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Abstract: Metabolic syndrome (MetS) refers to the simultaneous presence of hypertension, 
hyperglycemia, dyslipidemia and/or visceral obesity, which predisposes a person to cardio-
vascular diseases and diabetes. Evidence suggesting the presence of direct and indirect 
associations between MetS and osteoporosis is growing. Many studies have reported the 
beneficial effects of polyphenols in alleviating MetS in in vivo and in vitro models through 
their antioxidant and anti-inflammation actions. This review aims to summarize the effects of 
honey (based on unifloral and multi-floral nectar sources) on bone metabolism and each 
component of MetS. A literature search was performed using the PubMed and Scopus 
databases using specific search strings. Original studies related to components of MetS and 
bone, and the effects of honey on components of MetS and bone were included. Honey 
polyphenols could act synergistically in alleviating MetS by preventing oxidative damage 
and inflammation. Honey intake is shown to reduce blood glucose levels and prevent 
excessive weight gain. It also improves lipid metabolism by reducing total cholesterol, 
triglycerides and low-density lipoprotein, as well as increasing high-density lipoprotein. 
Honey can prevent bone loss by reducing the adverse effects of MetS on bone homeostasis, 
apart from its direct action on the skeletal system. In conclusion, honey supplementation 
could be integrated into the management of MetS and MetS-induced bone loss as 
a preventive and adjunct therapeutic agent. 
Keywords: antioxidant, anti-inflammatory, bone, hypertension, hyperlipidemia, 
hyperglycemia, obesity, osteoporosis

Introduction
Metabolic syndrome (MetS) is a non-communicable disease characterized by 
a cluster of medical conditions, such as visceral obesity, diabetes mellitus, dyslipi-
demia, and/or hypertension, which predispose an individual to cardiovascular dis-
eases and diabetes mellitus.1 Prevalence of MetS ranges from <10% to as high as 
84%,2,3 affecting 33% of the adult population in the USA between 2003 and 2012 
and 25.7% of adults in the Asia-Pacific region.4 The incidence of MetS often 
parallels with the onset of obesity and type 2 diabetes, but it is dependent on the 
diagnostic criteria and definition of MetS used.5 The underlying etiology of MetS is 
still not completely understood, but rapid urbanization of developing countries, 
consumption of unhealthy diet and sedentary lifestyle are known to contribute to 
MetS.6 Westernization of lifestyle is closing the prevalence gap between Asian and 
Western countries.7,8 Additionally, age, sex, ethnicity, family inheritance (genetic 
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susceptibility), chronic inflammation and gut microbiota 
are also associated with the onset of MetS.9–12

According to the Joint Interim Statement (2009), MetS is 
diagnosed when a patient has at least three out of five condi-
tions: (1) high fasting blood glucose (FBG) (≥100 mg/dL or 
receiving drug therapy for hyperglycemia); (2) high blood 
pressure (≥130/85 mmHg or receiving drug therapy for 
hypertension); (3) high serum triglycerides (TG) (≥150 mg/ 
dL or receiving drug therapy for hypertriglyceridemia); (4) 
low serum high-density lipoprotein cholesterol (HDL) 
(<40 mg/dL in men or <50 mg/dL in women, or receiving 
drug therapy for reduced HDL); and (5) the presence of 
central obesity [waist circumference ≥102 cm (40 inches) 
for Europid men or ≥88 cm (35 inches) for Europid women; 
≥90 cm (35 inches) for Asian men or ≥80 cm (32 inches) for 
Asian women].1 Proper management or prevention of MetS 
will lower the risk for its complications, including cardiovas-
cular diseases and diabetes mellitus.10 The current approach 
in MetS treatment focuses on lifestyle modification or man-
agement, such as calorie restriction, low-to-moderate intense 
and regular aerobic physical activity and resistance training 
program.10 The patients will be prescribed medications, such 
as beta-blockers/angiotensin-converting enzyme inhibitors 
for hypertension, statins for hyperlipidemia, metformin/glib-
enclamide for hyperglycemia if lifestyle modifications are 
insufficient.13 Although these agents are successful in con-
trolling the components of MetS, concurrent use will lead to 
the issues of polypharmacy, leading to problems such as high 
medical expenses, drug interactions, low compliance of the 
patients.14 To date, no single treatment targeting all the com-
ponents of MetS is available in the market.

MetS is associated with oxidative stress and chronic 
inflammation which underlay various diseases. The cel-
lular catabolism of excess nutrients generates oxidative 
stress due to mitochondrial dysfunction and endoplasmic 
reticulum stress, which can subsequently cellular 
damage and malfunction.15,16 Adipose secretion of 
proinflammatory cytokines, such as interleukin (IL)-1, 
IL-6 and tumor necrosis factor-alpha (TNFα), and acti-
vation of nuclear factor kappa-B (NF-κB) pathway by 
ligands for Toll-like receptors and receptors of advanced 
glycation end products produce chronic inflammation in 
MetS.17–19 MetS is also linked to hyperactivation of the 
hypothalamic-pituitary-adrenal axis as a result of 
increased inflammation and leptin level.20 These inter-
vening physiological changes give rise to many patho-
logical conditions. For instance, biological toxicity due 
to oxidative stress and protein glycation could cause 

microvascular dysfunction, which subsequently leads to 
hippocampal neuronal degeneration and cognitive 
deficit.21 Oxidative stress, chronic inflammation and 
hypercortisolism in MetS augment insulin resistance. 
Hypercortisolism is also implicated in affective disor-
ders, especially depression.22,23

