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Abstract: Breast cancer is the most common cancer in adult women aged 20 to 50 years. 
The therapeutic regimens that are commonly recommended to treat breast cancer are human 
epidermal growth factor receptor 2 (HER2) targeted therapy, endocrine therapy, and systemic 
chemotherapy. The selection of pharmacotherapy is based on the characteristics of the tumor 
and its hormone receptor status, specifically, the presence of HER2, progesterone receptors, 
and estrogen receptors. Breast cancer pharmacotherapy often gives different results in 
various populations, which may cause therapeutic failure. Different types of congenital 
drug resistance in individuals can cause this. Genetic polymorphism is a factor in the 
occurrence of congenital drug resistance. This review explores the relationship between 
genetic polymorphisms and resistance to breast cancer therapy. It considers studies published 
from 2010 to 2020 concerning the relationship of genetic polymorphisms and breast cancer 
therapy. Several gene polymorphisms are found to be related to longer overall survival, 
worse relapse-free survival, higher pathological complete response, and increased disease- 
free survival in breast cancer patients. The presence of these gene polymorphisms can be 
considered in the treatment of breast cancer in order to shape personalized therapy to yield 
better results. 
Keywords: breast cancer, genetic polymorphisms, resistance therapy

Introduction
Breast cancer is the most widespread cancer in women aged 20–50 years. Annually, 
approximately 2.1 million women are suffering from this disease, including those 
who have new diagnoses and received treatment.1 In 2018, a study estimated that 
11.6% of cancer patients were classified as having breast cancer, with a mortality 
rate of 6.6% of all cancer-related deaths. Breast cancer has the highest rate of new 
cases among 154 countries and is the leading cause of mortality for 103 countries.2 

It can be estimated that the incidence of breast cancer will increase by 26.1% by 
2030, based on incident cases of the disease in 2018.3

Several medications are widely available for treating breast cancer. Characteristics 
of the tumor and its hormone receptor (HR) status, such as estrogen receptor (ER), 
progesterone receptor, and human epidermal growth factor receptor 2 (HER2) in the 
tumor, determine the recommendations for more specific treatment choices, such as 
systemic chemotherapy, endocrine therapy, or HER2-targeted therapy, to yield a better 
disease prognosis.4 According to the Clinical Practice Guidelines of Breast Cancer of 
the National Comprehensive Cancer Network, anthracycline and cyclophosphamide 
are usually chosen for a recommended chemotherapy regimen. The HER2-targeting 
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drug trastuzumab suppresses the mitogen activated protein 
kinase (MAPK) and phosphatidylinositol 3-kinase/protein 
kinase B (PI3K/AKT) pathways in cell cycle arrest5 and is 
also considered as an addition to the main chemotherapy 
regimens6 such as taxane,7–9 and thus increases early-stage 
breast cancer patient survival rate. Tamoxifen is usually 
given as monotherapy for early-stage breast cancer10–12 or 
as a replacement for an aromatase inhibitor (AI) regimen 
after 2 to 3 years.13,14 The use of AIs such as anastrozole, 
letrozole, and exemestane demonstrated better efficacy in 
lowering the risk of recurrence of breast cancer when com
pared with tamoxifen in postmenopausal women with 
HER2-positive breast cancer.15–17

Despite improvements in disease prognosis and the 
overall benefits of using chemotherapy and adjuvants, ther
apy in breast cancer often produces different results in 
selected populations. Such differences are a result of innate 
resistance to some of the drugs employed.18 Drug resistance 
is a major source of cancer therapy failure.19 The drug 
response differs from person to person mainly because of 
mutations in DNA that can alter drug efficacy.20 Resistance 
may be explained by different mechanisms, such as altera
tion of drug pharmacokinetics,21,22 amplification or reduc
tion in cell signaling,23 changes in pharmacodynamic- 
related receptor numbers,24 and so on. It is highly relevant 
to explore further gene polymorphisms that may affect 
therapy responses in breast cancer, in order to identify 
drug resistance and provide information that enables devel
opment of personalized medicine.

Methodology
For this review, the PubMed database was searched for 
relevant literature. The search terms were “polymorphism 
breast cancer therapy” with added filters specific to articles 
that were published during the 10 years from 2010 to 
2020. The search was made in May 2020, and scrutiny 
of eligible articles was conducted manually by excluding 
non-English studies, reviews, and unrelated studies, such 
as those not discussing breast cancer pharmacotherapy 
outcome and genetic polymorphisms. A flowchart for the 
literature search procedure is presented in Figure 1.

From the 210 articles identified in May 2020, this 
review evaluates the results of 36 studies18,25–60 that par
ticularly focused on the pharmacogenetic influences in 
breast cancer drug resistance (Table 1). The data that 
discussed in this review article was extracted from each 
identified study. These studies reported an association with 
breast cancer drug resistance for several genes, including 

ABCB1, BARD1, BRCA1, BRCA2, CD24, CYBA, 
CYP19A1, CYP2C19, CYP2C9, CYP2D6, CYP3A4, 
FCGR2A, FCGR2B, FCGR3A, FGFR4, GSTM1, GSTP1, 
GSTT1, HER2, HER3, IL12B, KDR, MDM2, MEG3, SLC, 
TGFBR2, TP53, UGT1A8, UGT2B15, and UGT2B7.

Clinical endpoints included in this article are BCSS, 
breast-cancer-specific survival; BCFI, breast-cancer-free 
interval; DFS, disease-free survival; DSS, disease-specific 
survival CR, complete response; EFS, event-free survival; 
OR, overall response; ORR, overall response rate; OS, 
overall survival; pCR, progression complete response; 
PFS, progression-free survival; PR, partial response; 
RFS, recurrence-free survival; SD, stable disease; TTF, 
time-to-treatment failure; and TTP, time to progression.

ABCB1
ATP-binding cassette (ABC) is a transporter for various 
types of drug molecules, and among them are drugs for 
chemotherapy. By expending energy, this gene transpor
ter helps drug molecules to pass through biological 
membranes. The subfamily of ABC is classified as 
ABCB, ABCG, ABCD, ABCF, ABCCI, and ABCCII.61 

Polymorphism in the transporter gene can contribute to 
multidrug resistance because it may be responsible for 
changes that induce differences in therapy for different 
individuals.

210 articles identified through 
PubMed database search

Excluded:
Not related with genetic polymorphism and 
therapy response for breast cancer (169)

Ongoing research (2)
Article unavailable (2)

(37) articles included

Figure 1 Flowchart representing the literature search process.
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The ABCB1 gene is located at chromosome 7 and 
expresses a 45-kB mRNA.62 It encodes an active transpor
ter of drugs involved in secreting cytotoxic agents from 
cells.25 A study conducted by Vulsteke et al25 suggests that 
the ABCB1 GT genotype gene polymorphism gave better 
therapeutic effects in patients with early breast cancer 
treated with 5-fluorouracil (FU), eirenicon, and cyclopho
sphamide (FEC), compared with patients who had the 
ABCB1 GG/GA genotype. Another study reported differ
ent results, such that polymorphisms in the ABCB1 2677 
GG genotype demonstrated resistance to paclitaxel and 
anthracycline treatment. It is possible that in metastatic 
breast cancer treatment this gene polymorphism contri
butes to cross-resistance between paclitaxel and anthracy
cline. In addition, cases of resistance were found for the 
ABCB1 3435 CT genotype, which resulted in shorter over
all survival (OS) and lower disease control rate when 
using anthracycline treatment.63 Many studies had shown 
that the ABCB1 3435 C>T polymorphism is associated 
with anthracycline resistance, such as in a Chinese study 
where patients with the CT genotype were associated with 
poor prognosis64 and patients with the TT genotype were 
associated with worse clinical response.65

