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Background: A practical prognostic prediction model is absent for hepatocellular carci-
noma (HCC) patients after curative ablation. We aimed to develop a radiomics model based 
on gadoxetic acid disodium-enhanced magnetic resonance (MR) images to predict HCC 
recurrence after curative ablation.
Methods: We retrospectively enrolled 132 patients with HCC who underwent curative 
ablation. Patients were randomly divided into the training (n = 92) and validation (n = 40) 
cohorts. Radiomic features were extracted from gadoxetic acid disodium-enhanced MR 
images of the liver before curative ablation, and various baseline clinical characteristics 
were collected. Cox regression and random survival forests were used to construct models 
that incorporated radiomic features and/or clinical characteristics. The predictive perfor-
mance of the different models was compared using the concordance index (C-index) and 
decision curves analysis (DCA). A cutoff derived from the combined model was used for risk 
categorization, and recurrence-free survival (RFS) was compared between groups using the 
Kaplan-Meier survival curve analysis.
Results: Twenty radiomic features and four clinical characteristics were identified and used 
for model construction. The radiomics model constructed by tumoral and peritumoral radio-
mic features had better predictive performance (C-index 0.698, 95% confidence interval [CI] 
0.640–0.755) compared with the clinical model (C-index 0.614, 95% CI 0.499–0.695), while 
the combined model had the best predictive performance (C-index 0.706, 95% CI 0.638–-
0.763). A better net benefit was observed with the combined model compared with the other 
two models according to the DCA. Distinct RFS distributions were observed when patients 
were categorized based on the cutoff derived from the combined model (Log rank test, p = 
0.007).
Conclusion: The radiomics model which combined radiomic features extracted from 
gadoxetic acid disodium-enhanced MR images with clinical characteristics could predict 
HCC recurrence after curative ablation.
Keywords: hepatocellular carcinoma, recurrence, ablation, magnetic resonance imaging, 
radiomics

Introduction
As the fourth most common cause of cancer-related death worldwide,1 hepatocel-
lular carcinoma (HCC) is a heavy disease burden, especially in Eastern Asia and 
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sub-Saharan Africa where 85% of HCC cases are esti-
mated to occur.2 The five-year survival rate of patients 
with HCC is approximately 18%,3 but significant regional 
differences in the prognosis of HCC are observed due to 
differences in the availability of surveillance programs and 
effective treatments.4,5 In China, although the period 
between 2000 and 2014 saw a decline in the incidences 
and mortality rates of HCC, there were still 364,800 new 
HCC cases and 318,800 liver cancer deaths in 2014.6

Various treatment modalities have been developed for 
HCC based on the extent of disease and the severity of 
underlying liver disease. For patients with localized HCC 
that are ineligible for resection or transplantation without 
macrovascular invasion, ablation is an important therapy 
option. Ablation includes microwave ablation (MWA) and 
radiofrequency ablation (RFA), which have been used to 
treat HCC for years in China. These techniques have some 
theoretical advantages.7,8 Results from randomized con-
trolled trials and meta-analyses suggest that the results of 
MWA are comparable with those of RFA.9,10

However, recurrence after curative ablation remains 
a concern and influences subsequent therapy.11,12 Given that 
an early diagnosis and effective treatment are associated with 
survival of patients with HCC,13,14 a tool to predict the prog-
nosis of patients with HCC who underwent curative ablation is 
needed. Although various models have been developed to 
predict prognosis of patients with HCC,15–17 few of these 
models were specifically designed for patients with HCC 
who have undergone curative ablation, and most available 
models are generally of a low quality.18 A possible reason 
for this is that most of the prediction models are based on 
clinical and initial pathological predictors, such as alpha- 
fetoprotein (AFP), tumor size, vascular invasion, tumor num-
ber, tumor differentiation, and neutrophil–lymphocyte ratio.18

To further improve the performance of prediction models 
for HCC prognosis, novel predictors should be explored, 
such as gene signatures19 and non-coding RNA 
signatures.20 Radiomics is a promising predictor for devel-
oping HCC prognosis prediction models.21,22 One of the 
advantages of radiomics is that it can extract quantitative 
radiology information and assess prognosis in a non- 
invasive manner. However, radiomics-based prognosis pre-
diction models are limited for patients with HCC after MWA 
and RFA. Currently, available radiomics-based models are of 
poor quality; thus, they have not yet reached clinical utility.23 

Therefore, the present study aimed to develop a magnetic 
resonance imaging (MRI)-based radiomics model to predict 
recurrence of HCC after curative ablation.