The current review focuses on the adverse effects of 
MetS on bone. Osteoporosis is a metabolic bone disease 
characterized by a reduction in bone mass and deteriora-
tion in bone microstructure, leading to skeletal fragility 
and increased susceptibility to fracture.24 It is typically 
defined in men or women with a bone mineral density 
(BMD) T-score lower than 2.5 standard deviations of the 
young adult populations (T-score ≤−2.5).25 Aging, meno-
pause or other secondary factors, such as calcium malab-
sorption, glucocorticoid treatment, immobility and chronic 
inflammatory diseases increase the risk of osteoporosis.26 

Accumulated evidence revealed the indirect association of 
MetS in osteoporosis. Constituents of MetS such as dysli-
pidemia, abdominal obesity, hyperglycemia and hyperten-
sion are co-expressed in individuals with osteopenia or 
osteoporosis.27–29 The association of MetS with low 
BMD and osteoporosis had been demonstrated in systema-
tic review and meta-analysis.28–30

Chronic low-grade inflammation and oxidative stress 
present in MetS play major roles in inducing osteoporosis 
or bone loss.28 The inflammatory-related signaling path-
ways like NF-κB and mitogen-activated protein kinases 
(MAPKs) are activated during MetS.31 Activated NF-κB 
upregulates several downstream proinflammatory media-
tors such as cyclooxygenase-2 (COX-2), IL-6, IL-12, 
interferon, TNF-α and inducible nitric oxide 
synthase.32,33 Besides, reactive oxygen species (ROS) is 
generated during MetS due to excessive macronutrients 
intake and inflammation.28,34,35 ROS like hydrogen per-
oxide also reciprocally promotes the oxidative activation 
and self-amplification of the inflammatory response.34,35 

Eventually, the oxidative stress and inflammation events 
promote the osteoclastogenesis and inhibit the osteoblas-
togenesis, thereby affecting bone homeostasis and causing 
bone loss.28

Natural products consumed by humans since antiquity 
offer safe and economical dietary options to treat or pre-
vent several diseases and complications. They can be used 
as adjunct treatments to provide more comprehensive pre-
vention or management against each component of MetS 
including obesity, hyperglycemia and dyslipidemia.36 

Honey is a natural product with health-beneficial effects 
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due to its potent antioxidant and anti-inflammatory proper-
ties. Honey is a sweet viscous fluid stored in wax-form 
structures called honeycombs after being harvested by 
honeybees from plants (floral nectar).37 It is produced 
through regurgitation, enzymatic activity, and water eva-
poration in the beehives. Apart from the nectar source, 
honeybees also collect secretions from insects (belonging 
to the genus Rhynchota) to produce honeydew honey.37 

Honey is composed of at least 181 substances, mainly 
carbohydrates like fructose (38%) and glucose (31%). It 
also contains enzymes, amino acids, vitamins, proteins and 
polyphenols.38 The antioxidant property of honey is con-
tributed by its polyphenol content, which is comprised of 
flavonoids (eg, quercetin, luteolin, kaempferol, apigenin, 
chrysin, galangin), phenolic acids, antioxidant enzymes 
(eg, glucose oxidase and catalase, CAT), ascorbic acid, 
and carotenoids.38–40

Honey polyphenols are responsible for various pharma-
cological effects by suppressing ROS formation through 
inhibition of enzymes or chelating trace elements involved 
in free radical generation.41,42 Additionally, honey also 
exerts anti-inflammatory properties as reported by several 
in vitro and in vivo studies.37,43 In carrageenan-induced 
inflammation model, honey acts as an anti-inflammatory 
agent by inhibiting the production of proinflammatory med-
iators, such as nitric oxide (NO), prostaglandin E2 (PGE2), 
TNF-α, and IL-6.43–45 The biological actions of NF-κB, 
including the activation of transcription and DNA binding 
activity, are regulated by the acetylation and subsequent 
nuclear translocation of NF-κB p65 subunit.46 Honey also 
inhibits NF-κB inhibitor-α (IκBα) degradation and subse-
quently attenuates NF-κB nuclear translocation.47 Gallic 
acid, a type of phenolic acids found in honey, also exerts 
an anti-inflammatory action by suppressing NO, PGE2 and 
IL-6 production in lipopolysaccharide-induced RAW 267.4 
murine macrophages.48 Gallic acid inhibits p65 acetylation- 
dependent activation of NF-κB and the production of 
inflammatory mediators.49 All of the bioactive compounds 
in honey may act synergistically to contribute to its overall 
anti-inflammatory properties.

