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Abstract: Advancements in analytical diagnostic systems for point-of-care (POC) applica-
tion have gained considerable attention because of their rapid operation at the site required to 
manage severe diseases, even in a personalized manner. The POC diagnostic devices offer 
easy operation, fast analytical outcome, and affordable cost, which promote their advanced 
research and versatile adoptability. Keeping advantages in view, considerable efforts are 
being made to design and develop smart sensing components such as miniaturized transduc-
tion, interdigitated electrodes-based sensing chips, selective detection at low level, portable 
packaging, and sustainable durability to promote POC diagnostics according to the needs of 
patient care. Such effective diagnostics systems are in demand, which creates the challenge 
to make them more efficient in every aspect to generate a desired bio-informatic needed for 
better health access and management. Keeping advantages and scope in view, this mini 
review focuses on practical scenarios associated with miniaturized analytical diagnostic 
devices at POC application for targeted disease diagnostics smartly and efficiently. 
Moreover, advancements in technologies, such as smartphone-based operation, paper-based 
sensing assays, and lab-on-a-chip (LOC) which made POC more sensitive, informative, and 
suitable for major infectious disease diagnosis, are the main focus here. Besides, POC 
diagnostics based on automated patient sample integration with a sensing platform is con-
tinuously improving therapeutics interventions against specific infectious disease. This 
review also discussed challenges associated with state-of-the-art technology along with 
future research opportunities to design and develop next generation POC diagnostic systems 
needed to manage infectious diseases in a personalized manner. 
Keywords: point-of-care devices, infectious diseases, lateral flow strips, microfluidics

Need of Point-of-Care Diagnostics
Worldwide, long-term economic and social stability of society is highly dependent 
upon the personnel health. Despite technological advances in past few years, the 
society is still struggling with adverse health issues in terms of both communicable 
and non-communicable diseases, especially in developing countries. The limited 
availability of medical or laboratory testing facilities can cause high mortality rates. 
The fundamental basis of any treatment procedure is first to identify the disease 
through reliable and accurate diagnostic tools. The available conventional diagnos-
tic methods are majorly based on immunology, culture and microscopy, and poly-
merase chain reaction (PCR). These methods have greatly contributed to the 
diagnosis and monitoring of diseases and are still used as gold standards, but 
each method has their own benefits and limitations in terms of their functions 
such as processing speed, cost, and skilled technicians’ requirements. For instance, 
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in the case of dengue diagnostics, ELISA cannot identify 
the serotype,1 whereas RT-PCR allows rapid identification 
of serotype, but its operation requires high proficiency.2 

Recent outbreaks of infectious diseases (ie, COVID-19, 
Ebola, and Zika) in remote areas raised concern regarding 
conventional diseases monitoring strategies.3–5 Among 
several infectious diseases, a few infectious diseases (like 
AIDS, tuberculosis, hepatitis, etc.) are largely causing ill-
ness and death, especially in developing countries, due to 
lack of modern medical care. In the conventional techni-
ques, a considerable time lag between sample collection to 
further assessments is a major challenge in front of infec-
tious disease management. In order to accelerate the diag-
nosis, research efforts have recently focused on 
development of point-of-care (POC) devices.6–9

POC testing for medical diagnosis involves close 
proximity to patients to enable contemporaneous treat-
ments. Over time, POC devices have gained attention for 
rapid diagnosis and monitoring various life-threatening or 
infectious diseases. The early and accurate diagnosis of 
disease is important in the initiation of early treatment of 
diseases followed by appropriate modification of treatment 
steps, if necessary, via facile monitoring. POC devices are 
efficient diagnostic options to prevent delay in treatment, 
which is important because delays or inappropriate treat-
ments can lead to high mortality and transmission of 
infectious agents.10,11 In resource-limited areas lacking 
the facilities of laboratory-based diagnostic tests, POC 
testing is easy-to-use, and an instrument-independent alter-
native for its possible use even by the people who lack 
medical or laboratory knowledge. POC testing can be 
performed at any place either home or physician’s office, 
ideally offering results within minutes with a simple pro-
cedure of analysis.

POC devices must be robust with high specificity, 
selectivity, short turnaround time, minimal processing 
steps, and capable of immediate clinical-decision making. 
The global POC diagnostic market is projected to reach 
US$28,379.6 million by 2026.12 The POC testing market 
can be segmented into different products for infectious 
disease monitoring, glucose monitoring, cardiometabolic 
testing, coagulation testing, urinalysis testing, hematology 
testing, drugs testing, and others. Among all these POC 
tests, a significant growth in development of infectious 
disease testing products can be seen due to the growing 
patient population as well as awareness about POC testing 
of infectious disease. The fundamental technological 
advances are broadening the concept of POC systems for 

real clinical value via integration of microfluidics, devel-
opment of novel materials, and data analytics.13–17

In this article, we discuss the emerging technologies 
for POC testing that involves the coupling of smartphones 
with novel sensing approaches such as optical sensors and 
electrochemical sensors. The available POC tests for major 
infectious disease detection in humans are also explored 
and highlighted. This review highlights continued devel-
opments in disease diagnosis technology, with an emphasis 
on diagnostic sensitivity and specificity. We assess the 
performance of existing POC technologies along with the 
major research challenges for POC tests on their road to 
commercialization.