In studies by Zhang et al60 and Ji et al64 polymorphism 
at ABCB1 1236 C>T showed association with poor 
response to anthracycline regiment chemotherapy, which 
is about dose delay in patients. In response evaluation, 
1236C > T polymorphism was significantly associated 
with treatment response for CT genotype [OR = 5.17 
(1.3–20.2), P = 0.018] and in dominant model (CC vs 
CT + TT) [OR = 4.63 (1.25–17.0), P = 0.021] and the T 
allele of 1236C>T was found to be associated with grade 
2–4 toxicity [OR 1.48 (1.00–2.20), P = 0.049]. This may 
due to the variant allele in ABCB1 gene may lead to P-gp 
lower expression and resulted accumulation of drugs 
inside the cell, thus altering the distribution profile of the 
chemotherapeutic drugs inside cells. Therefore, ABCB1 
polymorphisms do exert significant effects on breast can
cer chemotherapy responses.44 The meta-analysis results 
conducted by Kim et al45 polymorphism ABCB1 in 
rs1045642 (C>T) was associated with poor progression- 
free survival (PFS), especially in Asian patients (Hazard 
Ratio (HR) = 1.56, 95%, Confidence Interval (CI): 1.07– 
2.27). The association of rs1045642 with PFS was signifi
cant in observational studies (HR = 1.28, 95% CI: 1.05– 
1.56); however, this association was not significant in 
clinical trials (HR = 1.47, 95% CI: 0.96–2.27).

BARD1
Several genes may encode proteins that can interact with 
breast cancer gene-1 (BRCA1) and breast cancer gene-2 
(BRCA2), thus inducing DNA and tumor suppressor 
damage. One such gene is BRCA1-associated RING 
domain 1 (BARD1) gene.66 The BARD1 gene produces a 
protein that is similar to the BRCA1 protein in terms of 
structure and function.67 BRCA1 and BARD1 can be 
transformed into homodimer and heterodimer structures, 
where the former can be constructed through interaction 
with the really interesting new gene (RING) finger domain 
in the N-terminal portion, and the latter is made stable 
with bonds of 26–119 amino acid residues from BARD1 
and 1–109 amino acid residues from BRCA1.68 These 
interactions have an important function in the manifesta
tion of breast cancer tumor suppression.67 Generally, 
BARD1 has a function of regulating the stability of geno
type and phenotype, and also has a role in DNA repair and 
ubiquitination.

The gene BARD1 is located at chromosome region 
2q34-35 with a size of 80 kB.66 Minor alleles of BARD1 
(rs2229571) exhibit higher sensitivity to platinum-based 
treatments, such as carboplatin and cisplatin, in HER2 
breast cancer patients. A study found no significant rela
tionship between the polymorphism of BARD1 in 
rs2229571 and the response of patients using docetaxel, 
carboplatin, and trastuzumab (TCH) compared with non- 
TCH treatment, but it also proved that there is a significant 
association such that patients who carry SNP in BARD1 
rs2070096 with minor alleles had worse relapse-free sur
vival compared to patients who received non-TCH treat
ment. This thus suggests possible chemoresistance.18

BRCA1 and BRCA2
Mutation in the BRCA gene, which is classified as BRCA1 
and BRCA2, is related to 20% of breast cancer cases.69 

The main function of BRCA1 is to repair DNA through 
interaction with cell cycle regulators, tumor suppressors, 
and DNA repair proteins.70,71 BRCA1 contains the domain 
of BRCA C-Terminal and RING, which are known to 
suppress the initiation of breast and ovarian cancer,72 and 
therefore mutations at this domain are often observed in 
breast cancer patients. In contrast to BRCA1, BRCA2 has 
a major function in homologous recombination for repair
ing DNA damage.73 BRCA2 is directly involved in the 
DNA repair process by involving RAD51, and RAD51 is 
carried by BRCA2 to sites of double-strand breaks.74
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The BRCA1 gene is located at chromosome region 
17q21.3,75 functioning as a tumor suppressor gene in 
terms of the appearance of wild-type alleles that are soma
tically mutated.76 Mutations in this gene are more often 
found in triple-negative breast cancer (TNBC) patients.77 

The BRCA2 gene is located at chromosome region 13q12- 
13.78 More than 1800 mutations are known in the BRCA2 
gene, including insertion, frameshift deletion, and non
sense mutation.79 BRCA1 and BRCA2 have essential 
roles in the process of DNA repair in order to maintain 
genome integrity through the presence of homologous 
recombination. The presence of polymorphism in BRCA1 
and BRCA2 genes can affect the efficacy of breast cancer 
treatment. It is known that TNBC patients with a variation 
in BRCA1 and BRCA2 genes did not show significant 
changes in overall part and disease-free survival (DFS) 
values between treatment regimens without carboplatin 
and with carboplatin. However, patients without a varia
tion in BRCA1 and BRCA2 genes showed significant 
changes in the overall pathological complete response 
(pCR) value for treatment regimens without carboplatin 
compared to treatments with carboplatin. Therefore, 
patients with BRCA1 and BRCA2 gene mutations respond 
better if standard neoadjuvant therapy (paclitaxel, doxor
ubicin, and cyclophosphamide) is given.28 The lack of 
BRCA1 and BRCA2 proteins is associated with high sen
sitivity to DNA-damaging agents, so those TNBC patients 
who exhibit variations in the BRCA1 and BRCA2 genes 
exhibit more sensitivity to standard chemotherapy agents. 
This also means that TNBC patients with variations in the 
BRCA1 and BRCA2 genes have higher immune cell 
activity.80

The poly ADP ribose polymerase (PARP) inhibitors 
may be candidates for use in treatment of BRCA-mutated 
cancer patients.81 However, there have been therapeutic 
failures in clinical trials of the PARP inhibitor Iniparib. In 
TNBC patients, Iniparib failed to prolong survival in 
Phase III. This failure is known to be associated with a 
secondary BRCA2 mutation.82 Secondary mutations in 
BRCA1 or BRCA2 may also play a role in drug resistance 
to platinum therapy. This is caused by prolonged drug 
exposure, which exerts selection pressure and may lead 
to PARP inhibitors, as well as to resistance to platinum 
drugs. Mutation in c.9106 C>T translates into the BRCA2 
protein without the C-terminal OB-fold and thus may 
impair binding with single-stranded (ss) DNA, as well as 
nuclear localization sequences and the TR2 RAD51-bind
ing domain.83

CD24
The cluster of differentiation 24 (CD24) gene is located at 
chromosome region 6q21, encoding sialoglycoprotein, 
which can induce growth and signal differences in cells.84 

CD24 is a protein on the cell surface, providing linkage to 
the cell membrane via glycosylphosphatidylinositol.85 

Overexpressed CD24 protein has been found in cases of 
various cancers, including breast cancer. In breast cancer, 
CD24 expression was usually found in HER2-positive and 
luminal breast cancer cells.86 Prognosis in breast cancer 
patients is related to CD24 expression, which can regulate 
tumor cell proliferation87 and increase the likelihood of 
metastasis.88

So far, no convincing correlations have been found 
between differentiation of genotype and CD24 expression 
level. CD24 Val has been reported to be associated with 
higher susceptibility, more autoreactive immunity, and 
faster disease progression, and it contributes to chemother
apy response. In a previous study, CD24 Val demonstrated 
a high sensitivity to anthracycline-based and taxane-based 
therapy in primary breast cancer. The study showed that 
CD24 Ala/Val is the only single-factor predictor of pCR in 
breast cancer patients subsequent to neoadjuvant che
motherapy (NCT) treatment. CD24 Ala/Val may be able 
to modulate the antitumor immune response of the host so 
that this becomes more autoreactive. The response to NCT 
therapy is influenced by differences in the CD24 genotype, 
which was demonstrated by a significant relationship 
between CD24 Val/Val with intratumoral lymphocytic.37 

However, a study conducted by Zhou et al89 showed that 
CD24 polymorphisms in rs3838646 and rs52812045 could 
not predict pCR in breast cancer patients who had received 
NCT treatment.