The pharmacological properties of honey have been 
investigated scientifically. Honey has antibacterial proper-
ties contributed by its phenolic content, hydrogen perox-
ide, pH and osmotic pressure.50 Honey facilitates wound 
healing, which is a property related to its antioxidant and 
antibacterial activity and osmotic pressure. Its high visc-
osity also maintains the moisture of the wound by forming 
a protective barrier.38 Recent studies also demonstrated 

that honey exerts an antiproliferative effect against cancer 
cells. This effect is correlated with the phytochemical 
compounds of honey that activate the mitochondrial apop-
totic pathways [62–65].51–54 The effects of honey on meta-
bolic disorders and skeletal health will be discussed further 
in later sections.

This review aimed to illustrate the pathogenesis of 
MetS and its relationship to osteoporosis. It also explores 
the beneficial effects of honey on each component of MetS 
and bone against deterioration caused by MetS.

Methods
A literature search was performed to identify relevant stu-
dies reporting the relationship between MetS or each MetS 
component on bone health. Two databases, ie, PubMed and 
Scopus, were searched without filtering years, language and 
type of publications. The search strategy involved 
a combination of the following sets of keywords, ie, (osteo-
porosis OR bone) AND (MetS OR hyperglycemia OR dys-
lipidemia OR hypertension OR obesity). In the subsequent 
search focusing on the effects of honey on MetS and bone 
health, the search string used was honey AND (osteoporosis 
OR bone) OR (MetS OR hyperglycemia OR dyslipidemia 
OR hypertension OR obesity). We only include original 
research articles in the current review. Articles were 
screened prior to their inclusion in this review.

Honey and Obesity
Obesity is a condition of excessive accumulation of body 
fat, and it is defined as having a body mass index (BMI) 
≥30 kg/m2.55 Central obesity is reflected by an increase in 
waist circumference due to the accumulation of visceral 
adipose tissue.56 Studies on the effects of obesity on 
osteoporosis showed contradictory findings. Obesity is 
traditionally thought to protect the skeleton against osteo-
porosis by exerting mechanical loading, which stimulates 
bone formation through decreasing apoptosis, increasing 
proliferation and differentiation of osteoblasts and 
osteocytes.57–59 Wnt/β-catenin signaling pathway is sug-
gested to govern this mechanism.60,61 Therefore, bone 
mass increases as a compensatory mechanism to accom-
modate the greater load.62 Insulin resistance associated 
with obesity also causes increased plasma insulin levels, 
contributing to androgen and estrogen overproduction in 
the ovary, and reduced production of sex hormone-binding 
globulin by the liver.63 The elevation of sex hormone 
levels reduces osteoclast activity and increases osteoblas-
togenesis, resulting in increased bone mass.64
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However, recent reports demonstrated that excessive 
fat mass is associated with low total BMD and total bone 
mineral content.65–68 Obese mice fed with a high-fat diet 
showed decreased trabecular bone volume and cortical 
bone growth as revealed by micro-computed tomography 
(micro-CT) analysis.69 Another similar study also reported 
that obesity induced tibial trabecular microarchitectural 
destruction via increasing bone turnover, but it exerted 
minimal effects on cortical bone in high-fat diet-fed male 
mice.70 Additionally, bone histomorphometric analysis 
also showed infiltration of adipocytes in the bone marrow 
of obese mice.71 These studies showed that obesity could 
be detrimental to bone health.

Several mechanisms underlying the harmful effects of 
obesity on the bone have been proposed.71 Firstly, both osteo-
blasts and adipocytes are derived from a common pool of 
mesenchymal stem cells.72 Agents that inhibit adipogenesis 
are found to stimulate osteoblast differentiation,73–75 and 
those that inhibit osteoblastogenesis could upregulate 
adipogenesis.76 Similarly, decreased bone marrow osteoblas-
togenesis in ageing is usually accompanied by increased mar-
row adipogenesis.77,78 This osteoblast-adipocyte shift causes 
a reduction of the osteoblasts available for osteogenesis.77,78 

Bone marrow adipogenesis eventually leads to the expansion 
of the marrow cavity and cortical thinning.79

Secondly, as adipose tissue undergoes hypertrophy and 
hyperplasia due to the storage of unused energy, the blood 
supply to the tissue will reduce.80,81 A subsequent hypoxia- 
mediated signaling pathway is triggered. It then further 
stimulates the production of proinflammatory mediators 
such as TNF-α, IL-6, leptin, resistin and plasminogen acti-
vator inhibitor-1.6 These proinflammatory mediators induce 
osteoclast differentiation and bone resorption through 
receptor activator of NF-κB (RANK)/RANK ligand 
(RANKL)/osteoprotegerin pathway.82,83

Thirdly, bone loss could occur due to the disruption of 
body energy regulation governed by adipocyte-derived hor-
mones (leptin and adiponectin) and insulin during over- 
nutrition or obesity. Leptin and adiponectin, which mainly 
regulate appetite and energy expenditures, also alter bone 
metabolism.84–86 These hormones regulate osteoblasts 
which expressed the leptin, adiponectin and insulin 
receptors.87–89 Peripheral leptin improves bone health by 
increasing estrogen while decreasing cortisol and glucocor-
ticoid level.90 Besides, systemic administration of leptin to 
leptin-deficient and wild-type mice results in increased 
bone growth, skeletal mass and strength.64 On the other 
hand, leptin also regulates bone resorption through two 

distinct and antagonistic central neural pathways.91,92 

Leptin-mediated sympathetic pathway promotes osteoclas-
togenesis by increasing the RANKL production by osteo-
blasts upon binding on the beta 2-adrenergic receptor.93,94 

