 30 min and crystals were dissolved in dimethylsulf-
oxide. The optical density was measured using a Spark 
10M spectrophotometer (Tecan, Männedorf, Switzerland). 
Cell migration was evaluated using the same protocol 
except that cells on the inner surface of the transwell 
membrane were removed with a cotton swab before crystal 
violet staining.

Cytokine Profiling
After co-culture of the CP and RFP+ rMSCs for 14 days, 
the medium was collected and hybridized with the mem-
brane from the Proteome Profiler Array Rat XL Cytokine 
Array Kit (ARY030; R&D Systems, Minneapolis, MN, 
USA). Signals were detected using the BioSpectrum 810 
Imaging System (UVP, Upland, CA, USA) and quantified 
using ImageJ software.40 Data were further analyzed using 
ClustVis software.41 Principal component analysis (PCA) 
and heatmap analysis were performed by row centering, 
unit variance, and singular value decomposition with 
imputation. The heatmap is shown with the collapsed 
columns median. Pathways potentially involved in the 
interaction between the CP and MSCs were predicted 
with Enrichr42,43 using the following input genes: HGF, 
IGFBP-3, IGFBP-5, GDF-15, CCL5, CXCL2, nephroblas-
toma overexpressed (NOV)/cellular communication net-
work factor (CCN)3, WNT1-inducible signaling pathway 
protein (WISP)-1/CCN4, CCL22, lectin, galactoside- 
binding, soluble (LGALS)1 (galectin-1), and intercellular 
adhesion molecule (ICAM)1.

Statistical Analysis
Data are expressed as mean±standard error and were ana-
lyzed using Prism v5 software (GraphPad, La Jolla, CA, 
USA). Means were compared by 1-way analysis of var-
iance and Tukey’s multiple comparisons test. Indices of 
functional recovery including mNSS, corner test score, 

and stroke volume were analyzed by linear regression. 
Data at each time point were analyzed with the Student’s 
t-test. P<0.05 was considered statistically significant.

Results
Stemness of rMSCs
As viral transduction can alter normal cellular functions, 
we evaluated the stemness of rMSCs by flow cytometry. 
The isotype control antibody was detected at very low 
levels (<0.1%) in control rMSCs and RFP+ rMSCs, indi-
cating that the labeling of cluster of differentiation (CD) 
29, CD90, CD45, and CD11b/c was reliable (Figure S1A). 
Expression of the positive markers CD29 and CD90 was 
observed in >99.9% of control rMSCs and RFP+ rMSCs 
(Figure S1B, C), whereas that of the negative markers 
CD45 and CD 11b/c was detected in <1.04% (Figure 
S1D, E). These data indicate that RFP+ rMSCs retained 
their stem cell identity (Figure S1).

Distribution of Injected RFP+ rMSCs in 
Stroke Brain
To assess the destination of rMSCs in the stroke brain, RFP+ 
rMSCs were labeled with IONs prior to injection and their 
localization in the infarct area was examined by MRI (Figure 
1A). Bright regions showed decreased signal intensity after 
stroke and RFP+ rMSC injection (Figure 1A). The deep dark 
regions corresponded to the ION signal (Figure 1A). A shift 
in the ION signal from the injection site was detected by MRI 
on day 8 or early on day 1 in ION-RFP+ rMSC-treated group 
(Figures 1A and 2). This was confirmed by PB staining of the 
CP and infarct site (Figure 1B). The ION signal detected by 
MRI was mainly located at the ipsilateral lateral ventricle 
(68%), third ventricle (41%), injection site (32%), and con-
tralateral lateral ventricle (27%) (Figure 2 and Table 1). In PB 
staining, the percentage distribution was 33% at the injection 
site, 33% at the infarct site, 22% in the CP, 11% in the CC, 
and 11% in the cerebellum (Table 2). Functional recovery 
was observed after injection of rMSCs, with improvements 
in mNSS and corner test score (Figure 3A and B). However, 
stroke volume recovery rate did not differ significantly 
between the saline- and ION-RFP+ rMSC-treated groups 
(Figure 3C).

Bidirectional Interaction Between RFP+ 
rMSCs and CP
We next evaluated the interaction between co-cultured 
rMSCs and CP with the transwell assay. Proliferation 
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Figure 1 Localization of ION-labeled RFP+ rMSCs in stroke brain detected by MRI and PB staining. (A) Sequential MRI scans at poststroke days 1, 8, 15, 21, 28, and 35. (B) 
PB staining and RFP immunohistochemistry (IHC) of specific regions (injection site, infarct site, and CP) on poststroke day 35. Scale bar: 100 μm. Red arrowheads: ION 
signal. 
Abbreviations: E, ependymal layer; Inf, infarct region; Inj, injection site.
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Figure 2 Spatial and temporal resolution of ION signals in stroke brain after ION-labeled RFP+ rMSC injection. Red arrowheads: ION signal.
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promotion was observed in both the rMSCs (Figure 4A 
and E) and CP (Figure 4B and F). Additionally, rMSC 
migration was stimulated in the co-culture with the CP 
(Figure 4C), but not in the CP (Figure 4D). Thus, 
a bidirectional interaction exists between MSCs and CP 
that enhances proliferation in both.