CYBA
The CYBA gene is used to produce cytochrome b-245 
alpha chain (p22-phox), which is a subunit of proteins 
that can take part in constructing NADPH oxidase, an 
enzyme complex that had an essential role in the immune 
system, when bonded with a beta chain that is expressed 
by the CYBB gene. NADPH oxidase functions as a reg
ulator of neutrophil activity, and its primary function in 
phagocytes is to produce reactive oxygen species.90 In 
cancer therapy, the presence of CYBA may be related to 
anthracycline metabolism.25

In a study conducted by Vulsteke et al,25 the T-allele 
carriers in rs4673 were significantly associated with a 
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shorter recurrence-free interval (RFI), but the results were 
not significant for homozygous C-allele carriers. In this 
case, resistance may be caused by a missense mutation of 
His72Tyr that could cause decreased activity of the 
enzyme due to a change in the heme-binding site that is 
essential for protein stability, with further impaired reac
tive oxygen species (ROS) defense capacity and thus an 
increased ROS level.91 In several studies,92–94 the muta
tion was found to be caused by 242C>T. Hoffman et al95 

suggested that 640A>G reduced the enzyme activity, but a 
contrary study conducted by Schirmer et al96 found an 
increase in nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase activity instead.

CYP
Cytochrome P450 (CYP450) is an enzyme that serves as a 
xenobiotic metabolizer by drawing the xenobiotic into an 
oxidation reaction that changes the drug into its metabo
lites. In breast cancer therapy, this process is important in 
treatments using drugs such as tamoxifen, where the drug 
must be subsequently converted into a more active meta
bolite such as 4-hydroxy-tamoxifen (4-HT) and endoxifen 
by CYP450 3A4 and CYP2D6, thus developing a higher 
binding affinity for the ER.97

In a study conducted by Artigalás et al46 finds that 
rs4646 polymorphism in the CYP19A1 may be a predictive 
factor in aromatase inhibitor (AI) therapy. Among meta
static BC patients treated with AI, SNP rs4646 were asso
ciated with increased time to progression (TTP) compared 
with the wild-type gene (hazard ratio (HR) = 0.51 [95% 
confidence interval (CI), 0.33–0.78], P = 0.002). 
Furthermore, Liu et al98 reported a statistically significant 
association between rs4646 T alleles (G/T or T/T) and 
increased OS in women with metastatic BC (HR, 2.37 
[95% CI, 1.20–4.65], P = 0.001). However, Miron et al99 

did not find any significant association with OS in the 
same SNP. Henry et al100 also did not find any statistically 
significant association between 127 SNPs in CYP19A1 
related to estrogen metabolism and modulation of breast 
density. These data suggest that CYP19A1 genotypes may 
be associated with OS in BC patients treated with AIs. 
However, this association appears very variable between 
patients.

Gor et al50 conducted a retrospective cohort study to 
determine chemoresistance caused by CYP3A4 poly
morphisms, and found that patients having at least of 
CYP3A4 *1B variant allele had a significant association 
with worse disease-free survival (DFS) compared with 

those having a wild-type *1A/*1A. The mechanism under
lying this chemoresistance is that *1B polymorphism leads 
to reduced Phase I enzyme activity and thus having sub
optimal 4-hydroxy-cyclophosphamide concentration. Due 
to the nature of cyclophosphamide pharmacokinetics, it 
needs to be activated to 4-hydroxy-cyclophosphamide to 
be able to diffuse into cancer cells through Phase I meta
bolisms CYP enzymes and one of them is 3A4.

Previous studies by Beelen et al38 showed a significant 
relation between CYP2C19 variant alleles and time to 
treatment failure (TTF) in patients using tamoxifen, 
where CYP2C19*2 carriers were associated with longer 
TTF, and those who had the CYP2C19*17 allele showed a 
shorter TTF, but not to a statistically significant degree. 
The inhibition of CYP2C19 effectively influences tamox
ifen metabolism, where conversion to its active metabo
lites such as endoxifen is seen (shown later in Figure 2). 
The tamoxifen resistance mechanism may be related to 
lower concentrations of tamoxifen and trans-4-OH-tamox
ifen that were triggered by isomerization to the cis isomer, 
and this isomerization may also occur for endoxifen.101 

Vulsteke et al25 also suggested that resistance was caused 
by CYP2C9 rs1057910 polymorphism in his study, where 
there was a significantly worse RFI, but the C-allele var
iant carrier was only present in 3 subjects, and thus this 
suggestion needs further research.

Regan et al39 did not find any association with tamox
ifen therapy for differences in CYP2D6 phenotype meta
bolism. Endoxifen, a tamoxifen metabolite with higher 
affinity for ER, is suspected to be related to disease con
trol, while the polymorphism of CYP2D6, an enzyme that 
could metabolize tamoxifen into its active metabolite, was 
hypothesized to be related to lower endoxifen concentra
tions and thus worse disease control and higher side 
effects. Regan et al39 indicated that CYP2D6 metabolism 
phenotype failed to predict tamoxifen efficacy and that 
there was thus a need for further study regarding tamox
ifen metabolism and its mechanism of disease control. 
Dezentjé et al40 suspected incorrect interpretation in that 
study and replicated it while considering whether the loss 
of heterozygosity (LOH) could explain a Hardy–Weinberg 
equilibrium deviation that might exclude false genotype by 
LOH in tumor tissues. However, their study failed to find 
any association between CYP2D6 genotype differences 
and tamoxifen efficacy. Studies by Neven et al41 and 
Sanchez-Spitman et al42 also support these findings, 
reporting that there were no associations for low-activity 
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CYP2D6 genotypes and low concentrations of endoxifen 
with clinical outcomes.

Two meta-analysis related with the impact of CYP2D6 
polymorphisms on therapy effectiveness are included in 
this article. Hwang et al48 found that poor endoxifen 
metabolizers, stated as having two inactive alleles of *3- 
*8, *11-*16, *19-*21, *38, *40, and *42 was found to 
have a significant association with lower endoxifen con
centration compared with those having extensive metabo
lizers (p < 0.05). Jung et al49 also found that those having 
alleles of *1, *10, *17, *41, *4, and *5 had a significantly 
increased risk of disease recurrence. These studies suggest 
that endoxifen dose may need to be adjusted for those with 
poor metabolizer alleles to have optimal efficacy.