Materials and Methods
Study Design and Study Population
The study adopted a retrospective cohort study design. 
A flowchart of the study design is presented in Figure 1. 
A total of 132 patients with HCC who were admitted to 
Sun Yat-sen Cancer Center between June 2012 and 
April 2018 and underwent curative ablation after being 
evaluated by a multidisciplinary team were enrolled. 
Curative ablation (either RFA or MWA) was conducted 
by experienced surgeons or interventional doctors guided 
by ultrasound and computed tomography. Detailed proce-
dures are described below.

Detailed inclusion criteria are as follows: 1) clinically 
diagnosed HCC following non-invasive criteria defined by 
the American Association for the Study of Liver Disease 
based on specific imaging features;24 2) the longest dia-
meter of the largest lesion >10 mm; 3) no capsular inva-
sion or invasion of adjacent organs; 4) no extrahepatic 
metastasis at initial diagnosis; 5) no tumors in the hepatic 
veins or main portal vein; 6) data from contrast-enhanced 
MRI (contrast agent, gadoxetic acid disodium) within 1 
month before ablation. Patients who met the following 
exclusion criteria were excluded: 1) follow-up time <2 
years after ablation; 2) radiotherapy, chemotherapy, and 
interventional therapy before ablation; 3) coexistence of 
other malignant tumors; 4) severe images artifacts.

Patients were randomly divided into a training cohort 
(n = 92) and a validation cohort (n = 40) at a ratio of 7:3. 
Data from the training cohort were used to construct the 
prediction models, and data from the validation cohort 
were used for internal validation.

This study was approved by the institutional review 
board of Sun Yat-sen University Cancer Center, and the 
requirement for informed consent was waived.

Ablation Procedure
Patients remained in a supine position on the computed 
tomography table, and 5–15 mL of 1% lidocaine was used 
to induce local infiltration. An antenna was percutaneously 
inserted into the tumor at the end of expiration under com-
puted tomography guidance. Axial computed tomography 
was performed to ensure that the antenna passed through 
the marked center of the tumor’s maximal circle in the 
axial plane after puncture, and the antenna tip reached the 
superior-most axial computed tomography slice that con-
tained the tumor. When necessary, the antenna was adjusted 
slightly. After puncture, 1–2 mg/kg of intravenous propofol 
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(Diprivan, Zeneca, Macclesfield, UK) and 50–100 μg fenta-
nyl (Fentaini, Renfu, Yichang, China) was used to induce 
general anesthesia.

For MWA, a power of 45 W for 5–10 minutes per 
MWA application was used, and the time of MWA was 
based on lesion necrosis observed by computed tomogra-
phy during the procedure (emission facility: frequency, 
2450 MHz; output power, 0–120 W; precision of tempera-
ture control, ±0.1°C; discharge waveform, continuous 
wave; produced by Qi Ya Medical Treatment Facility 
Limited Company, Nanjing, China). Overlapping ablation 
was performed for tumors with a relatively irregular shape 
or after failure to completely cover the tumor by increas-
ing the ablation time.

For RFA, an alternating current generator (RF3000, 
Boston Scientific, Boston, MA, USA) and an electrode 
needle with an insulated 15-G outer needle, which housed 
10 solid retractable curved electrodes with a diameter of 
3.5 cm when expanded like an umbrella, were used. 
A second application of ablation was performed when 
a marked increase in impedance was not observed. 
Multiple overlapping ablation rounds were performed 
when the greatest tumor dimension was >3.0 cm.

Study Outcome
Recurrence-free survival (RFS) was the study outcome. To 
determine the occurrence of RFS, all patients were followed 
up for at least 2 years from the date of curative ablation with 
regular examination of serum AFP and contrast-enhanced 
computed tomography or MRI every three months, until the 
first occurrence of RFS. Patients who were lost to follow-up 
or who died due to other reasons were censored.

Clinical Characteristics and Selection of 
Predictors
We retrospectively collected the baseline clinical characteris-
tics of the study population, including age, sex, hepatitis 
B virus surface antigen (HBsAg) positivity, albumin (ALB), 
alkaline phosphatase, alanine aminotransferase, aspartate ami-
notransferase, direct bilirubin, gamma-glutamyl transferase 
(GGT), indirect bilirubin, total bilirubin, AFP, tumor size, 
and number of tumors.