Existing and Emerging Point-of- 
Care Configurations
The POC testing can be segmented as dipsticks, lateral 
flow immunoassays (LFIA), and microfluidics. In particu-
lar, the first paper-based dipstick test was reported in 
1950s for diabetes, dealing with quantification of glucose 
in urine via an immunoblotting approach.18 In parallel to 
the development of dipsticks, radioimmunoassays and 
latex agglutination assays were the forerunners of lateral 
flow tests.19 The principle of LFIA involves the interaction 
of sample with a labeled antibody that is pre-loaded on 
a strip of either polymer, nitrocellulose, paper, or others.20 

Microfluidic diagnostic offers precise control over the rate 
of flow of samples and reagents through micro-channels, 
enabling the separation and detection of target analyte.21 

Along with these sample handling platforms, each POC 
testing system should possess appropriate sampling meth-
ods for different kinds of samples (like interstitial fluid, 
capillary blood, wound exudate, sweat, tears, urine, or 
saliva) as well as a particular signal transduction unit 
with easy readout. These testing platforms are usually 
integrated with some sensing mechanism such as electro-
chemical, colorimetric, fluorescent, and spectroscopy,22–24 

where the target analytes can be proteins,25 disease- 
specific biomarkers,26 and cell count.27 Each of these 
existing POC tests has their pros and cons that lead to 
requirements of technological advancements in terms of 
duration of analysis, sensitivity, miniaturization, and cost 
of the device. In particular, LFIA offer rapid, easy to 
operate, and cheap POC tests with a long shelf life, avoid-
ing any kind of refrigeration for storage.28 However, these 
are suitable for primary screening only due to several 
limitations such as sample nature-dependent analysis 
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time, mandatory good antibody preparation, restriction on 
sample volume, and others29–31 Moreover, their use is also 
limited in front of demand of highly quantitative and 
reproducible results. On the other side, microfluidics 
POCs offer several benefits over conventional systems in 
terms of use of less sample volume, low reagent consump-
tion, minor sample handling, faster reaction time, easier 
automation, and enhanced analytical sensitivity.10,32 

However, accessibility and scalability are among the 
major barriers in front of commercialization of microflui-
dic devices.33

In detail, there are different phases of POC tests such 
as the i) preanalytical phase, dealing with the selection of 
an appropriate approach for test as well as collection of 
specimens, ii) analytical phase, dealing with the detection 
of targeted biological signals and further transformation 
into measurable signal, and iii) postanalytical phase, con-
cerned with the data analysis and display of 
results followed by further storage or transmission.34 The 
continuous technological development in POC testing can 
be characterized in terms of smartphone-based 
technologies,35 paper-based technologies,36 and fully auto-
mated lap-on-a-chip (LOC)-based platforms.37,38 Further, 
the concept of novel assay format (eg, multiplex PCR and/ 
or multiplex immunoassay) has become popular for simul-
taneous detection of different infectious diseases.39 In 
particular, the multiplexed immunoassay based on the 
principle of dual signal amplification can be utilized for 
screening of various biomarkers simultaneously in a wide 
range of clinical samples, eg, urine, oral fluid, etc.40 

Similarly, in the case of multiplex PCR, the simultaneous 
detection and amplification of more than one gene target 
can be achieved in one reaction.41 With simultaneous 
screening of several analytes, POC tests can offer 
a rapid, low-cost, and reliable quantification.

Laksanasopin et al42 developed a smartphone-based 
POC diagnostic “dongle” and also carried out its preli-
minary clinical evaluation for detection of antibodies to 
human immunodeficiency virus (HIV) and syphilis. The 
developed dongle powered by 4th generation Apple iPod 
Touch can replicate all optical, electronic, and mechanical 
functions of gold standard of laboratory-based ELISA (for 
HIV diagnosis) and rapid plasma regain (for syphilis 
diagnosis), offering a specificity of 79–100% and 
a sensitivity of 92–100% within a very short time of 15 
minutes. This microfluidic platform can be readily 
adopted for detection of numerous other pathogens. 
A smartphone-enabled iHealth Align (The Food and 

Drug Administration approved product) is available in 
the market for blood glucose monitoring.43 The other 
smartphone-based technologies serve as colorimetric 
readers (for pH and urine test strips)44 and flow cytometer 
(for optofluidic fluorescent imaging of pathogens in 
blood/water samples).45 The use of imaging components 
of a smartphone is very novel to develop diagnostic tools 
for resource-limited areas, ie, development of on-chip 
imaging of schistosoma eggs in urine causing schistoso-
miasis (a neglected tropical disease) with 100% specificity 
and 79% sensitivity.46

Furthermore, paper-based diagnosis has also emerged 
as a promising and cost-effective format. Several choices 
are available for selection of substrate such as paper/poly-
mer, filter paper, nitrocellulose paper, paper/nanomaterials, 
and chromatography paper based on their properties in 
terms of surface chemistry, porosity, and optical 
properties.47 The most common example of paper-based 
lateral flow assays (LFAs) is home pregnancy test strips, 
which are used to detect the hormone human chorionic 
gonadotropin (hCG) from urine samples.48 This detection 
concept has been further extended for diagnosis of HIV,49 

hepatic carcinoma biomarkers (ie, alpha fetoprotein),50 

and others (like nucleic acid testing).51 Majorly, research 
efforts are focused on sensitivity improvement of paper- 
based assays via incorporation of enzymes52 and 
nanomaterials.53 Moreover, microfluidic paper-based elec-
trochemical devices have also been reported for detection 
of alcohol, cholesterol, nucleic acids, glucose, and uric 
acid.54 The integration of paper-based assays with 
a smartphone can offer additional functionality for quali-
tative analysis of diseases, eg, the possibility of different 
geometry for fluid and analyte handling (like lateral or 
vertical flow), tunable surface chemistry with barriers or 
bridges, physical actuation, allowed external fields, and 
ease of image capture and analysis.