Cytokine Profile of RFP+ rMSC and CP 
Co-Cultures
We investigated the factors mediating the interaction 
between rMSCs and CP by cytokine profiling of the med-
ium from co-cultures collected on day 14. Four groups 
were compared: C/M (CP on top and RFP+ rMSCs on the 
bottom), M/C (RFP+ rMSCs on top and CP on the bot-
tom), M/X (RFP+ rMSCs on top, with no CP), and X/C 
(no MSCs, with CP on the bottom) (Figure 5A). The PCA 
results showed that X/C was independent of the other 
groups; although C/M, M/C, and M/X showed overlap, 
they were still distinguishable from each other, suggesting 
that the dominant cytokines were derived from rMSCs 
(Figure 5B). There were 3 clusters in the heatmap 
(Figure 5C). C1 was generally highly expressed in X/C, 
C2 in M/X, and C3 in C/M and M/C (Figure 5C). 
A comparison of cytokines in C3 revealed that those 
related to proliferation—namely, HGF, IGFBP-3, IGFBP- 
5, and GDF-15—differed significantly between X/C and 
C/M (Figure 6A–C and F). The levels of the chemokines 
CCL5, CXCL2, NOV/CCN3, WISP-1/CCN4, and CCL22 
differed between groups (Figure 6D, E, and G–I); and the 

Table 1 Distribution of Iron Oxide Nanoparticle Signals in the 
Brain Detected by Magnetic Resonance Imaging (N=22)

Brain Area Percentage

Injection site 32%

Ipsilateral ventricle 68%

Contralateral ventricle 27%
Third ventricle 41%

Table 2 Distribution of Iron Oxide Nanoparticles in the Brain 
Detected by Prussian Blue Staining (N=9)

Brain Area Percentage

Injection site 33%

Infarct site 33%
Choroid plexus 22%

Corpus callosum 11%

Cerebellum 11%

Figure 3 Indices of functional recovery. (A) Corner test score. (B) mNSS score. 
(C) Recovery rate of stroke volume (100 − [DXstroke volume/D1stroke volume]) at 
indicated time points after ischemia. Error bars represent SEM (N=6 and 11 in 
saline and ION-RFP+ rMSC groups, respectively).* with blue color P<0.05 (by linear 
regression). * with black color P<0.05, *** with black color P<0.001 (by Student’s 
t-test).
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levels of NOV, WISP-1, and CCL22 in C/M and M/C 
differed significantly from those in M/X and X/C (Figure 
6G–I). The levels of cytokines involved in adhesion—ie, 
galectin-1 and ICAM1—differed significantly between X/ 
C and C/M (Figure 6J and K).

Pathways Involved in the Interaction 
Between RFP+ rMSCs and CP
The signaling pathways involved in the interaction between 
rMSCs and CP were predicted with Enrichr using the follow-
ing input genes: CXCL2, CCL5, CCL22, IGFBP3, IGFBP5, 

Figure 4 Interaction between RFP+ rMSCs and CP. (A, C) Proliferation (A) and migration (C) of RFP+ rMSCs with or without CP co-culture. (B, D) Proliferation (B) and 
migration (D) of CP cells with or without RFP+ rMSC co-culture. (E) Crystal violet staining and RFP intensity for (A). (F) Crystal violet staining for (B). Error bars represent 
SEM (N=6 per group). *P<0.05, ***P<0.001.
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Figure 5 Cytokine profile on day 14 of RFP+ MSC and CP co-culture. (A) Illustration of different groups. (B) PCA. (C) Heatmap showing 3 clusters (C1, C2, and C3). M/C: 
Top and bottom sides cultured with RFP+ rMSCs and CP, respectively. C/M: Top and bottom sides cultured with CP and RFP+ rMSCs, respectively. M/X: Top and bottom 
sides cultured with RFP+ rMSCs and no CP, respectively. X/C: Top and bottom sides cultured with no rMSCs and CP, respectively. N=4 per group.
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Figure 6 Levels of secreted cytokines identified in the bioinformatics analysis on day 14 of RFP+ rMSC and CP co-culture. Proliferation-related cytokines: (A) HGF, (B) 
IGFBP-3, and (C) IGFBP-5. Chemokines: (D) CCL5, (E) CXCL2, (F) GDF-15, (G) NOV, (H) WISP-1, and (I) CCL22. Adhesion-related cytokines: (J) galectin-1 and (K) 
ICAM1. M/C: Top and bottom sides cultured with RFP+ rMSCs and CP, respectively. C/M: Top and bottom sides cultured with CP and RFP+ rMSCs, respectively. M/X: Top 
and bottom sides cultured with RFP+ rMSCs and no CP, respectively. X/C: Top and bottom sides cultured with no rMSCs and CP, respectively. N=4 per group. *P<0.05; a, b, 
and c indicate significantly different groups.
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LGALS1, ICAM1, CCN3, CCN4, GDF15, and HGF.42 