On the other hand, leptin also induces the production of 
cocaine amphetamine-regulated transcript (CART, 
a neuropeptide) in the hypothalamus, which could reduce 
osteoblast RANKL production.94

Protective effects of honey against obesity have been 
reported in animal studies. Rats fed with long-term and 
short-term honeydew honey (Northofagus solandrii) had 
a lower percentage of weight gain than those fed with 
sucrose and mixed sugars diet, although the total energy 
intake was similar between groups.95 In addition, dual- 
energy X-ray absorptiometry analysis showed that rats 
receiving long-term honey treatment had lower body fat. 
Nemoseck et al (2011) reported that rats given a diet 
containing 20% carbohydrate from clover honey had 
markedly lower weight gain and significantly reduced fat 
pad weight than rats fed with an isoenergetic diet from 
liquid sucrose.96 Anti-obesity effects of honey were also 
reported in randomized clinical trials (RCTs) in humans, 
whereby subjects receiving a daily 70 g honey for 1 month 
showed a reduction in body weight, fat weight and body 
fat percentage along with significantly decreased BMI.97 

In another RCT by Bahrami et al (2009), the addition of 
honey in the diabetic treatment regime resulted in 
a significant reduction of the patients’ body weight.98

The underlying mechanisms of anti-obesity and anti- 
adipogenic effects of honey are not determined. The gra-
dual reduction of fat mass by honey could be beneficial to 
the bone as adipose tissues are the primary source of 
proinflammatory cytokines and leptin. However, bone 
mass was not assessed in the studies mentioned.

Honey and Dyslipidemia
Atherogenic dyslipidemia is one of the core metabolic risk 
factors of MetS. The National Health and Nutrition 
Examination Survey (NHANES III) reports that 63% of 
patients with osteoporosis have hyperlipidemia.99 

Individuals with mutations in low-density lipoprotein 
receptor-related protein 5 have low BMD and multiple 
spinal fractures.100 Diet- and apolipoprotein E deficiency- 
induced hyperlipidemia affects bone health by reducing 
bone mass and trabecular structural parameters in femur 
and tibia.101–104 Micro-CT analysis in hyperlipidemic 
mice indicated a reduction in bone surface and bone volume 
with higher cortisol porosity, suggesting skeletal 
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degenerative changes.104 Similarly, another study observed 
cortical and trabecular bone loss of the femur and vertebrae 
and decreased mechanical strength of the bones in mice 
with hypercholesterolemia.105 Proper management of 
hyperlipidemia was shown to improve bone health status. 
Various clinical and animal studies reported that choles-
terol-lowering statin drugs reduce osteoporosis and fracture 
risk.106–109 The stimulatory role of statins in osteoblast 
differentiation and bone formation has been reported.110,111

Biochemical analysis of hyperlipidemic mice displayed 
increased serum parathyroid hormone (PTH), TNF-α, 
C-terminal telopeptide of type-1 collagen (a bone resorp-
tion marker), calcium, and phosphorus levels.104 

Simultaneously, amino-terminal propeptide of type-1 col-
lagen (a bone formation marker) level was lower in hyper-
lipidemic mice.104 You et al (2011) reported that high 
cholesterol-fed rats showed decreased expression of 
genes involved in bone formation and increased expres-
sion of genes associated with bone resorption.112 Several 
bone formation genes are downregulated by high choles-
terol diet, including transforming growth factor-β, bone 
morphogenetic proteins (BMPs) and Wnt family 
genes.113 Additionally, high cholesterol also increases 
bone turnover and reduces BMD with the concomitant 
increase of serum osteocalcin and carboxy-terminal col-
lagen crosslinks.112,114–117

Oxidative injury is one of the mechanisms responsible 
for high-fat diet-induced osteoporosis. Atherogenic high-fat 
diets increase lipoprotein levels and their oxidative 
products.118,119 The lipid oxidation products have been 
reported to present in the marrow of hyperlipidemic 
mice.120 Excessive lipid oxidation products including oxi-
dized low-density lipoprotein attenuate the osteogenic dif-
ferentiation of mesenchymal stem cells and preosteoblasts 
in favor of adipogenic differentiation.82,120–123 

Additionally, free cholesterol reduces superoxide dismutase 
(SOD) activity and increases malondialdehyde (MDA) 
level, leading to oxidative damages on osteoblasts.124

The hypolipidemic effect of honey has been demon-
strated by Al-Waili (2004).125 A significant reduction of 
total cholesterol (TC) and a decreasing trend of low- 
density lipoprotein cholesterol (LDL) were observed 
among honey-supplemented patients with dyslipidemia.125 

In another study, daily 70 g honey for 1 month also sig-
nificantly lowered the TG level among dyslipidemic 
patients by 19%, with similar trends of reduction in TC 
and LDL, despite the lack of statistical significance.97 