FCGR
One mechanism of action for trastuzumab in treating 
breast cancer cells is known as antibody-dependent cell- 

mediated cytotoxicity (ADCC) or antibody-dependent cel
lular phagocytosis (ADCP). Both mechanisms include the 
Fc fragment of IgG receptor (FCGR) on its process. In 
ADCC, the FCGR located on natural killer (NK) cells 
binds to the Fc part of trastuzumab and triggers release 
of a factor such as interferon-γ (IFN-γ) or one of the 
perforins or granzymes, which could induce apoptosis of 
tumor cells, while ADCP is initiated when the FCGR on a 
macrophage binds instead with trastuzumab and induces 
phagocytosis of tumor cells.56

Gavin et al56 found that patients who had the 158F/F 
genotype had better prognosis when treated with the dox
orubicin–cyclophosphamide–paclitaxel (ACT) regimen 
and less benefit when trastuzumab was added, while 
patients with 158F/V or V/V gained more benefit from 
adding trastuzumab to ACT. These findings suggest that 
changes in ADCC mechanism may alter the efficacy of 
trastuzumab. Furthermore, FCGR2A-131 polymorphism 

Figure 2 Influences of gene polymorphism with tamoxifen metabolism. Some of the chemoresistance mentioned in the paper are involving changes in drug metabolism and 
further decreased drug concentration in some individu. The decreased drug concentration may leads to suboptimal concentration needed to have therapeutic effect. 
CYP2C19 polymorphism may decrease CYP2C19 expression, which an enzyme that have a function in Phase I metabolism of tamoxifen needed to activate the substance into 
4-hydroxy-tamoxifen and endoxifen, a more active metabolite in inhibiting estrogen-ER binding to halt tumor growth. 
Notes: Activates/transactivates/upregulates/expresses. Inhibits/downregulates. Converted into.
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showed no evidence of differential trastuzumab treatment 
effects because of the lack of expression of FCGR2A on 
natural killer (NK) cells, which are the main effectors of 
ADCC. These findings may reflect the mechanism of 
FCGR3A-158V, not FCGR3A-158F, as FCGR3A-158V 
has been found to bind at low concentration to immuno
globulin (Ig) G1 immune complexes.102

Norton et al55 found no association between the 
FCGR2A and FCGR3A genes in relation to DFS, but 
demonstrated that FCGR2B I/I patients had better DFS 
when trastuzumab was added in the therapy combination. 
The results differed for patients having FCGR2B with T 
alleles, as they did not show any improvement in DFS 
when adding trastuzumab. Immune response inhibition by 
FCGR2B may be reduced in the minor allele (232T) and 
increased in response to infection and autoimmunity; it is 
possible that the T-allele may be related to this escalation 
of immunity response to tumor mechanism like the one 
that was triggered by trastuzumab, and thus that the 
T-allele carrier may have better survival but less response 
to trastuzumab. Hurvitz et al47 also did not find any sig
nificant correlation between FCGR3A and FCGR2A geno
type differences with DFS.

In a study conducted by Tamura et al,36 there was a 
significant association of the FCGR2A-131H/H genotype 
with greater tumor response and longer FPS, whereas the 
FCGR3A-158V/V genotype was usually correlated with 
tumor response after trastuzumab was given. The meta
static cancer patient’s immune system is usually sup
pressed and therefore the trastuzumab-induced immune 
response was decreased in such patients. Roca et al57 

also found that in breast cancer patients treated with tras
tuzumab the FCGR2A-131R/R genotype is significantly 
associated with worse event-free survival (EFS), and 
found that considering FCGR3A genotype polymorphism 
yielded no predictive value toward clinical outcome.

The different outcomes in multiple studies may be 
influenced by distinctions in intrinsic to the populations 
or in the chemotherapy regimens conducted, by different 
levels of aggressiveness of the disease, and by different 
sample sizes, sampling bias, and methodologies. However, 
these lead to conclusions that substitution of valine into 
phenylalanine in FCGR3A at position 158 may amplify 
ADCC activity due to stronger IgG1 binding compared 
with the wild-type (F)103,104 and that the change from 
histidine to arginine in FCGR2A at position 131 causes 
less efficient binding to IgG2, hence causing therapy 
resistance.105

FGFR4
The fibroblast growth factor receptors (FGFRs) are classi
fied as tyrosine kinase receptors, which are growth-stimu
lating transducers and play decisive roles in regulation of 
cell growth. The FGFR family consists of more than 20 
ligands that are important in cell cycle processes such as 
cell migration, cell differentiation, and tumorigenesis.106

Normally, fibroblast growth factors (FGFs) signaling 
takes part in multiple biological processes such as angio
genesis, inflammation, and regeneration of cells. The 
release of FGFs in wound repair may be triggered during 
wound creation by endothelial cells in response to 
mechanical force as a stimulus. FGF-1 and FGF-4 stimu
late the production of inflammatory regulators such as 
interleukin-2 (IL-2) and megakaryocyte progenitor 
cells.107

FGF may activate many transduction cascades, which 
could promote cell cycle progression and halt the cell 
death process. A disruption of any of this regulation pro
cess may result in uncontrollable cell growth. The exact 
tumor growth-promoting mechanism resulting from muta
tion in the gene expressing FGFR4 is unknown. However, 
it may be related to autocrine FGF signaling, as FGF is 
usually observed alongside FGFR in FGFR overexpres
sion. FGFs may be secreted by tumor cells or neighboring 
stromal cells and could act on either of these sources.107

An SNP, the transmembrane domain missense mutation 
from glycine to arginine at codon 388, is associated with 
breast cancer disease outcome. This polymorphism occurs 
in one of every two persons. There is speculation that the 
FGFR4 Arg388 genotype is not involved in tumor induc
tion, as FGFR4 alleles are homogeneously distributed. 
FGFR4 Arg388 is overexpressed in node-positive breast 
cancer patients, but there is no evidence of it being sig
nificantly associated with DFS.108 Another study con
firmed that FGFR4 Arg388 could be used as a disease 
progression predictor and suggests that it could also be 
used to predict chemotherapy resistance.24

In a study conducted by Marmé et al,58 the FGFR4 
Gly388Arg polymorphism showed application as a speci
fic predictive factor for therapy response to doxorubicin– 
cyclophosphamide–docetaxel (AC-Doc) as NCT with an 
odds ratio of 3.79, and there were no significant associa
tions of pCR rates between patients with different HR 
status using AP-Doc treatment (42.9% versus 7.8% to 
17.8% versus 15.6%). This thus suggests that regimens 
of drugs may affect two biological subgroups differently. 
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The study also showed that FGFR4 Arg388 carriers have a 
higher risk of breast cancer involving the axillary lymph 
nodes, and thus supports a previous report linking the 
FGFR4 Arg388 allele with worse disease progression but 
better responses to NCT.58 The exact molecular mechan
ism that leads to FGFR4 Arg388 being a more hostile 
phenotype is not yet clearly understood. There may be a 
linkage disequilibrium with other mutations that could 
affect breast cancer prognosis. There was no observation 
of elevated tyrosine phosphorylation in FGFR4 Arg388 
compared with Gly388 in tumor cells, which further indi
cated that any change in the kinase activity may be too 
minuscule to be detected.24