Wikipathway predictions revealed lung fibrosis (WP3632), 
IGF-1/Akt signaling (WP3675), chemokine signaling path-
way (WP2292), and spinal cord injury (WP2432) as signifi-
cant pathways (Figure 6 and Table 3). Three cytokines out of 
190—namely, CCL5, HGF, and CXCL2—were involved in 
the chemokine signaling pathway (WP2292; 190 genes); 2 
out of 31 possible growth factors—ie, IGFBP-3 and IGFBP- 
5—were involved in IGF-1/Akt signaling (WP3675); 3 out 
of 190 chemokines—ie, CCL22, CCL5, and CXCL2—were 
involved in the chemokine signaling pathway (WP2292); and 
2 cytokines out of 99 (CXCL2 and ICAM1) were involved in 
spinal cord injury (WP2432) (Table 3).

Discussion
There is limited understanding of the mechanisms under-
lying CP regeneration after stroke. In this study, we used 
ION-labeled MSCs to determine the destination of injected 
cells and found that they localized to the CP. MSCs labeled 
with IONs maintain the capacity for proliferation, 

differentiation, and reactive oxygen species production as 
well as mitochondrial membrane potential.8 These cells are 
easily identified not only by MRI but also by light micro-
scopy, which facilitates the identification of BM-derived 
cells that have migrated to the leptomeninges,22 CP,23 and 
perivascular spaces.22 In the stroke brain, MSCs are detected 
at the infarct site, injection site, and CC;24–26 however, our 
study provides the first evidence that injected MSCs are 
trafficked to the CP based on MRI and PB staining 
(Figures 1 and 2; Tables 1 and 2). Moreover, the migration 
of MSCs occurred at a very early stage after injection 
(day 1) (Figure 2). These findings suggest new possibilities 
for cell delivery methods in cell-based therapy, as intrave-
nous delivery is used in clinical trials but direct injection into 
the brain is preferred in animal studies.4 The observation that 
MSCs and CP interact and mutually enhance proliferation 
may also explain why results obtained in preclinical studies 
do not translate well to clinical studies.

The successful establishment of our rat stroke model 
was confirmed by MRI (Figure 1A), the corner test (Figure 

Table 3 Pathway Prediction with Enrichr

Term Overlap Adjusted 
P-value

Odds 
Ratio

Combined 
Score

Genes

Lung fibrosis (WP3632) 3/61 7.70E−04 89.42 1103.35 CCL5; HGF; 
CXCL2

Factors and pathways affecting insulin-like growth factor (IGF1)-Akt 

signaling (WP3675)

2/31 1.12E−02 117.30 1052.57 IGFBP5; IGFBP3

Chemokine signaling pathway (WP2292) 3/190 7.72E−03 28.71 256.52 CCL22; CCL5; 
CXCL2

Spinal cord injury (WP2432) 2/99 5.70E−02 36.73 244.21 CXCL2; ICAM1

Myometrial relaxation and contraction pathways (WP385) 2/153 1.08E−01 23.77 137.63 IGFBP5; IGFBP3

PluriNetWork (WP1763) 2/292 3.14E−01 12.45 56.49 IGFBP3; ICAM1

EBV LMP1 signaling (WP1243) 1/22 3.03E−01 82.64 365.27 CCL5

Type II interferon signaling (IFNG) (WP1253) 1/34 4.08E−01 53.48 213.23 ICAM1

Signaling of hepatocyte growth factor receptor (WP193) 1/34 3.63E−01 53.48 213.23 HGF

p53 signaling (WP2902) 1/67 6.38E−01 27.14 90.02 IGFBP3

IL-5 signaling pathway (WP151) 1/69 5.97E−01 26.35 86.65 ICAM1

IL-2 signaling pathway (WP450) 1/76 6.02E−01 23.92 76.40 ICAM1

Delta–notch signaling pathway (WP265) 1/83 6.06E−01 21.91 68.07 CCN3

Focal adhesion (WP85) 1/185 1.00E+00 9.83 22.91 HGF

Focal adhesion–PI3K–Akt–mTOR-signaling pathway (WP2841) 1/324 1.00E+00 5.61 10.13 HGF
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3A), and mNSS (Figure 3B). Traditionally, stroke in ani-
mal models is confirmed by 2,3,5-triphenyltetrazolium 
chloride (TTC) staining; however, MRI can be used 
instead as it shows a high degree of correlation with 
TTC staining results and reduces the number of animals 
used in experiments.44–46