To select factors associated with RFS for model con-
struction, univariable Cox regression was employed to 
assess the association of each clinical factor with RFS. 
Factors with a p-value of <0.1 were further included in the 
multivariable Cox regression analysis, and a backward 

Figure 1 Flowchart of study design. Three-dimensional (3D) segmentation was performed on 3D serial raw magnetic resonance imaging scans within 1 month before 
microwave ablation. Radiomic features were extracted from regions of interest, which were outlined around the lesion. A random survival forest algorithm was employed 
for radiomic feature selection and model construction. The predictive performance of constructed models was evaluated by receiver operating characteristic (ROC) curves, 
time-dependent ROC curves, decision curves, and Kaplan–Meier survival curves. 
Abbreviations: GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix; NGTDM, neighboring gray tone 
difference matrix; GLDM, gray-level dependence matrix; LoG, logarithm.
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stepwise selection strategy was used based on the Akaike 
information criterion.

MRI Examination and Extraction of 
Radiomic Features
All patients underwent MRI within 1 month before cura-
tive ablation. Detailed MRI parameters, including acqui-
sition sequence and type of scanner, are presented in 
Supplementary Table 1. In brief, all transverse images 
were obtained with a field of view of 44 × 33 cm or 40 × 
30 cm. Gadoxetic acid disodium (Primovist, Bayer 
Schering Pharma, Berlin, Germany, 0.1 mL/kg) and 
0.9% saline chaser (20 mL) were administered as 
a bolus at a flow rate of 1 mL/s. After injection of 
contrast agent, dynamic enhanced images in arterial, 
portal venous, and transitional phases were obtained, 
while additional hepatobiliary phase images were 
obtained with a 20-minute delay. T2-weighted fat sup-
pression images were obtained using a navigator- 
triggered technique. The imaging appearance of the 
lesions is listed in Supplementary Table 2.

To extract tumoral radiomic features, a radiologist (L. 
Z.) with 10 years of experience in diagnostic liver imaging 
manually segmented the lesion volume of interest (VOI) in 
a three-dimensional manner using ITK-SNAP (version 
3.8.0, http://www.itksnap.org/pmwiki/pmwiki.php) in T2 
fat suppression, T1 fat suppression, hepatic arterial 
phase, portal venous phase, and hepatocellular phase 
sequences (20-minute delay after administration of con-
trast agent). In cases of multiple lesions, the largest lesion 
was chosen as the representative lesion to segment.

To extract peritumoral radiomics, the peritumoral VOI 
was also segmented using a Python morphology dilation 
algorithm, which automatically dilated the boundaries of 
each lesion by 5 mm. A peripheral ring was also generated 
with automated dilatation and shrinkage of the tumoral 
boundaries by 5 mm on each side, namely outside and 
inside the boundary, resulting in a ring with a thickness of 
10 mm (5 + 5 mm). The portion beyond the liver parench-
yma was removed manually if the VOI was beyond the 
liver parenchyma after expansion.

Before radiomic feature extraction, to reduce potential 
image differences caused by different MRI systems, all 
images were resampled to a voxel size of 1 × 1 × 1 mm3. 
We used the open-source package Pyradiomics (version 
2.12; https://pyradiomics.readthedocs.io/en/2.1.2/) to 
extract radiomic features, including tumoral radiomic (T), 

peritumoral radiomic (PT 5 mm), and peritumoral radio-
mic (PT 5 + 5 mm) features.

For each radiomic feature, the following five sequences 
were analyzed, respectively: T2 fat suppression, T1 fat 
suppression, hepatic arterial phase, portal venous phase, 
and hepatocellular phase (20-minute delay after adminis-
tration of contrast agent). Within each sequence, 1316 
radiomic features were extracted, including 14 shape fea-
tures, 18 first-order intensity statistics features, 75 texture 
features, 465 logarithmic features, and 744 wavelet fea-
tures. In total, 19,740 radiomic features were extracted for 
each patient. Extraction was conducted by one single 
reader (reader 1). However, to evaluate the stability of 
the extracted radiomic features, another reader (reader 2) 
randomly selected 30 patients and repeated the extraction. 
The intraclass correlation coefficient (ICC) was calculated 
to test the stability of the extracted radiomic features.