A contrary result was found in a study conducted by 
Thussbas et al,24 who reported that the FGFR4 Arg388 
allele is significantly associated with worse DFS and 
poorer overall survival (OS). Chemotherapy failure may 
result from tumor cells resisting the induction of apoptosis. 
Urokinase-type plasminogen activator-receptor (uPAR) 
downregulation increases the susceptibility of tumor cells 
in chemotherapy-induced apoptosis; thus, it could be that 
because uPAR expression is escalated in cells producing 
FGFR4 Arg388 allele compared with Gly388, this 
increases the release of anti-apoptotic factors or down
regulates proapoptotic factors in cells expressing the 
Gly388 allele.24 uPAR increases miR-17-5p/20a, a 
microRNA involved in inhibition of apoptosis by suppres
sing death receptor 4 (DR4) and death receptor 5 (DR5). If 
mechanism applies, upregulation of c-myc by uPAR may 
further increase miR-17-5p/20a expression. If c-myc is 
suppressed, uPAR concentration would decrease and the 
expression of DR4 and DR5 would be enhanced, activat
ing TRAIL-induced apoptosis. These findings suggest that 
miR-17-5p/20a may offer a potential target therapy for 
breast cancer treatment and should be considered in pre
venting chemoresistance (Figure 3).109

GST
The glutathione S-transferases (GSTs) are a superfamily of 
dimeric Phase II metabolic enzymes. The family plays a 
vital role in cell defense by catalyzing the conjugation 
reaction of oncogenic substances with glutathione and 
thus preventing cellular damage.60 Any mutation in a 
gene expressing this enzyme could change the catalysis 
process, which in turn could alter the bioavailability of the 
drug and may amplify or decrease drug efficacy and 
toxicity.60

Genetic variability in GSTP1 is significantly associated 
with therapy effectiveness. Zhang et al60 conducted a 
study that revealed in patients with GSTP1 105Val/Val 
genotype a statistically significant relationship with resis
tance of breast cancer chemotherapy, especially epirubicin. 
This mutation is known to occur via an SNP in the coding 
sequence of GSTP1 (1578 A>G), which then gives rise to 
Ile105Val substitutions in the substrate-binding site of 
GSTP1. This was supported by a study that demonstrates 
that the 105Val variant carrier is correlated with more 
thermolabile and altered catalytic activity compared with 
those having 105Ile, and concludes that the homozygous 
isoleucine carrier is associated with the highest GSTP1 
activity, with that activity decreasing as more valine was 
substituted. The reduced GSTP1 activity was also asso
ciated with increased toxicity from chemotherapy. As the 
chemotherapy mechanism needs to be activated by GST 
and other hepatic enzymes, the decreased GSTP1 activity 
may suggest an inefficient metabolism and less active 
metabolite concentration in such patients’ bodies.60

Another study conducted by Romero et al59 suggested 
that breast cancer patients treated with doxorubicin and car
rying homologous G alleles in GSTP1 had a lower risk of 
chemoresistance, shown with polymorphism GSTP1 
c.313A>G as a main cause, but no association was found 
between any GST genotype and the response outcome in 
patients treated with docetaxel. The different responses 
might suggest that there is specialization within GSTs activ
ity in catalyzing the conjugation of reduced glutathione. This 
activity is related to how doxorubicin acts in cancer cells, 
where it can generate superoxide as a reactive oxygen species 
(ROS) when the semiquinolone in doxorubicin’s active meta
bolite is converted into quinine. The ROS then forms prope
nal, which can be detoxified by GSTP1.59

In contrary to those findings, Yao et al26 suggested that 
there were no associations between polymorphism in GSTP1 
genes and treatment outcomes in a patient who received 
cyclophosphamide. This may strengthen the hypothesis that 
the relation between polymorphism of GSTP1 genes and 
breast cancer therapy is drug specific and may vary in 
terms of affinity and activity for different drugs.

In cyclophosphamide metabolism, GSTs had a role as 
inactivator. 4-hydroxy-cyclophosphamide are metabolized 
through Phase II metabolism to be conjugated with thiol or 
sulfate by GSTT. Gor et al50 conducted a study to measure 
chemoresistance relationship with polymorphism of GSTT1 
and found that those with null genotype of GSTT1 have 
significantly better DFS and OS compared with those 
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without due to having higher concentration of circulating 
active drug. Kong et al51 also found similar results in 
GSTM1 null genotype for patients using anthracycline- 
based therapy in his meta-analysis, strengthening the asso
ciation between polymorphism of GST and chemoresistance.

HER2 and HER3
Human epidermal growth factor receptor 2 (HER2), also 
known as erb-B2 receptor tyrosine kinase 2 (ERBB2), is 
one of the 20 known tyrosine kinase receptor families 
that are well known to be mutated in diseases that 

involve uncontrolled proliferation. It is also known to 
be an oncogenic driver.110 The HER2 gene is located at 
chromosome region 17q21 and can encode transmem
brane tyrosine kinase GFR. It is usually expressed in the 
epithelial cells of breast tissue.111 HER2 may interact 
with tyrosine kinase binding partners even while not 
having any ligand. This is of concern, as when HER2 
is overexpressed, it exists in open conformation that can 
interact freely with any available tyrosine kinase, and 
leads to dimerization and promotes neoplastic transfor
mation of cells.110

Figure 3 Possible mechanism of polymorphism influences related with MAPK and PI3K/AKT cell signaling. Drug resistance from some of the genes are resolved around 
MAPK and PI3K/AKT cell signaling. Polymorphisms in some genes mentioned may induce chemoresistance by disrupting the normal cell proliferation signaling and increase 
the aggressiveness of the tumor. The MAPK pathway are activated after Ras was phosphorylated and may induce cell proliferation, angiogenesis, and tumor growth. Ras may 
also activate PI3K, which further phosphorylating AKT that leads to activation of various signaling pathway leading to increase tumor growth rate. Genes that are 
hypothesized to disrupt these signaling are HER2, HER3, VEGFR2, and FGFR4. Polymorphism of HER2 and HER3 may increase receptor expression and this upregulation may 
further leads to increased MAPK/AKT signaling. In HER3 rs2229046 carrier, Src expression is increased and leads to increase MAPK/AKT signaling, and those with rs77123 
had heightened concentration of GSK-3β, that may inhibit c-myc as tumor growth suppressor and is suggested as chemoresistance mechanism. In FGFR4 arg388 carrier, uPAR 
expression is increased and further inhibits TRAIL-induced apoptosis that leads to tumor cells resisting the induction of apoptosis. 
Notes: Indicates phosphorylation process. Activates/transactivates/upregulates/expresses. Inhibits/downregulates.
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About one in five breast cancer patients have an overex
pression of HER2, and it is also associated with worse disease 
prognosis. A monoclonal antibody, like trastuzumab, is used to 
directly target HER2 specifically. In 2015, Falchook et al27 

reported that with trastuzumab–lapatinib–bevacizumab com
bination therapy there are no associations between six SNPs in 
HER2 (rs1810132 STR C>T, −1985 G>T, −3444C>T, P1170A 
C>G, rs1810132 STR C>T, I655A A>G) and stable disease 
(SD) ≥6 months/partial response (PR)/complete response (CR) 
rate, nor with TTF. This result contradicts previous findings 
that HER2 SNPs had an association with the risk of developing 
breast cancer.112 Falchook et al27 also found that an escalated 
concentration of circulating HER2 extracellular domain (ECD) 
in plasma was significantly associated with SD ≥6 months/PR 
rate and TTF, consistent with previous studies.113

These results contradict a study conducted by Han et al114 

that found a resistance to trastuzumab accompanying 
Ile655Val HER2 polymorphism, where HER2-positive 
patients with the Val/Ile and Val/Val genotype had a signifi
cantly worse DFS score compared with those with the Ile/Ile 
genotype. This may be caused by a decrease in tyrosine kinase 
activity when Val is substituted into Ile at codon 655,115 and the 
combination showed a lower apoptosis rate and higher growth 
capacity in an in vitro study.116