Further, numerous LOC-based POC devices are avail-
able in the market such as the portable Piccolo XpressTM 

for analysis of whole blood chemistry.55 In this POC, 14 
tests can be accommodated on a single reagent LabDisk 
for simultaneous monitoring of multiple reactions with 
rapid results delivery within 12 minutes. The LabDisk 
platforms have been developed for detection of other ana-
lytes as well (ie, biomarkers, nucleic acid, toxins, and 
pathogens).56 Recently, the concept of novel assay formats 
is paving the way for future POC devices with enhanced 
sensitivities such as TROVATM,57 Perkin Elmer’s 
AlphaLISA®,58 etc.
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Point-of-Care Diagnostics of Major 
Infectious Diseases
The advancements achieved in POC techniques are aston-
ishing, allowing them to outperform costly late-stage tools 
for diagnosis and to facilitate early-stage diagnosis with 
inexpensive options (refer to Table 1). In this section, we 
discuss the diverse forms of POC tests developed for 
human applications in detail.

Point-of-Care Diagnostics of Dengue
Dengue is a viral disease caused by Aedes species of mos-
quitoes, mainly female A. aegypti. There are four main 
serotypes of dengue virus: DEN-1, DEN-2, DEN-3, and 
DEN-4. According to WHO reports, about 390 million 
dengue infections occur yearly.79 The symptoms of dengue 
infection can be confused with those of other infections 
such as malaria. However, appropriate biomarkers can be 
used to identify the different stages of dengue infection. 
Those stages are the initial febrile stage and the later defer-
vescence stage, which involves the release of target anti-
bodies. Different diagnostic tests (such as ELISA, RT- 
qPCR, and serological methods) are routinely used for 
dengue detection. The viral isolation technique is the gold 
standard for detection of dengue infections. POC tests for 
dengue diagnosis are also commercially available, includ-
ing the Dengue Fever IgG and IgM Combo device, 
BIOLINE Dengue Duo NS1 antigen and IgG and IgM 
Combo device, Panbio Dengue Early Rapid Kit, Panbio 
Dengue Duo Cassette, and STRIP (refer to Table 1).80,81 

These antibody-based POC tests are based on qualitative 
detection of non-structural protein 1 (NS1) in human serum 
in the case of early dengue infections. However, acute 
dengue detection, especially in the later phase of infection, 
is still recommended to prevent false-positive diagnoses.

Paper-based diagnostic devices have been developed for 
rapid, on-site dengue diagnosis. These detection systems use 
a simple capillary effect on the flow of a biological sample on 
paper without the need for any external power sources. With 
the use of an optical reader, the colorimetric tests can provide 
quantitative measurements based on a strong correlation 
between concentration of analyte and corresponding 
color intensity (refer to Figure 1).82 In this case, the optical 
reader eliminates the subjective interpretation of the test results 
and offers a semiquantitative or even quantitative readout. The 
development of hybrid substrates (eg, agarose) can offer 
appropriate control over fluid flow for the optimal interaction 
between biomolecules and gold nanoparticle-modified test 

strips.83 An opto-magnetic approach has been reported for 
real-time detection of dengue infection under both ideal and 
non-ideal conditions.84 The interaction between magnetic 
nanoparticles and products of loop-mediated isothermal 
amplification (LAMP) was used to diagnose dengue 
Serotype 2 synthetic DNA (D2) within 20 minutes of the 
LAMP reaction for target concentrations above 100 fM. In 
the case of nucleic acid-based diagnostics, the adoption of 
LAMP reaction over PCR can eliminate the requirement of 
bulky and expensive thermocyclers along with enhanced sen-
sitivity and specificity of target gene amplification.85 The 
continuous development of nanomaterials has produced extre-
mely sensitive biosensors. The integration of a microfluidic 
system with nanomaterials and microarray technologies is 
highly effective in achieving the goal of miniaturized, auto-
mated, and portable chips for use with complex microfluidic 
samples such as cells, nucleic acids, and protein assays.