All extracted radiomic features were standardized with 
Z-scores before further analysis, and only radiomic fea-
tures with excellent stability (ICC > 0.75) were included.

Model Construction and Evaluation
We built the following five models first: clinical model, 
radiomics model-T, radiomics model-PT (5 mm), radio-
mics model-PT (5 + 5 mm), and radiomics model-T+PT. 
A combined model incorporating clinical characteristics 
and radiomic features was then developed.

Before model construction, we performed hyperpara-
meter optimization, including the number of trees, the 
number of random variables for splitting, the minimum 
number of events in terminal nodes, and the maximum 
depth to which a tree should be grown, to increase model 
generalizability. Hyperparameters were tuned using five- 
fold cross-validation based on the training cohort. 
Hyperparameter optimization was performed using 
a Bayesian model-based optimization algorithm search 
through a predefined hyperparameter space.

We used a random survival forest with the log-rank split-
ting method for model learning based on the above- 
mentioned selected features and hyperparameters. RSF 
ranks candidate features based on the variable importance 
(VIMP), which is calculated by comparing out-of-bag pre-
diction performance for the permuted feature to the original 
feature. A forest of 1000 trees was grown using log-rank 
splitting, and VIMP was recorded for each feature. The 
analysis was repeated 100 times independently, and VIMP 
was averaged over the runs. We then aggregated the top 20 
engineered features from the RSF algorithm.
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The performance of the models built based on the 
training cohort was further examined in the validation 
cohort using the concordance index (C-index). The aver-
age performance in the validation cohort was presented as 
the final model performance, which was generated by 
bootstrap resampling (n = 1000).

Statistical Analyses
Baseline characteristics between the training cohort and 
the validation cohort were compared using the t-test, the 
Chi-squared test, or the Mann–Whitney U-test, as appro-
priate. Receiver operating characteristic (ROC) curves and 
time-dependent ROC curve analyses were further per-
formed to evaluate the discriminative abilities of the mod-
els. A decision curves analysis (DCA) was conducted to 
assess the utility of models for decision-making. The med-
ian risk value derived from the combined model was used 
as a cutoff for risk categorization, and the distribution of 
RFS was compared between groups by Kaplan–Meier 
survival curve analysis.

Statistical analyses were performed using R software (v. 
3.6.3; http://www.Rproject.org). The following packages were 
used in the analyses: package “survival” for Cox regression; 
package “RandomForestSRC” for radiomic feature selection; 
packages “mlr,” “mlrMBO,” “randomForestSRC,” and “boot” 
for hyperparameter optimization, model building, and valida-
tion; package “timeROC” for time-dependent ROC curve 
analysis; package “dca” for DCA; and package “survminer” 
for Kaplan–Meier survival curve analysis.

Results
Baseline Characteristics of the Study 
Population
The study population had a median age of 54 years (46–62 
years), and 86.4% of patients (114/132) were male. A total 
of 92.4% of patients (122/132) were HBsAg positive. The 
median tumor size was 20.00 mm (15.75–24.25 mm), and 
19.7% of patients (26/132) had more than two tumor sites. 
One hundred patients (75.8%) underwent RFA, while 32 
patients (24.2%) underwent MWA. As presented in Table 
1, there were no significant differences observed in the 
baseline characteristics between the two cohorts.

Follow-Up and Survival of the Study 
Population
The median follow-up times for the training and validation 
cohorts were 818 days (733–903 days) and 1029 days 

(794–1264 days), respectively. In the training cohort, 
60.9% of patients (56/92) had confirmed tumor recurrence 
during follow-up at time points ranging from 33–1911 days. 
Median RFS was 592 days, and average RFS was 878 days. 
Overall 1-, 2-, and 3-year cumulative RFS rates were 69.5%, 
42.5%, and 28.0%, respectively. Survival of the validation 
cohort was similar to the training cohort (Table 1). Median 
RFS was 654 days, and average RFS was 1152 days. Overall 
1-, 2-, and 3-year cumulative RFS rates were 75.0%, 46.6%, 
and 46.6%, respectively. Survival of the validation cohort 
was similar to the training cohort (Table 1).