Recently, data suggested that SNPs in epidermal 
growth factor genes may affect relapse-free survival or 
OS; this includes the HER3 gene. Previous studies had 
shown that mutation in HER-family genes may activate 
the PI3K/AKT signaling pathway, and monoclonal anti
body-based drugs are made to inhibit this activation by 
stopping downstream signaling of HER2 activation.110

Coté et al18 found that patients who are treated with TCH 
and who have the minor allele of the HER3 SNPs (rs2229046 
and rs77123) had a higher risk of worse relapse-free survival 
compared with patients not using TCH. The data suggested 
that patients with SNP in rs2229046 had a heightened concen
tration of Src kinase, while those with rs77123 have signifi
cantly elevated glycogen synthase kinase-3 beta (GSK-3β) 
phosphorylation (Figure 3). The increase in PI3K/AKT signal
ing may potentially indicate unresponsiveness of the TCH- 
based regimen in selected patients. Despite not having a 
mechanism specific to cancer susceptibility, both of the SNPs 
have been related with alternative splicing, and there are not 
enough data to determine their specific action on signaling.23

IL12B
Interleukin 12 (IL12) is an immune modulator that has 
characteristics as a connector between acquired and innate 

immune response. Produced by macrophages, dendritics 
and monocytes, IL-12 consists of two polypeptide chains 
that bind to disulfide p35 or p40 to encode the IL12A and 
IL12B genes, respectively. IL12A is located on chromo
some 3p12-q13.2 and IL12B is located on chromosome 
5q31-33.117 IL12 is known to have antitumor activity 
because it can induce cytotoxic T cell (CTL) activation, 
NK cell activation and differentiation of naïve cluster of 
differentiation 4 (CD4+) cells into T helper 1 (Th1) cells 
so that it can increase cytotoxic T lymphocyte response.
118,119 This is supported by a study where the systemic 
administration of IL12 can prevent tumor growth in trans
genic HER2/neu oncogene mice.120 Therefore, giving 
IL12 could have potential in the treatment of breast cancer 
in humans. However, giving IL12 can also form autoim
munity. One example, excess production of IL12 is found 
in autoimmune diseases such as rheumatoid arthritis and 
type 1 diabetes mellitus.121,122

IL12B encodes IL12 p40 which is a subunit of the IL12 
and IL23 heterodimeric structures that have an important 
role in immune cytokines in cell-mediated immunity. IL12 
and IL 23 have a mechanism to convert naïve T cells into 
Th1 and T-helper 17 (Th17) and maintain a balance 
between Treg cells and Th17 cells in maintaining a normal 
immune response.123 IL12B plays a major role in the 
initiation of the IL-12 activation signaling cascade.124 

Polymorphisms that occur in the IL12A and IL12B genes 
are known to play a role in cancer development. 
Polymorphisms will change the expression of the IL12 
gene and reduce IL12 protein synthesis so that it can 
lead to immune system dysfunction and the development 
of malignant tumors.125

ER-negative breast cancer patients have a high number 
of lymphocytes infiltrating the tumor. Tumor infiltration by 
immune cells, such as Treg cells and myeloid-derived 
suppressor cells (MDSCs) is involved in the prognosis of 
cancer patients after chemotherapy. The presence of poly
morphisms in genes involved in the immunosuppressive 
pathway is known to modulate the response to given 
therapy.123 One of them is evidenced by studies that 
reported IL12B SNPs have a relationship with OS in ER- 
Negative breast cancer patients after chemotherapy. There 
are two results obtained, namely IL12B rs2546892 (G> A) 
had a significant association with poorer OS (HR 1.50 
(95% CI 1.21 to 1.86), P = 1.81 × 10−4) and IL12B 
rs2853694 (A> C) had a significant association with 
improved OS (HR 0.73 (95% CI 0.61 to 0.87), P = 3.67 
× 10−4).53
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KDR/VEGFR2
Kinase insert domain receptor (KDR), also referred as 
vascular endothelial protein receptor 2 (VEGFR2), is a 
tyrosine kinase receptor that regulates growth, survival, 
and endothelial cell movement through paracrine signaling 
by producing autocrine signal and can be expressed in 
tumor cells.126,127 It is located at chromosome region 
4q11–q12.128 Studies about KDR expression with prog
nostic implication in carcinoma demonstrated that SNPs 
on the receptor genes may affect the VEGF signaling, 
which in turn influences the carcinoma prognosis and the 
treatment response. However, this information remains 
controversial.129–133

In 2018, Babyshkina et al30 reported that the −604T>C 
(rs2071559) mutation may be a functional polymorphism 
within the KDR gene promoter region and may be able to 
change potential transcription of KDR, leading to reduced 
expression of KDR.128 The value of pCR was higher in patients 
using the cyclophosphamide–doxorubicin–capecitabine 
(CAX) regimen than in those who used the fluorouracil–dox
orubicin–cyclophosphamide (FAC) chemotherapy regimen. 
Therapy for those younger than 50 years carrying the 
−604TT genotype of rs2071559 gave results significantly cor
related with pCR within the CAX-treated patients. However, 
there was no clear confirmation that the pCR rate correlates 
with KDR rs2305948 within the two treatment groups. KDR 
expression and polymorphism of KDR gene usually act as 
additional predictive markers of pCR in breast cancer patients.

Allegrini et al29 suggested that KDR gene interacts 
with the IL-8 gene and may affect the efficacy of bevaci
zumab therapy. In tumor progression, KDR has a signifi
cant role in promoting tumor angiogenesis.134,135 The 
phosphorylation of KDR may be transactivated by IL-8 
due to physical interactions between KDR and the IL-8 
receptors, and it has been shown that this activity may 
occur in the presence of VEGF such as CBO-P-11 at the 
site (Figure 3). These findings may explain the failure of 
tumor angiogenesis inhibition when treating with drugs 
such as bevacizumab, as the overexpression of IL-8 in 
the presence of the SNP would lead to more transactiva
tion of KDR. Added to the mutation of KDR, the upregu
lation of the receptor supports the angiogenic process. 
These findings were determined in a case-control study 
comparing patients treated with and without bevacizumab 
as a first-line chemotherapy; the study revealed decreased 
values of progression-free survival and OS in patients 

carrying SNP KDR rs11133360 and IL-8 rs4073, suggest
ing a resistance to bevacizumab therapy.