Point-of-Care Diagnostics of Tuberculosis
Tuberculosis (TB), an infectious disease, is caused by the 
bacillus Mycobacterium tuberculosis. According to 
reports, 10 million people worldwide were found to be 
infected with TB in 2017, and 1.3 million TB-related 
deaths occurred.86 Delay in effective treatment for TB 
can cause its transmission, with epidemic potential. 
There is thus an urgent need to identify biomarkers for 
detection and differentiation of TB. The situation becomes 
even more critical when TB occurs in a patient already 
affected by HIV. The WHO reports that the treatment 
success rate for multidrug resistant TB during 2017 was 
55% globally.87 Currently available diagnostic tests for TB 
can be classified as i) sputum smear microscopy, ii) cul-
ture-based methods, and iii) rapid molecular tests. Sputum 
smear microscopy is one of the most common tools for TB 
diagnosis and involves simply checking for the presence of 
bacteria using a microscope.88 It is thus a laboratory-based 
test that involves the examination of multiple samples. 
Culture-based methods are the current reference standard 
for testing the drug susceptibility of bacterial strains, but 
those tests are both laboratory-based and time consuming 
(12 weeks).89 The Xpert® MTB/RIF assay is a WHO- 
recommended rapid molecular test. The attractive features 
of this test are its accuracy and rapid processing, in as little 
as 2 hours.90 Other tests for TB and anti-TB drug resis-
tance include the rapid line probe assay (a test for resis-
tance to rifampicin and isoniazid) and sequencing 
technologies. However, serological tests, including line 
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probe assays, are not recommended for diagnosis because 
of their poor specificity and sensitivity.87

In the case of POC tests, the selection of biomarkers should 
be done carefully keeping in view low cost, easy to operate, 
and functioning in remote areas with limited laboratory facil-
ities. For TB, the commonly used biomarkers in POC tests are 
Mtb Ag85, volatile organic compounds from exhaled breath 
(eg, H2O2, CO, or 8-isoprostane), and acute phase proteins 
(such as C-reactive protein and Alpha-1-acid 
glycoprotein).91,92 Recent trends in POC test development 
include fluorogenic probes specific for detection of Blac, 
a hydrolase biomarker expressed by M. tuberculosis.93 The 
CDG-OMe fluorescent probe together with a microfluidic chip 
can provide enzyme BlaC-based rapid diagnosis of TB with 
90% sensitivity and 73% specificity over other β-lactamases. 
Further improvements are needed to lower the cost of these 
fluorescent probe-based detection methods. POC devices using 
a lateral flow urine test-strip assay are commercially available 
for detection of lipoarabinomannan (LAM) as a TB diagnostic 
marker (refer to Table 1).94 The sensitivity of these TB-LAM 
detection tools is a major issue in the presence of a concurrent 
HIV infection. In comparison to commercially-available POC 
tests for TB, the sensitivity of AlereLAM assay can be 
improved by using novel Fujifilm SILVAMP TB LAM 
(FujiLAM) assay (refer to Figure 2).95

Beyond the use of antibody-based POC tests, aptamers are 
becoming an attractive platform because they can offer cost- 
effective synthesis, high stability, ease of modification, and 
high specificity.96 The upcoming trend of integrating micro-
fluidics and nanotechnology is revolutionizing the field of 
diagnostics with respect to cost, miniaturization, specificity, 
and sensitivity. The detection of nucleic acids for TB diagnosis 
could replace the requirement for bacterial isolation or culture. 
Magnetic nanoprobe-labeled polymeric beads have been fab-
ricated to capture PCR-amplified mycobacterial genes through 
complementary sequences.97 A magneto-resistive biosensor 
offered a low limit of detection (104 cells/mL) for diagnosing 
Mycobacterium bovis Bacillus Calmette-Guérin.98 Using poly-
aniline-doped carbon nanotubes in an amperometric DNA 
biosensor offered rapid detection of a specific IS6110 DNA 
sequence of M. tuberculosis in a wide linear range of detection 
(1 fM–10 nM).99

Point-of-Care Diagnostics of Hepatitis B
Hepatitis B, a global health problem, is a viral infection of liver 
caused by the hepatitis B virus (HBV). It can cause both acute 
and chronic diseases, offering a higher risk of death from liver 
and cirrhosis cancer. As per the WHO reports,100 325 million 19
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people are affected with viral hepatitis B and C worldwide, 
leading to 1.4 million deaths yearly. After tuberculosis, hepa-
titis B is the second major infectious disease with its 9-times 
higher cases of infection than HIV. The most common route of 
this infection is mother-to-infant transmission.101 Moreover, 
the risk of HBV infection is 43% higher in diabetic patients in 
comparison to the non-diabetic population.102 The traditional 
serology and molecular biology-based screening approaches 
are commonly used for laboratory-based diagnosis of HBV 
infections.103 Three different types of assays have been devel-
oped and approved by FDA for HBV diagnosis such as i) 
HBsAg assay: hepatitis B surface antigen, ii) anti-HBc assay: 
hepatitis B virus core antigen, and iii) HBV nucleic acid assay: 
hepatitis B virus.104 Further, in comparison to quantification of 

HBV DNA using nucleic acid testing, the novel immunoassays 
(ie, hepatitis B core-related antigen) are more affordable 
options with a high sensitivity of 96.6% and a specificity of 
85.8%.105 The paper-based analytical devices have also been 
developed to detect the specific DNA sequences.106 However, 
still improvement is needed to resolve the limitation of com-
plex processing steps for purified DNA samples. Srisomwat 
et al107 developed a pop-up structured electrochemical paper- 
based analytical device for label-free detection of HBV DNA. 
In detail, a pyrrolidinyl peptide nucleic acid (acpcPNA), pos-
sessing high affinity and selectivity for target DNA, was cova-
lently immobilized on a working electrode of the device. Here, 
the electrochemical signal on-off due to respective presence 
and absence of target HBV DNA was measured with 