Similarly, honey also reduced TC, LDL and TG levels, 

and increased HDL (3.3%) in non-dyslipidemic individuals, 
but the changes were statistically not significant. On the 
other hand, Hemmati et al (2015) reported that honey (1 and 
2 g/kg for 3 weeks) countered the dyslipidemic effects of 
streptozotocin by normalizing the TC, TG, HDL, non-HDL 
levels and atherogenic index (TG/HDL).126 Besides, 
administration of mad honey at the dose of 50 mg/kg for 3 
days significantly reduced TC, TG and very-low-density 
lipoprotein cholesterol (VLDL) in streptozotocin (STZ)- 
induced diabetic rats.127 Mad honey was speculated to act 
on the parasympathetic nervous system (potentially via M2- 
muscarinic receptors) to increase the lipid metabolism via 
insulin release.127 Another animal study reported that 
Nigerian honey supplementation for 21 days produced 
a significant reduction of TG, non-HDL (especially 
VLDL), cardiovascular risk index (TG/HDL) and coronary 
risk index (TC/HDL) in rats with alloxan-induced diabetes 
mellitus (DM).128 An RCT Bahrami et al (2009) reported 
that there was a notable decrease in TC, LDL and TG (p = 
0.000) with increased HDL concentration compared to the 
baseline level (p < 0.05) in diabetic patients after ingesting 
honey for 56 days.98

A diet containing high fructose induces dyslipidemia 
and exerts pro-oxidant effects in vivo.129,130 Substituting 
refined carbohydrate with honey (650 g/kg for 14 days) in 
the purified diets was reported to reduce TG levels sign-
ificantly in comparison to fructose-fed rats.131 At the same 
time, honey also reduced the lipid oxidation in the heart, 
marked by a lower thiobarbituric acid-reactive substance 
level compared with the fructose-fed group.131 Nemoseck 
et al (2011) also observed that substitution of sucrose in 
the rat diet with clover honey (with similar energy density) 
for 33 days resulted in 29.6% lower TG levels than the 
sucrose-fed rats.96 In another study, metabolic effects of 
10% honeydew honey (100 g/kg) mixed in diets were 
compared with sucrose for 365 days. Although there was 
no significant decrease in TG and LDL, the honey-fed rats 
had significantly higher HDL levels than the rats on 
a sugar-free diet and sucrose diet.132 Apolipoprotein 
B and TG-rich lipoproteins play a role in developing 
atherosclerotic cardiovascular disease.133,134 Pretreatment 
with 3 g/kg/day of Tualang honey for 45 days in rats with 
isoproterenol-induced myocardial infarction was shown to 
normalize cholesterol levels.135 Serum TC and TG levels 
were significantly reduced in rats receiving Tualang honey 
compared to the untreated disease control group.135 Aziz 
et al (2017) observed similar results, in which STZ- 
nicotinamide-induced rats given stingless bee honey (2.0 
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g/kg for 28 days) showed significant reductions of TC, TG 
and LDL levels and an increase in HDL level compared to 
untreated diabetic rats.136

Similar to the anti-obesity effect, the underlying 
mechanism of the hypolipidemic effect of honey remains 
unclear. Given the hypolipidemic effect of honey, honey 
could protect the bone against osteoporosis caused by 
hyperlipidemia. By lowering the blood lipid level, it 
could reduce lipid oxidation, which is a risk factor of 
osteoporosis, subsequently preventing bone loss.

Honey and Hyperglycemia
Diabetic Cohen rats [a non-obese rat model of type 2 DM 
(T2DM)] demonstrated reduced BMD of distal femur and 
vertebra compared to normal rats.137 Prediabetic indivi-
duals with impaired FBG and/or glucose tolerance are 
positively associated with TNF-α level.138 Upregulation 
of TNF-α, macrophage-colony stimulating factor 
(M-CSF) and RANKL caused suppression of bone forma-
tion and deterioration of bone strength in STZ-induced 
diabetic mice.139 Histomorphometric analysis further 
revealed the increase in osteoclast numbers in conjunction 
with osteoclastogenic mediator expression in STZ-induced 
diabetic mice.139 On the other hand, STZ-mediated hyper-
glycemia decreased osteocalcin (a bone formation marker) 
and Runx2 mRNAs expression with high PPAR-γ expres-
sion in the bone marrow.140,141 Besides, a previous study 
demonstrated an increased glomerular filtration rate and 
urinary calcium, as well as reduced fractional calcium 
reabsorption in STZ-induced diabetic rats.141

The results of human studies are in parallel with animal 
studies. Subjects with diabetes demonstrated lower hip 
BMD in diabetic subjects compared to the non-diabetic. 
Insulin-dependent DM or type 1 DM (T1DM) often affects 
younger individuals due to its early onset.142 Both T1DM 
and non-insulin-dependent DM or T2DM patients display 
impaired bone formation, but T1DM patients have 
a greater fracture risk.143,144 Surprisingly, BMD was 
increased in T2DM but not T1DM.145,146 Apparently, the 
fracture risk in T2DM patients is independent of the 
BMD.147 The underlying reason for this remains unknown. 
However, conditions like visual disturbance due to dia-
betic retinopathy and cataract, increased fall risk due to 
peripheral neuropathy and T2DM treatment may contri-
bute to the fracture risk.147,148