MDM2
The mouse double minute-2 (MDM2) homolog is a promoter 
that suppresses p53 transcriptional activity136 through direct 
binding, ubiquitination, and degradation.137 In previous stu
dies, overexpression of MDM2 has been studied as another 
mechanism for suppressing protein p53 (Figure 3), and MDM2 
protein levels in the body may also be interpreted as prognostic 
biomarker of human breast cancer.52,138

Overexpression of MDM2 was suggested to be related 
to drug resistance in targeted cancer therapy, such as in 
chemotherapy and radiotherapy through the MDM2–p53 
loop dependent pathway and epithelial–mesenchymal tran
sition (EMT) pathway. In the EMT pathway, MDM2 over
expression induces the EMT process in tumor cells, 
resulting in resistance to the chemotherapeutic drug.139 

MDM2 overexpression was reported to inhibit the sensi
tivity to cisplatin, with potential for leading to cisplatin- 
based therapy resistance.140 Also, overexpression of 
MDM2 was associated with resistance in trastuzumab 
regimens in HER2-positive breast cancer.141

The MDM2 SNPs at T309G may decrease the activity of 
protein wild-type p53 and thus increase the chance of devel
oping cancer cells. In a recent study, polymorphism in MDM2 
(SNP309T>G, rs2279744) was associated with increased risk 
of various cancer development through its association with an 
increased MDM2 mRNA level.142,143 The effect of SNP 309G 
aligns with the mechanism of MDM2 that suppresses p53 
protein activity.142,144,145 Polymorphism in the 309G allele 
enhances MDM2 activity, so it may substitute for TP53 muta
tion in similar patient cohorts, yet the importance of SNP309 in 
familial breast cancer remains unclear.146 In a study conducted 
by Chrisanthar et al,35 genotype differences of MDM2 showed 
no association with treatment response to epirubicin or pacli
taxel, and there was no effect on relapse-free survival value. In 
multivariate analysis, SNP309 TG/GG persisted as a poor 
prognostic factor by excluding ER status from the analysis.

MEG3
The maternally expressed 3 (MEG3) gene is located at 
chromosome region 14q32.3 in humans147 and is involved 
in growth and development of cell. Reexpression of 
MEG3 suppressed proliferation of tumor cells in vitro 
(Figure 3)148–151 and reduced the growth of gliomas, 
tumor volume, and the expression of Ki67.152
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Cao et al153 reported that SNP in MEG3 can increase 
cancer development risk and toxicity of chemotherapy in 
other type of cancers.154 Peng et al155 reported that in ER- 
positive breast cancer, MEG3 was downregulated, which 
in turn inhibited cell growth and thus induced apoptosis 
through ER stress activation, nuclear factor κB (NF-κB), 
and p53 pathways.156

Polymorphism in MEG3 was associated with regula
tion of cells in breast cancer. In 2019, Bayarmaa et al31 

showed that SNP in MEG3 rs10132552 was significantly 
associated with response to cisplatin-containing che
motherapy in breast cancer patients, such that a patient 
carrying the rs10132552 TT genotype had significantly 
worse DFS, and there was a higher level of Ki67 in 
patients who had the T-allele in the rs10132552 phenotype.

SLC
When chronically exposed to selective chemotherapy, cancer 
cells often regulate drug efflux transporters that may result in 
development of drug resistance. The change of transporter 
may be initiated when cancer cells demand more nutrients to 
support their rapid growth and gather these nutrients via 
plasma membrane transporters.157 The solute carrier (SLC) 
genes were classified into 65 subfamilies. The main function 
of SLC genes is to encode the transporters of endogenous and 
exogenous compounds.158–160 Most SLC transporters are 
equilibrative. This trait is beneficial in facilitating substrate 
uptake into the cell by regulating the electrochemical and 
concentration gradients. Polymorphisms in SLC genes have 
been affiliated with efficacy and toxicity outcomes of 
drugs.157

A recent study conducted by Okazaki et al161 reported that 
SLC28A3 rs7867504 polymorphism was significantly asso
ciated with toxicity in pancreatic cancer patients who received 
gemcitabine. SNPs in SLC28A3 (rs7867504) and SLC29A1 
with the GA haplotype were associated with OS in metastatic 
breast cancer patients receiving a paclitaxel–gemcitabine com
bination. SLC29A1 (rs747199 and rs760370) with the GA 
haplotype resulted in a significantly shorter OS, while 
SLC28A3 (rs7867504) with the CC and CT genotypes was 
associated with a longer OS compared with the TT genotype. 
These findings suggested that the efficacy of paclitaxel–gem
citabine treatment may be influenced by the transport of 
gemcitabine.32 Also, these results fall in line with earlier phar
macogenetic studies in other type of cancers that received 
gemcitabine as chemotherapy. SNPs in SLC29A1, SLC28A1, 
and SLC28A3 (rs7867504) were associated with gemcitabine 
metabolite clearance in solid tumors.162

The solute carrier organic anion transporter family member 
1B1 (SLCO1B1) gene has a common polymorphism as 
SLCO1B1*5 at rs4149056. Patients carrying this SNP had 
higher estrogen levels prior to treatment with AI163 and 
showed a higher exemestane level during treatment.164 

SLCO1B1 SNP rs10841753 carriers are also known to have 
decreased estrogens prior to AI treatment, as they increased 
expression of the organic anion-transporting polypeptide 1B1 
(OATP1B1) transporter.163 A study conducted by Dempsey 
et al33 showed that patients carrying the SLCO1B1*5 allele 
(rs4149056) may have had worse outcomes when receiving AI 
treatment because they were at higher risk for having a higher 
concentration of detectable estrone, yet patients with SNP 
rs10841753 had a lower concentration of estrone during the 
first 3 months from the initiation of AI treatment. Those who 
had SLCO1B1*5 rs4149056 SNP were associated with 
increased levels of estrone sulfate during pretreatment of AI 
chemotherapy, while rs10841753 carriers were associated with 
lower levels instead. However, there is no direct evidence 
associating suppression in estrogen with treatment effective
ness. Estrone is the most abundant estrogen in postmenopausal 
women.165 The lack of association of SLCO1B1*5 or 
rs10841753 polymorphism with risk of breast cancer develop
ment in a large genome-wide association study suggested that 
estrone and estrone sulfate levels do not have any clinical 
consequence in predicting the effectiveness of breast cancer 
therapy.166

TGFBR2
Transforming growth factor beta receptor II (TGFBR2) is an 
important cytokine in the tumor microenvironment and 
included as a ligand binding receptor for the TGF β family 
(TGF-1, −2, −3), this gene is located on chromosome 3 locus 
3p22.167 TGFBR2 encodes the TGF-β receptor II which is the 
transmembrane serine/threonine protein kinase receptor in the 
TGF-β signaling pathway.168 After binding to the ligand, 
TGFBR2 will induce phosphorylation of solvated metal atom 
dispersion (SMAD) 2/3 through activation of TGFBR1. This 
SMAD 2/3 induction will form hetero-oligomers with SMAD 
4 and accumulate in the nucleus. In addition, TGFBR2 can 
induce intracellular pathways with non-SMAD signaling path
ways via Src, PI3K/AKT, p42/44 and p38 MAPK.169,170 TGFβ 
is known to have two roles depending upon the cellular con
text, namely as tumor suppression at the initial stage and 
invasion and metastatic tumors in later stage cancers, specifi
cally TGFβ as a stimulator in Treg cell proliferation and 
immune prevention.171
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The presence of overexpression of TGFBR2 in ER-nega
tive breast cancer can be a poor prognostic indicator of patient 
survival.172 Excessive TGFBR2 expression is associated with 
an overactive PI3K/AKT signaling pathway. AKT activation 
will mediate FAF1 phosphorylation and activate pro-metastatic 
function in cancer cells because it increases the stability of 
TGFBR2 on the cell surface.170 This is proven by the associa
tion of TGFβ on lung metastases in patients with ER-negative 
breast cancer.173 TGFBR2 gene polymorphisms may be a 
prognostic indicator and predictor of breast cancer therapy by 
looking inhibition of TGFβ signaling. This is shown by a study 
that found SNPs TGFBR2 rs1367610 (G> C) had a significant 
association with poorer OS in ER-negative patients who 
received chemotherapy (P = 3.08 × 10−4).53 In addition, 
another study showed a low number of TGFBR2 expression 
in ER-positive patients on tamoxifen therapy to have a signifi
cant association with shortened recurrence-free survival (RFS) 
(HR: 0.312, 95% CI, 0.131–0.742; P = 0.008).174