Clinical Characteristics Associated with 
RFS
Results of univariable and multivariable Cox regression 
analyses are presented in Supplementary Table 3. The 
following clinical characteristics were significantly asso-
ciated with RFS: ALB (hazard ratio [HR] 0.66, 95% con-
fidence interval [CI] 0.39–1.12, compared with ALB ≤40 
g/L), GGT (HR 1.65, 95% CI 1.02–2.66, compared with 
GGT ≤60 U/L), tumor size (HR 3.25, 95% CI 1.79–5.90, 
compared with tumor size ≤30 mm), and AFP (HR 1.64, 
95% CI 1.04–2.60, compared with AFP ≤25 ng/mL).

Radiomic Features Associated with RFS
The top 20 best ranking radiomic features were identified 
from 19,740 radiomic features using a random survival 
forest algorithm. Among them were 8 tumoral radiomic 
features, 6 peritumoral radiomic features (5 mm), and 
6 peritumoral radiomic features (5 + 5 mm). Detailed 
information about radiomic features is presented in 
Supplementary Table 4.

Performance of Different Models
Based on the radiomic features selected from specific 
segmentation methods and combined with clinical charac-
teristics, eleven models were developed, including radio-
mics model-T, radiomics model-PT (5 mm), radiomics 
model-PT (5 + 5 mm), radiomics model-T+PT-T1, radio-
mics model-T+PT-T2, radiomics model-T+PT-A, radio-
mics model-T+PT-V, radiomics model-T+PT-HBP, 
radiomics model-T+PT, the clinical model, and the com-
bined model. The C-index for each model in the training 
and validation cohorts is presented in Table 2. Based on 
the C-index in the validation cohort, radiomics model-T 
+PT had better predictive performance (C-index 0.698, 
95% CI 0.640–0.755) compared with the clinical model 
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Table 1 Baseline Characteristics of the Study Population

Variables Overall Study Population (n = 132) Training Cohort (n = 92) Validation Cohort (n = 40) p

Age (years) 54.00 (46.00–62.00) 53.50 (46.00–62.25) 54.50 (49.75–61.00) 0.984
≤50 47 (35.6) 36 (39.1) 11 (27.5) 0.238

>50 85 (64.4) 56 (60.9) 29 (72.5)

Sex

Female 18 (13.6) 12 (13.0) 6 (15.0) 0.786
Male 114 (86.4) 80 (87.0) 34 (85.0)

HBsAg
Negative 10 (7.6) 6 (6.5) 4 (10.0) 0.490

Positive 122 (92.4) 86 (93.5) 36 (90.0)

ALB (g/L) 43.60 (40.88–45.73) 43.50 (40.80–45.85) 43.80 (40.88–45.62) 0.917

≤40 29 (22.0) 21 (22.8) 8 (20.0) 0.821

>40 103 (78.0) 71 (77.2) 32 (80.0)

ALP (U/L) 77.50 (66.25–95.17) 76.35 (66.52–92.82) 80.00 (62.35–96.65) 0.763

≤125 123 (93.2) 85 (92.4) 38 (95.0) 0.722
>125 9 (6.8) 7 (7.6) 2 (5.0)

ALT (U/L) 34.35 (25.45–46.70) 33.50 (25.30–44.73) 36.50 (26.10–50.88) 0.347
≤50 104 (78.8) 75 (81.5) 29 (72.5) 0.255

>50 28 (21.2) 17 (18.5) 11 (27.5)

AST (U/L) 31.80 (23.90–42.15) 30.95 (23.15–41.62) 32.80 (25.37–46.40) 0.370

≤40 95 (72.0) 66 (71.7) 29 (72.5) 1.000

>40 37 (28.0) 26 (28.3) 11 (27.5)

DBIL (μmol/L) 4.55 (3.35–6.15) 4.40 (3.20–6.15) 4.70 (3.48–6.15) 0.608

≤7 107 (81.1) 75 (81.5) 32 (80.0) 0.814
>7 25 (18.9) 17 (18.5) 8 (20.0)

GGT (U/L) 45.60 (30.65–88.82) 43.55 (30.95–84.15) 53.30 (29.43–109.80) 0.473
≤60 82 (62.1) 60 (65.2) 22 (55.0) 0.330

>60 50 (37.9) 32 (34.8) 18 (45.0)