IONs can stimulate cell proliferation, which may con-
tribute to the restoration of brain function in stroke models.47 

Long-term observation by MRI revealed the fate of ION- 
labeled MSCs in the present study. These advantages make 
ION-labeled stem cells a promising reagent for cell-based 
therapies. There is growing concern regarding the stemness 
of the ION-labeled stem cells since some of them stimulate 
reactive oxygen species production and/or interfere the mito-
chondrial membrane potential.48,49 We previously investi-
gated the reactive oxygen species production and 
mitochondrial membrane potential interference of 
Ferucarbotran labeled MSCs and there is no difference 
before and after Ferucarbotran labeling. There is no trans-
fecting agent such as poly-lysine needed for Ferucarbotran 
labeling that might contribute to the finding.50,51

Trophic factors are involved in cell maintenance, 
regeneration, and repair, and enhance the therapeutic 
effects of injected stem cells following stroke.52 MSCs 
secrete chemokines, growth factors, and cytokines,12–15,20 

while the CP secretes factors that promote tissue mainte-
nance and repair29–31 and recruit immune cells.32 We 
investigated changes in cytokine levels in co-cultures of 
MSCs and CP and found that multiple factors involved in 
proliferation and cell adhesion were altered (Figures 5C 
and 6) including NOV/CCN3, WISP-1/CCN4, and 
CCL22, which may be involved in the recruitment of 
MSCs to the CP (Figures 5C and 6G–I). MSCs secrete 
IGF-1, HGF, and GDF-15,20 but the involvement of 
IGFBP-3 and IGFBP-5 has not been previously reported. 
IGFBP-3 and IGFBP-5 bind and stabilize IGF-1 to induce 
proliferation.53 Moreover, IGF-1 has demonstrated neuro-
protective effects in stroke.54 Although IGF-1 level was 
unchanged in MSC/CP co-cultures (Figure S2), IGFBP-3 
and IGFBP-5 were upregulated (Figures 5C and 6B, C).

To determine whether the different materials of the 
transwell and co-culture dishes affected our results, we 
performed the transwell assay with either the MSCs or 
CP at the top and found that the cytokine profiles deter-
mined by cytokine array showed slight variations depend-
ing on the configuration but were largely similar (Figure 
5). The differences may be attributable to the material or 
size of the dish. CCL3 and IGFBP-2 were mainly 

produced by the CP (Figure 5C). CCL3 may attract 
MSCs to the CP as it has been shown to recruit MSCs to 
wound sites.55 IGFBP-2 is involved in the regulation of 
corneal fibroblast differentiation.53,56 As candidate cyto-
kines were selected based on their level in the rMSC/CP 
co-culture relative to that in a monoculture, CCL3 and 
IGFBP-2 were not investigated further. Cytokine arrays 
provide a large amount of information but have some 
limitations because they include only 79 analytes. Thus, 
some unknown factors may mediate the interaction 
between MSCs and CP.

The Wikipathway prediction indicated that lung fibro-
sis (WP3632), IGF-1/Akt signaling (WP3675), chemokine 
signaling pathway (WP2292), and spinal cord injury 
(WP2432) are involved in the effects observed in MSC/ 
CP co-cultures (Table 3). Lung fibrosis was not relevant to 
our investigation, but the others warrant further study.

CP secretomes are involved in neurogenesis and MSC 
proliferation (Figure 4A).28 The levels of HGF, GDF-15, 
and IGFBP-5—which have antioxidant, antiapoptotic, and 
pro-proliferative effects16–18 —showed increasing trends 
in the rMSC/CP co-culture (Figure 6A, C and F). MSCs 
have demonstrated beneficial effects on motor function, 
stroke volume, and neurogenesis following stroke.11,19 

Our results suggest that MSCs may exert these effects 
through crosstalk with the CP.

Conclusion
Some ION-labeled MSCs were located in the CP of the 
ischemic stroke brain. Bidirectional effects on proliferation 
were observed in MSC and CP co-cultures involving various 
cytokines and the IGF-1/Akt, chemokine signaling, and 
spinal cord injury signaling pathways. These findings could 
shift cell therapy strategies for stroke from intravenous deliv-
ery of MSCs to their direct injection into lateral ventricles 
harboring the CP, which could enhance functional recovery.
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