Figure 1 Rapid diagnostic platform for Dengue and Chikungunya using (A) multiplex lateral flow test strip, (B) optical reader for color detection, (C) structural representation of 
optical reader, (D) lightproof casing of optical reader, and (E) appearance of test strip corresponding to different diagnostic scenarios. 
Note: Reproduced with the permission from Wang R, Ongagna-Yhombi SY, Lu Z, Centeno-Tablante E, Colt S, Cao X, Ren Y, Caardenas WB, Mehta S, Erickson D. Rapid 
diagnostic platform for colorimetric differential detection of dengue and Chikungunya viral infections. Analytical chemistry. 2019 21;91(8):5415-23. Copyright (2019) 
American Chemical Society. 82

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                       

International Journal of Nanomedicine 2021:16 390

Kumar et al                                                                                                                                                           Dovepress

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Figure 2 Schematic representation of novel lipoarabinomannan POC device for Tuberculosis diagnosis and its working principle. 
Note: Reproduced with the permission form Broger T, Sossen B, du Toit E, Kerkhoff AD, Schutz C, Reipold EI, Ward A, Barr DA, Macé A, Trollip A, Burton R. Novel 
lipoarabinomannan point-of-care tuberculosis test for people with HIV: a diagnostic accuracy study. The Lancet Infectious Diseases. 2019 Aug 1;19(8):852-61. Copyright (2019) 
Elsevier.95
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differential pulse voltammetry. The pop-up structure offered 
multi-step operation in a single window as well as ease of 
sample introduction, minimized exposure of biofluids, and 
a linear range of 50 pM–100 nM with a 1.45 pM detection 
limit.

The development of POC tests for diagnosis of HBV 
infection is continuous in progress to ensure affordable, spe-
cific, sensitive, rapid, and user-friendly alternatives to the 
society.108–110 Some common POC tests are also available in 
the market, such as Vikia (Biomerieux),111 Quick Profile 
(Lumiquick),112 and Determine (Inverness Biomedical 
Innovations),113 etc. (refer to Table 1). Among these POC 
tests, most of the HBV antigen rapid POC tests (like Vikia 
and Determine) are based on LFA, whereas Quick Profile is 
based on a double antibody sandwich immunoassay. The 
performance of rapid POC tests (ie, EuDxTM-HE) based on 
immunochromatographic strip assay is comparable to standard 
references in terms of rapid diagnosis (within 15 minutes) 
offering high sensitivity of ~95 with ~99% specificity for 
HBsAg.114 The recent trends can be seen in combination 
with integrated multi-diseases oral or blood-based assays for 
combined testing of HBV, hepatitis C (HCV), and HIV.115 

These co-infections (like HIV-HBV and HIV-HCV) have 
overlapped epidemics. The multiplex POC tests are also avail-
able in the market, such as Chembio, OraSure, and MedMira 
rapid antibody tests with good performance characteristics.116

Point-of-Care Diagnostics of HIV/AIDS 
POC
Acquired immune deficiency syndrome (AIDS) disease is 
caused by HIV that directly disturbs the human immune 
system. The progress made in the science and prevention 
of HIV infections has motivated many nations to imple-
ment integrated health systems to meet HIV prevention 
and therapeutic goals.117 The treatment of HIV infection is 
a major challenge because of the unavailability of effective 
vaccines, though several potential vaccines are in various 
stages of clinical trials. The World Health Organization 
(WHO) reports that nearly 32 million people died of HIV- 
related causes in 2018 and approximately 37.9 million 
people were living with HIV at the end of 2018.157 That 
report also estimated that only 70% of people infected 
with HIV virus knew their status, with the other 30% 
unaware due to inaccessibility of diagnostic services. In 
most new infection cases, people unaware of their HIV 
status are responsible for its transmission.118 At the early 
stage of infection, it is quite difficult to distinguish the 

generic symptoms of HIV infection from those caused by 
common cold or fever.

The POC devices for AIDS detection should be highly 
sensitive and specific because false negative or positive results 
could harm the public health. Several potential biomarkers 
have been identified for HIV diagnosis, eg, peptoid HIV-DxP 
-1, viral RNA, and p24 antigens.119,120 The Food and Drug 
Administration (FDA), United States approved highly specific 
and sensitive POC tests for HIV.121,122 Some reported POC 
tests are the Xpert HIV-1 Qual (nucleic acid-based test for 
proviral DNA and RNA), Abbott RealTime HIV-1 assay 
(nucleic acid-based test for HIV-1 RNA), Dual Path Platform 
(DPP®) HIV ½ Screen Assay Oral Test (detection of antibodies 
to HIV1/2 in oral fluid), and DPP® HIV-HCV Screen Assay 
Blood Test (detection of antibodies to HIV1/2 in all blood 
matrices) (refer to Table 1). Among them, the Abbott 
RealTime HIV-1 assay and Xpert HIV-1 Qual test are nucleic 
acid-based rapid tests to diagnose HIV-1 infection.123 The 
Xpert HIV-1 Qual test uses the principle of quantitative reverse 
transcription-PCR (RT-PCR), and its performance is very pro-
mising, offering rapid diagnosis with minimal sample-volume 
requirements.124 The Aptima HIV-1 Quant Dx is a dual- 
function, fully automated assay used for both diagnosis and 
monitoring of HIV-1 RNA in plasma.125 Another commer-
cially available POC for quantitative detection of HIV-1 RNA 
in human plasma is rapid assay-based NucliSens v2.0, 
although it is somewhat complex in terms of handling. 
Compared with the NucliSens assay, the Xpert and Aptima 
assays were much more efficient for multiple HIV-1 subtypes 
and viral loads.126 The INSTITM HIV-1/HIV-2 Antibody Test 
is a rapid in vitro test approved by the FDA to test for HIV-1/ 
HIV-2 using blood and plasma.127 As a rapid oral test for HIV, 
OraQuick offers high sensitivity (93%) and specificity 
(99%).128