Hyperglycemia has direct and indirect detrimental effects 
on osteoblast function and bone formation. High glucose 
concentration significantly suppresses mineralization and 

osteoblastogenesis and increases the adipogenesis and osteo-
blast apoptosis in MG63 cells.149 Insulin and insulin-like 
growth factor-1 (IGF-1) are humoral factors synthesized by 
liver and osteoblasts, acting as a vital anabolic signal to 
promote bone formation.150,151 Deficiency of insulin and 
IGF-1 occurs in T1DM, whereby it has been associated 
with low BMD, low bone size, growth hindrance, and devel-
opment of osteoporosis.152–154 Renal glycosuria, which is the 
indirect effect of hyperglycemia, causes defective reabsorp-
tion of both glucose and calcium in the proximal tubule or 
collecting duct, leading to hypercalciuria and depletion of 
calcium level in the body, thereby resulting in bone 
loss.155,156

Hyperglycemia also impairs fracture healing by redu-
cing endothelial progenitor cells lining the blood vessels, 
leading to retardation of the angiogenesis process.143 This 
event will hinder the repair process at fracture sites. 
Decreased BMD and biomechanical strength in DM is 
negatively correlated with the accumulation of advanced 
glycation end product (AGE) or non-enzymatic crosslinks 
within collagen fibers.157,158 AGEs enhance bone resorp-
tion in cultured mouse unfractionated bone cells and 
induce the mesenchymal stem cell apoptosis, which even-
tually leads to bone loss.159,160

Hypoglycemic effects of honey have been studied 
extensively through various animal studies and RCTs. 
Aziz et al (2017) demonstrated a significant reduction of 
FBG level in rats with partial insulin deficiency induced 
by combined STZ-nicotinamide upon treated with sting-
less bee honey (Kelulut honey; 1.0 and 2.0 g/kg/day for 28 
days) compared to the untreated diabetic rats.136 Serum 
insulin level and pancreatic oxidative status were 
improved, as evidenced by increased CAT expression and 
faster pancreatic healing process.136 The active compound 
in Kelulut honey, L-phenylalanine was suggested to stimu-
late insulin release and improve glucose tolerance in dia-
betic rats.161

Besides, treatment with Tualang honey at 1.0 g/kg/day 
for 28 days significantly downregulated pancreatic MDA 
level and restored the SOD and CAT activities in STZ- 
induced diabetic rats.162 The antioxidant effects of 
Tualang honey also protected the pancreas from STZ- 
mediated oxidative damage, leading to significant 
improvement of FBG in diabetic rats.162 A similar hypo-
glycemic effect of honey with a significant reduction in 
FBG was demonstrated on alloxan-induced diabetic rats 
upon supplementation of Nigerian honey at 1.0 and 2.0 g/ 
kg/day for 21 days.128 Additionally, histological analysis 
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in rats also revealed that honey increased pancreatic β- 
cells which explains its hypoglycemic effects.163

The hypoglycemic effects of honey were replicated in 
human studies. Unprocessed honey was given orally to 25 
T2DM patients at the starting dose of 1.0 g/kg/day and 
gradually increased by 0.5 g/kg/day every 14 days for 
a total duration of 56 days. Patients receiving honey experi-
enced a significant reduction of FBG level at the end of 
treatment than the starting baseline level.98 In another study, 
7 T2DM patients were given honey solution (90 g of honey 
dissolved in 250 mL of water for 8 weeks) as a substitute for 
dextrose 30 min before blood sampling for oral glucose 
tolerance test.98 The honey-supplemented subjects showed 
significantly lower blood glucose elevation.98,107 This find-
ing suggests that substituting honey for sugar might be 
useful in the management of diabetes if taken in moderate 
quantities.131,164,165

Mechanistically, honey could lower blood glucose by 
inhibiting α-amylase and α-glucosidase activities.166 

Alpha-amylase is an enzyme responsible for the hydrolysis 
of complex starch to oligosaccharides, whereas α- 
glucosidase hydrolyses oligosaccharides, trisaccharides 
and disaccharides into monosaccharides. Postprandial 
blood glucose levels can be reduced through the reduction 
in polysaccharides breakdown and digestion upon the inhi-
bition of these enzymes.167–169 Krishnasree & Ukkuru 
(2017) analyzed the antidiabetic activity of honey using 
in vitro α-amylase and α-glucosidase enzyme inhibition 
assays.166 Trigona iridipennis honey, a type of stingless 
bee honey, demonstrated the strongest α-amylase and α- 
glucosidase inhibitory properties than other multifloral 
honey species.166 This was comparable to standard diabetic 
therapy by acarbose, especially at the highest honey con-
centration of 500 µg/mL.166 Furthermore, raw T. iridipennis 
honey had the lowest glycemic index (GI) of 55, making it 
a suitable sweetener for diabetic patients.166

Overall, honey could reduce the blood glucose level 
through the inhibition of α-amylase and α-glucosidase 
activities and its antioxidant activities. Hence, honey 
could prevent hyperglycemia and its adverse effects on 
bone in MetS patients.