TP53 and CHEK2
The tumor protein (TP53) gene is the most common 
mutated gene in human cancer. Its presence in more than 
50% of the whole cancer patient cohort implies that the 
TP53 gene has some action related to the formation of 
cancer.175 p53 is involved in processes such as growth, 
DNA repair, and apoptosis of cells.176 In DNA repair 
activity, p53 gave signals to halt the cell cycle and gave 
the cell time to repair, resulting in revived genome stabi
lity. Additionally, p53 is directly involved in the activity of 
various DNA repair systems.177

The most common mutations in TP53 are of the mis
sense type, leading to diverse changes in amino acid 
positions.178 Most of the time, mutations occurred more 
often in higher stages of cancers or in aggressive behavior 
subtypes such as triple-negative or HER2-related.179–181 In 
patients with the wild-type of TP53, several tumors were 
confirmed to exhibit chemoresistance. Findings to date 
suggest that tumors may accommodate mutations in the 
checkpoint kinase 2 (CHEK2) gene, which expresses the 
Chk2 protein that phosphorylates p53.137

The CHEK2 gene is located at chromosome region 
22q12.1 and can be activated by Thr68 phosphorylation via 
ataxia-telangiectasia mutated. CHEK2 has a role in regulating 
the cell cycle. Mutation in the CHEK2 gene will affect the 
function and expression of the Chk2 protein.182 In addition, 
mutation in the CHEK2 gene can influence the activity of 
p53,35 as this may be phosphorylated by various type of 
kinases, including Chk2. This process is important in the 

mechanism of antitumor agents when responding to DNA 
damage in breast cancer.183 The nonfunctional Chk2 protein 
can affect drug sensitivity by altering the p53 activation 
process.184 When mutations in CHEK2 and TP53 genes are 
compared, the role of Chk2 can be indirectly identified in 
chemoresistance (Figure 3).185

Previous studies reported that mutations within the TP53 
gene are related to resistance to anthracycline therapy in carci
noma patients.184,186,187 In vitro studies showed that taxane 
sensitivity is related to p53 function.188,189 However, a clinical 
study has shown that there is no correlation between TP53 
status and paclitaxel sensitivity.187

Chrisanthar et al184 found that TP53 and CHEK2 mutations 
may predict resistance to paclitaxel treatment, but not in 
patients receiving epirubicin as first-line therapy. Mutations 
of TP53 are related to poor prognosis in carcinoma patients 
who are not using any adjuvant therapy.190 These effects 
probably are due to the inclusion of patients with paclitaxel 
as a second-line treatment. CHEK2 nonsense mutations were 
previously shown to affect Chk2 activity and may be used to 
predict resistance to anthracycline treatment.184

UGT
The uridine 5ʹdiphospho-glucuronosyltransferase (UDP- 
glucuronosyltransferase, UGT) gene in mammals is 
known to have four families: UGT1, UGT2, UGT3, and 
UGT8.61 This superfamily usually encodes enzymes that 
can place glycosyl groups on a lipophilic substrate.191 The 
UGT1 gene is located at chromosome region 2q37.192 It is 
known to encode nine types of enzymes related with 
glucuronidation process. UGT2 genes are classified further 
into two subfamilies, UGT2A and UGT2B. The latter are 
encoded by different genes such as UGT2B4, UGT2B7, 
UGT2B10, UGT2B11, UGT2B15, and UGT2B17.193

Various UGT gene isoforms exhibited different selectivity 
and sensitivity roles in every process of drug glucuronidation. 
Many types of drugs are metabolized by the UGT gene. 
Epirubicin is an anticancer drug in the anthracycline group. 
Like other anthracyclines, epirubicin undergoes metabolism in 
the liver by interacting with aldo-ketoreductase to form 
epirubicinol194 or undergoes glucuronidation to form EPI- 
glucuronide.195 Epirubicinol and EPI-glucuronide are inactive 
forms of epirubicin, and EPI-glucuronide had a faster excretion 
rate than epirubicinol and was noncardiotoxic.196 The epirubicin 
glucuronidation process is carried out by UGT, specifically 
UGT2B7 in the liver.195 UGT2B7 gene is located at chromosome 
region 4q13.2.197 The presence of polymorphisms in the 
UGT2B7 gene may disrupt the inactivation process for 
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epirubicin. One study showed that breast cancer patients which 
carry the G-allele homozygous UGT2B7 gene on rs3924194 
experienced a worse recurrence-free interval (RFI) when treated 
with the fluorouracil, epirubicin, cyclophosphamide (FEC) based 
regimen.25

In addition to epirubicin, tamoxifen is also often used in 
breast cancer therapy as a selective ER modulator and goes 
through a metabolic process catalyzed by UGTs.34 Tamoxifen 
that had passed through the metabolism stage, which is cata
lyzed by UGTs, was found to add glucuronide groups and to 
produce 4-HT and endoxifen, which may deactivate antiestro
genic effects (Figure 2).198 Variants in the UGT2B15, 
UGT2B7, and UGT1A8 genes are not correlated with breast 
cancer recurrence in tamoxifen treatment.34 Dezentjé et al40 

found a contradictory result, reporting that UGT2B15*2 may 
be associated with worse DFS in his exploratory study, but this 
result requires further investigation.

Conclusion and Future Prospects
After exploring through studies related with breast cancer che
moresistance caused by gene polymorphisms, we have reached a 
conclusion that some of the molecular changes that are caused by 
upregulation or downregulation due to different genetic activity, 
and some may lead to increase efficacy of the drug while the 
other halts the drug activity. Genes that suggesting chemoresis
tance due to having significant association with decreased drug 
efficacy and may be studied further to determine its exact 
mechanism are ABCB1 rs1045642, BARD1 rs2070096, CYBA 
rs4673 CT, CYP19A1 rs4646, CYP2C9 rs1057910, CYP2D6 
poor metabolizers, CYP3A4 *1B*/*1A, FCGR3A 158V/V, 
GSTP1 105Val/Val genotype, GSTM null genotype, HER3 
rs2229046 and rs77123, KDR rs11133360 (T>C) for patients 
carrying SNP IL-8 rs4073, IL12B rs2546892 (G>A), MEG3 
rs10132552 TT genotype, SLC rs4149056, TGFBR2 
rs1367610 (G>C), TP53, UGT2B15 *2, and UGT2B7 
rs3924194. While some studies, which are included in the 
study or not, may have conflicting results caused by different 
clinical setting or chemotherapy used and other factors, these 
studies strengthen the importance of exploring polymorphism 
and its impact on genes related with breast cancer.

Genetic polymorphisms in patients with breast cancer are 
related to variation in therapeutic responses in patients using 
the same drug. This review examines the relationship between 
genetic polymorphisms and breast cancer therapy resistance. 
There are several gene polymorphisms that produce differ
ences in results in terms of OS, relapse-free survival, patholo
gical CR, DFS, and other parameters. Moreover, many studies 
suggest that polymorphism in genes may be assessed as a 

predictive and prognostic biomarker for identifying breast 
cancer. Although conflicting results remain to be understood, 
in the future these polymorphisms may become considerations 
in developing personalized medicines that yield better results 
for each individual and in predicting the clinical outcome of 
breast cancer therapies.
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