An electrochemical method based on electrochemical 
impedance spectroscopy (EIS) has been reported for rapid 
assessment of HIV infection on using substance of abuse and 
specific targeted therapeutic drugs.129 The cocaine (Coc), as 
a substance of abuse, tenofovir (Tef), as an anti-HIV drug, 
and rimcazole (RA), as a Coc antagonist, are selected for this 
research as model agents. To design an in-vitro cell line 
model, a cultureware chip (CC) containing interdigitated 
electrodes of gold (IDE-Au) was used to grow primary 
human astrocytes (HA) for HIV-infection followed by Coc 
exposure and treatments with specific drug. The EIS was 
performed on each step and results confirmed that HIV- 
infection, Coc exposure, and therapeutic mechanism of 
drug affected electro-physiology of HA which is detected as 
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a foundation of charge transfer resistance (Rct). The pre-
sented method successfully detected a Coc impairment pro-
cedure and therapeutic action of selected drugs in the HIV- 
infected cell line. This method has the ability to be used as an 
analytical diagnostic tool at clinical level which holds poten-
tial for fast and timely diagnosis of HIV-infection in a patient 
to manage HIV diseases, refer to Figure 3.130

Further, surface-enhanced Raman scattering (SERS) has 
been reported to detect target DNA using a plasmonic nanop-
robe that behaves as a molecular sentinel.131 The probe com-
prises metallic nanoparticles and a DNA hairpin probe 
sequence tagged with Raman label for specific and selective 
detection of the HIV gene. If the target gene is not present in the 
sample, the Raman label in proximity to the metallic nanopar-
ticle produces an intense SERS effect upon laser excitation. 
However, the stem-loop configuration gets disrupted upon 
hybridization of complementary target DNA with 
a nanoprobe that causes the physical separation of the Raman 
label from the nanoparticle, resulting in quenching of the SERS 
signal. The SERS-based LFA can overcome the limitations of 

conventional LFAs by significantly enhancing the sensitivity 
(1,000-times) and detection limit (0.24 pg/mL) for HIV-1 
DNA marker detection.132 HIV infections can also be detected 
by optical detection systems based on the mechanism of sur-
face plasmon resonance (SPR). In comparison to conventional 
bulky SPR-based sensors, portable SPR sensors have been 
developed comprising a LED light source, a reflecting mirror, 
and a gold-coated SPR surface where the target analyte can be 
detected on the basis of changes in the angle of incidence.133 

Moreover, these biosensors can be developed using optical 
microfibers, replacing the reflecting mirror by a fiber core.134 

SPR biosensors are highly promising for rapid diagnosis of 
HIV infections, with high sensitivity in a 1 pM to 150 nM linear 
range and a detection limit of 48 fM.135

Micro- and nanotechnology offer various opportunities 
in HIV diagnosis based on CD4+ T cell counts and HIV- 
viral load measurements.136 The major advancements in 
detection techniques include nanoplasmonic resonance 
detection137 and nanostructured photonic crystals138 that 
can detect viral loads of 100 copies/mL. Furthermore, 

Figure 3 Interdigitated electrodes cultured with Astrocytes and infected by HIV in the presence of cocaine to understand the electrochemical assessment of cell physiology. 
Note: Reproduced with the permission from Kaushik A, Vabbina PK, Atluri V, Shah P, Vashist A, Jayant RD, Yandart A, Nair M. Electrochemical monitoring-on-chip (E-MoC) 
of HIV-infection in presence of cocaine and therapeutics. Biosensors and Bioelectronics. 2016 86:426–31. Copyright (2016) Elsevier.130
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development of an immunoassay based on europium- 
doped silica nanoparticles enabled the detection of HIV-1 
p24 antigen in the femtogram range (0.02–500 pg/mL).139 

These techniques are very advantageous compared with 
complicated nucleic acid testing because they can be easily 
transferred to the LOC platform. Moreover, these techni-
ques can be developed further to detect other antigens and 
will be especially useful in resource-limited areas.