Honey and Hypertension
Hypertension, a multifactorial disease, is one of the compo-
nents of MetS. Blood pressure is regulated by controlling 
the diameter of blood vessels through the autonomic ner-
vous system via vasodilation and vasoconstrictions.170 

Sympathetic nervous system activation leads to 

vasoconstriction, increased cardiac output and sodium 
retention by renal tubule that leads to an increase in blood 
pressure.171 Besides, obesity is one of the significant factors 
contributing to hypertension.172 Obesity is associated with 
hypertension due to the secretion of leptin by adipocytes, 
which has been reported to stimulate the sympathetic ner-
vous system.173 Additionally, diets high in fructose, sucrose 
and fat have been observed to increase blood pressure and 
obesity simultaneously.174,175

Renal and vascular oxidative stress also contributes to the 
development of hypertension.176–178 Oxidative stress causes 
inflammation of the vascular wall, reduced bioavailability of 
vasodilatory agent (NO), extracellular matrix alterations as 
well as increased vascular cell proliferation.177 Long-term 
exposure to ROS, especially to hydrogen peroxide, inhibits 
the antioxidant response due to down-regulation of the Akt 
and impaired nuclear translocation of nuclear factor erythroid 
2–related factor 2 (Nrf2) signaling pathway.179

A significant positive relationship between hyperten-
sion and bone loss has been suggested. At the same age, 
spontaneous hypertensive rats (SHR) had lower BMD and 
bone magnesium content than normotensive Wistar-Kyoto 
(WKY) rats.180 Furthermore, SHR exhibited disturbed 
bone healing with a lower percentage of the trabecular 
bone area and newly formed bone area compared to 
WKY rats.181 Administration of 2% calcium diet (but not 
1%) could significantly normalize the BMD of SHR.180 

The BMD of WKY rats was increased by both 1 and 2% 
calcium diet.180 This indicates the involvement of calcium 
loss in hypertension-related bone loss where it could be 
corrected by optimal calcium supplementation.

Human studies have indicated that hypertension is nega-
tively correlated with BMD.182,183 Cappuccio et al found that 
hypertension was associated with increased bone loss at the 
femoral neck among 34 Caucasian women.182 A longitudinal 
study by Yang et al found that women (n=1701) with hyper-
tension had lower BMD at the femoral neck than those 
without hypertension.183 A meta-analysis by Ye et al also 
revealed that essential hypertension caused a significant 
reduction in BMD of the human body, including the lumbar 
spine, femoral neck, Ward’s triangle, femoral intertrochan-
teric region, calcaneus and distal forearm.184 Parallelly, 
Gotoh et al (2005) also demonstrated that the BMD of 
hypertensive patients was significantly lower than that of 
normal controls, where BMD was negatively correlated 
with systolic blood pressure.185 Therefore, essential hyper-
tension might be a risk factor for low BMD.185
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Mechanically, osteoporosis and hypertension share 
similar etiopathology with interactions of genetic and 
environmental factors. Both diseases are associated with 
calcium, vitamin D and vitamin K deficiency, high sodium 
consumption, and low or very high NO levels. Calcium, 
the main bone mineral, has a significant impact on bone 
strength and the balance of the bone remodeling 
process.186 The significance of calcium metabolism in 
hypertension and osteoporosis has been reported.186 

Hypertension reduced intestinal absorption of calcium as 
well as increased calcium urinary elimination.187 This 
reduces calcium concentration in the plasma, leading to 
secondary activation of parathyroid glands and calcium 
mobilization from the bone into the circulation, resulting 
in increased bone turnover.182,188,189

Honey is beneficial in preventing hypertension through 
its antioxidant and anti-inflammatory effects. Tualang 
honey supplementation in SHR at 1 g/kg/day for 12 
weeks attenuated renal oxidative stress.190 It upregulated 
mRNA, protein expression and nuclear translocation of 
Nrf2, thus augmenting gene expression of antioxidation 
enzymes such as CAT and glutathione-S-transferase 
(GST).190 Ultimately, the upregulation of these enzymes 
reduced the oxidative damages in the kidney, restored 
renal function and subsequently reduced the blood 
pressure.174,190 Similarly, the antioxidative properties of 
Tualang honey were also effective in reducing blood pres-
sure in STZ-induced diabetic SHR.191 In human studies, 
administration of 60% honey solution via inhalational 
route resulted in a marked decrease in blood pressure at 
60 and 120 min post-treatment in hypertensive subjects, 
which indicates immediate blood pressure-lowering 
effects.192 Similar instant hypotensive effects of honey 
have been reported in healthy subjects.193,194 The under-
lying mechanism of action of honey in reducing blood 
pressure is unknown. Honey contains a high concentration 
of NO, which may contribute to its therapeutic effects on 
hypertension.192 Ultimately, the antihypertensive effects of 
honey could benefit both the cardiovascular and bone 
health of the patients.