Point-of-Care Diagnostics of Major Viral 
Infectious Diseases
Moreover, POC diagnostics are of significant importance for 
public health emergency in the case of several other viral 
infections, eg, infections by Zika virus (ZIKA), Ebola virus, 
and Covid-19. In particular, the ZIKV (as an infectious dis-
ease-causing agent) spreads in humans via mosquitoes (ie, 
Aedes aegypti and Aedes albopictus). This infection can be 
further transmited via several ways, eg, through blood transfu-
sion, mother-to-child, bone marrow transplants, and sexual 

transmission. It results in life-threatening pathogenesis and 
further progression of disease. However, the diagnostic tools 
to monitor and control this infection are very limited so far. 
Different conventional techniques have been reported for diag-
nosis of ZIKV infection, including antibody methods, reverse 
transcriptase (RT)-PCR, and viral culture-based 
approaches.140

The integration of immunosensing platforms with micro-
electronics can lead to POC testing platforms for rapid (<40 
minutes) and on-site sensing of the ZIKV.141 The modification 
of microelectrodes with various nanostructures (like self- 
assembled monolayers, surface-charged metal/metal oxide 
nanoparticles, hybrid nanocomposites, functionalized poly-
mers, and other nanostructured thin films) can lead to high 
loading of specific antibodies for detection of ZIKV proteins 
up to picomolar concentrations (Figure 4).142,143 Pardee et al144 

fabricated a low-cost, portable, cell-free, and paper-based diag-
nostic platform for ZIKV RNA genome detection (up to fem-
tomolar concentrations). The coupling of this paper-based 
biosensor with clustered regularly interspaced short 

Figure 4 Illustration of an interdigitated electrodes based immunosensor for the detection of ZIKA protein at (pM), to perform POC diagnostics, this sensing chip is 
projected to be operated by a miniaturized analyzer and data analysis using internet of medical things. 
Note: Reproduced with the permission from Kaushik A, Yndart A, Kumar S, Jayant RD, Vashist A, Brown AN, Li CZ, Nair M. A sensitive electrochemical immunosensor for label- 
free detection of Zika-virus protein. Scientific reports. 2018 8: 97000. Copyright (2018) Scientific Reports under Creative Commons Attribution 4.0 International License.143
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palindromic repeats-associated protein-9 nuclease (CRISPR- 
Cas9) offered discrimination between viral strains at single 
base resolution. Further, Song et al145 reported implementation 
of reverse transcription LAMP (RT-LAMP) in a POC dispo-
sable cassette for rapid diagnosis of ZIKV. In this case, leuco 
crystal violet dye was used to detect the amplification products 
by eye, eliminating the need of any instrumentation for visua-
lization. A low-cost and portable smartphone-based fluores-
cent LFIA platform reported by Rong et al146 offered rapid 
quantitative detection (within 20 minutes) of ZIKV non- 
structural protein 1 (NS1) with a detection limit of 0.045 
ng mL−1 and 0.15 ng mL−1 in buffer and serum sample, 
respectively (refer to Figure 5). Further, the integration of 
microfluidic assay with a smartphone has offered a major 
breakthrough in rapid detection (~10 minutes) of ZIKV infec-
tion with a detection limit of 62.5 ng mL−1.147

Another viral infection due to Ebola virus (EBOV) (mainly 
Zaire strain-related) was declared as a deadly persistent epi-
demic (after the 2014 West African outbreak) due to a lack of 
rapid diagnosis, detection, and also therapeutics. This EBOV 
belongs to the family of Filoviridae. EBOV spreads in 
humans via close contact with organs, secretions, blood, and 

other body fluids of infected animals, eg, fruit bats, as natural 
EBOV hosts. Different laboratory diagnostic tools have been 
developed for EBOV, such as PCR (target: viral nucleic acid), 
ELISA (target: virus-specific antibodies), antigen ELISA (tar-
get: viral antigen), immunohistochemistry (target: viral anti-
gen), indirect immunofluorescence assay (target: virus-specific 
antibodies), and biosensors (target: virus).148 Ciftci et al149 

reported a padlock probe (PLP)-based rolling circle amplifica-
tion (RCA) approach for EBOV detection. The enrichment of 
RCA products on a pump-free microfluidic chip offered good 
sensitivity, selectivity, and multiplexability for simultaneous 
detection of Ebola, Dengue, and Zika. Further, Qin et al150 

reported an automated POC system EBOV RNA detection 
using RNA-guided RNA endonuclease Cas13a. This fully solu-
tion-based diagnostic approach offered rapid detection (within 
5 minutes) with a detection limit of 20 pfu mL−1. Makiala 
et al151 conducted a clinical evaluation of immunochromato-
graphy-based kits (ie, QuickNaviTM-Ebola). On comparing 
with WHO-approved GeneXert-confirmed cases, 
QuickNaviTM-Ebola offered a good sensitivity of 85% and 
an excellent specificity of 99.8% for POC diagnosis of 
EBOV. A POC test comprising a smartphone reader with 

Figure 5 Design and applicability of smartphone-based fluorescent lateral flow immunoassay (LFIA) platform: (A) 3D schematic of internal structure of the device, (B) image 
of fluorescent LFIA reader, (C) schematic representation of ZIKV NS1 detection using fluorescent LFIA, and (D) images of test strips in the absence (right) and presence 
(left) of ZIKV NS1. 
Note: Reproduced with the permission from Rong Z, Wang Q, Sun N, Jia X, Wang K, Xiao R, Wang S. Smartphone-based fluorescent lateral flow immunoassay platform for 
highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Analytica chimica acta. 2019 1055:140–7. Copyright (2019) Elsevier.146
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immunochromatographic strip has been reported by 
Brangel et al152 for detection of Ebola-specific antibodies in 
human survivors. After analyzing 121 serum samples (of 
which 90 samples from Sudan virus human survivors and 31 
from non-infected controls), this POC test kit offered an excel-
lent sensitivity of 100% along with 98% specificity, compared 
with standard whole antigen ELISA (Figure 6).