Honey and Skeletal Health
Honey exhibits both antioxidative properties and possesses 
anti-inflammatory effects, which could be directly beneficial 
to bone health. Previous studies have shown that honey 
reduced PGE2 level and inhibited NO production in rats.195 

Zaid et al reported that two-week consumption of Tualang 
honey (0.2 g/kg/day) could increase bone density in female 

ovariectomized rats, comparable to those of control intact 
rats.196 Another study performed by Lily et al showed that 
the daily intake of Tualang honey at 20 mg/day for 4 months 
to postmenopausal women was safe and exerted the same 
effect on bone densitometry when compared to hormone 
replacement therapy.197 These positive effects of Tualang 
honey on bone are probably due to its anti-inflammatory 
property, antioxidative property, and calcium and gluconic 
acid content.198

A recent study found that Kelulut honey at 400 mg/kg 
reversed the changes in the femoral bones of rats receiving 
long-term dexamethasone.199 Bone structural parameters 
and osteoblast number in the Kelulut honey treated-group 
were preserved with a lower osteoclast number compared 
to the non-treated osteoporotic group.199 Kelulut honey 
also reduced the MDA level and augmented SOD activity 
in dexamethasone-mediated osteoporotic rats.199 This 
observation implies that the antioxidant properties of the 
honey can prevent osteoblast apoptosis by oxidative 
stress.199,200

Several phenolic compounds in honey have been 
reported contributing to the bone protective effects of 
honey. Honey contains polyphenols with antioxidant 
potential, which can increase the differentiation of 
mesenchymal cells to osteoblasts.199–202 They also play 
a role in the cross-talk of signaling pathways, such as 
Wnt and BMPs, thus promoting mesenchymal cell differ-
entiation to osteoblasts.203 Flavanols, such as quercetin 
and kaempferol, could affect bone resorption by directly 
introducing osteoclasts apoptosis, thus reducing their num-
bers and bone resorption.204 They decrease the intracellu-
lar ROS in osteoclasts and interact with estrogen receptors 
in the cells.204 Parallelly, Trivedi et al also found that 
kaempferol promotes osteoblast function, thus preventing 
ovariectomized-induced bone loss.195 Gluconic acid, 
a major constituent in honey, could enhance calcium 
absorption in the bone, consequently maintaining bone 
mass and preventing osteoporosis.205 It is a major organic 
acid in honey produced through enzymatic glucose oxi-
dase reaction. In the digestive tract, gluconic acid is then 
fermented by lactic acid bacteria (Lactobacillus reuteri 
and L. mucosae) to produce lactate and acetate, and even-
tually convert into butyrate by acid-utilizing bacteria 
(Megasphaera elsdenii and Mitsuokella 
multiacida).206,207 Butyrate is a type of short-chain fatty 
acid rapidly absorbed by the mucosa of the large intestine. 
It is reported to have hypoglycemic, antioxidant and anti- 
inflammatory properties in maintaining gut health and 
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regulating energy metabolism.208–211 Additionally, buty-
rate is also being postulated as the linkage between gut 
microbiota and bone health.212–214

Conclusions
Understanding the association between MetS and osteo-
porosis and its mechanisms will help developing therapeu-
tic intervention effective for both diseases. Honey exhibits 
protective effects against MetS by exerting anti-obesity, 
antidiabetic, hypolipidemic and hypotensive activities. It 
has a low GI, which can limit weight gain and prevent the 
accumulation of fat, thus improves insulin sensitivities and 
reduces blood glucose levels. Honey can enhance energy 
and lipid metabolism, which will prevent atherogenesis 
and attenuate oxidative stress and endothelial dysfunction. 
The improvement of MetS caused by honey could, in turn, 

prevent bone loss. Figure 1 summarizes the mechanisms of 
MetS in inducing osteoporosis and the beneficial effects of 
honey on both MetS and bone health. The anti- 
inflammatory of honey plays a major role in mediating 
these biological activities. Therefore, honey has a strong 
potential to be utilized in the management of MetS and 
osteoporosis associated with it.
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Figure 1 The beneficial effects of honey on MetS and bone health. 
Abbreviations: ↑, increase or upregulate; ↓, decrease or downregulate; →, promote or induce; ┬, inhibit or prevent; AGEs, advanced glycation end products; BMPs, bone 
morphogenetic proteins; CART, cocaine amphetamine-regulated transcript; CAT, catalase; FBG, fasting blood glucose; GST, glutathione-S-transferase; HDL, high-density lipoprotein; 
LDL, low-density lipoprotein; IGF-1, insulin-like growth factor-1; IL-6, interleukin-6; M-CSF, macrophage-colony stimulating factor; MDA, malondialdehyde; MetS, metabolic syndrome; 
NF-κB, nuclear factor kappa-B; NO, nitric oxide; PPAR-γ, peroxisome proliferator-activated receptor-gamma; PTH, parathyroid hormone; RANKL, receptor activator of nuclear factor 
kappa-Β ligand; ROS, reactive oxygen species; Runx-2, Runt-related transcription factor 2; SOD, superoxide dismutase; TC, total cholesterol; TG, triglyceride; TNF-α, tumour necrosis 
factor-alpha; VLDL, very-low-density lipoprotein.
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