Towards Point-of-Care Diagnostics of 
COVID-19
Further, the recent outbreak of corona virus (COVID-19) 
paved the way for advances in rapid and POC diagnostics 
that might help restrain it.153 The COVID-19 tests can be 
grouped as antigen, serological, ancillary, and nucleic acid 
tests (NAT). Among these, NAT is most widely used for 

Figure 6 Overview of smartphone-based lateral flow POC test for detection of Ebola-specific antibodies illustrating (A) lateral flow strips and (B) smartphone applicationinterface 
login window for providing a description of the test and further recording of patient details. 
Note: Reproduced with the permission from Brangel P, Sobarzo A, Parolo C, Miller BS, Howes PD, Gelkop S, Lutwama JJ, Dye JM, McKendry RA, Lobel L, Stevens MM. A serological 
point-of-care test for the detection of IgG antibodies against Ebola virus in human survivors. ACS nano. 2018 12(1):63-73. Copyright (2018) American Chemical Society.152
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COVID-19 diagnosis in which viral RNA is reverse tran-
scribed into DNA, followed by amplification through PCR. 
The present situation highly demands POC strategies to 
stop the outbreaks of these highly infectious diseases, as 
illustrated in Figure 7.154 In order to manage the COVID-19 
pandemic, the nano-enabled biosensors in combination with 
artificial intelligence (AI) and internet of things (IoT) can be 
used in combination for development of smart sensing 
systems.155 Such smart systems can help in real-time detec-
tion of COVID-19 and tracing of the infected population. 
Right now, POC test kits for diagnosis of COVID-19 are in 
the developmental phase and some of these have already 
been introduced in the market to manage its outbreak, eg, 
Acro Biotech COVID-19 15-minute RAPID POC test 
(based on lateral flow immunoassay),156 and Xpert® 

Xpress SARS-CoV-2 (nucleic acid-based),158 and iAMP 
COVID-19 Detection Kit (nucleic acid-based).156–160 No 
doubt, these NAT-based tests take less than 1 hour for 
detection of COVID-19, their use is limited to laboratories 
only due to their bulky size and complex procedure.

Challenges, Prospects, and 
Viewpoint
The POC testing is very effective in controlling the increased 
prevalence of infectious/chronic diseases. Although POC tech-
niques provide robust and rapid detection methods, various 
challenges must be met to continue their development. The 
major concern for POC testing is to achieve the improvement 
in accuracy and precision of diagnosis (either pre-analytical or 
analytical diagnosis) at various stages. Particularly in cases of 

pre-analytical diagnostics, appropriate sample handling 
approaches are required to reduce errors during sampling and 
measurement. Sample pre-processing is also another important 
factor to be considered, especially in quantitative analysis of 
target analyte from complex sample matrices. Particularly for 
infectious disease diagnosis, the sample could take different 
forms, such as urine, serum, blood, plasma, stool, or saliva. The 
different physical properties and chemical compositions of 
these samples demands proper and appropriate approaches 
that can accommodate the target analyte in an acceptable 
form. The POC testing platforms must possess the integration 
of separation devices and approaches for detection of target 
analyte in complex biofluid samples without interfering with 
other species present in the sample. Integration of biological 
samples should be performed appropriately to ensure the 
proper reaction in the assay. Moreover, suitable enrichment 
techniques can be used in POC testing for detection of analyte, 
even at very low concentrations. This will ultimately help in 
the early detection of pathogenic targets like bacteria or tumor 
cells, which remain present in very small numbers in early 
stages of diseases. From the view point of analytical diagnos-
tics, further developments are required to improve the specifi-
city and sensitivity of diagnostics to reduce false positive and 
false negative results, respectively. The results of POC devices 
should be comparable to laboratory-based assays. Moreover, 
POC guidelines also demand high levels of stability and repro-
ducibility before commercialization. Besides LFA, the micro-
fluidic devices can offer significant benefits including 
requirement of small sample volumes, possibilities of high 
throughput screening of biological species, and precise control 

Figure 7 Strategic illustration of developing a miniaturized COVID-19 diagnostics tool for POC application. 
Note: Reproduced with the permission from Mujawar MA, Gohel H, Bhardwaj SK, Srinivasan S, Hickman N, Kaushik A. Aspects of nano-enabling biosensing systems for 
intelligent healthcare; towards COVID-19 management. Materials Today Chemistry. 2020 5:100306. Copyright (2020) Elsevier.154
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of multiple samples. Over the past decade, the scientific 
achievements in microfluidics should be parlayed into practical 
implementation of POC diagnostics, eg, i) simplified micro-
channels and their integration with other components and ii) 
development of low cost and high throughput manufacturing 
processes for microfluidic cassettes.

The successful developments in POC testing are continued 
to speed the diagnosis of many critical diseases. The nano- 
sized POC devices are an attractive field of research due to 
their immense potential in biomedical applications. The devel-
opment of POC devices is still in its infancy and requires 
significant progress to ensure the high selectivity and sensitiv-
ity of the final products with reduced medical costs.
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