IBIL (μmol/L) 8.15 (6.30–11.55) 8.20 (6.27–11.27) 8.10 (6.45–12.88) 0.801

≤15 119 (90.2) 83 (90.2) 36 (90.0) 1.000

>15 13 (9.8) 9 (9.8) 4 (10.0)

TBIL (μmol/L) 13.00 (9.78–18.38) 13.05 (9.93–17.35) 12.65 (9.78–19.62) 0.833

≤20.5 110 (83.3) 78 (84.8) 32 (80.0) 0.612
>20.5 22 (16.7) 14 (15.2) 8 (20.0)

AFP (g/mL) 26.08 (4.58–232.28) 42.55 (4.58–296.62) 7.40 (4.98–54.87) 0.063
≤25 64 (48.5) 40 (43.5) 24 (60.0) 0.091

>25 68 (51.5) 52 (56.5) 16 (40.0)

Tumor size (mm) 20.00 (15.75–24.25) 20.00 (15.00–24.25) 19.00 (16.00–24.25) 0.825

≤30 116 (87.9) 80 (87.0) 36 (90.0) 0.775
>30 16 (12.1) 12 (13.0) 4 (10.0)

Number of tumors
1 106 (80.3) 77 (83.7) 29 (72.5) 0.157

≥2 26 (19.7) 15 (16.3) 11 (27.5)

(Continued)
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(C-index 0.614, 95% CI 0.499–0.695), while the combined 
model had the best predictive performance (C-index 0.706, 
95% CI 0.638–0.763). Similar results were also observed 
in the ROC analysis and the time-dependent ROC analysis 
(Figures 2 and 3). In the validation cohort, the AUC of the 
clinical model was 0.672, with a sensitivity of 0.5 and 
a specificity of 0.767, the AUC of the radiomics signature 
was 0.817, with a sensitivity of 0.9 and a specificity of 0.7, 
the AUC of the combined model was 0.833, with 
a sensitivity of 0.9 and a specificity of 0.7. The DCA 
analysis (Figure 4) suggested that the combined model 
had a better net benefit compared with the other two 
models. When stratified based on the median of the com-
bined model, distinct RFS distributions were observed 
with the Kaplan–Meier analysis (Figure 5), which indi-
cated that the low-risk group had a higher RFS probability 
compared with the high-risk group (Log rank test: training 
cohort, p < 0.0001; validation cohort, p = 0.007). In the 
training cohort, the median time to recurrence was 322 
days (IQR=260 days) of the high-risk group and 1857 days 

(IQR=1574 days) of the low-risk group. In the validation 
cohort, the median time to recurrence was 404 days 
(IQR=420 days) of the high-risk group and more than 
2037 days of the low-risk group.

Subgroup Analysis
The study population was further categorized by AFP 
concentration (>25 ng/mL or ≤25 ng/mL), tumor size 
(>30 mm or ≤30 mm), GGT concentration (>60 U/L or 
≤60 U/L), and ALB concentration (>40 g/L or ≤40 g/L). 
As presented in Supplementary Figures 1–4, within each 
subgroup, the median derived from the combined model 
showed consistent performance for risk stratification 
(p<0.001 for all).

Discussion
Given the lack of a practical prognosis predictive model 
specifically for HCC patients who undergo curative abla-
tion, our study extracted radiomic features from MRI 
before curative ablation in patients with HCC and 

Table 1 (Continued). 

Variables Overall Study Population (n = 132) Training Cohort (n = 92) Validation Cohort (n = 40) p

Ablation methods

RFA 100(75.8) 71(77.2) 29(72.5) 0.881

MWA 32(24.2) 21(22.8) 11(27.5)

Recurrence

No 55 (41.7) 36 (39.1) 19 (47.5) 0.443
Yes 77 (58.3) 56 (60.9) 21 (52.5)

Notes: Continuous variables are presented as median (25th percentile − 75th percentile), and categorical variables are presented as number (percentage). 
Abbreviations: HBsAg, hepatitis B virus surface antigen; ALB, albumin; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; DBIL, 
direct bilirubin; GGT, gamma-glutamyl transferase; IBIL, indirect bilirubin; TBIL, total bilirubin; AFP, alpha-fetoprotein; RFA, radiofrequency therapy; MWA, microwave 
ablation.

Table 2 Concordance Index of Different Models

Training Cohort (95% CI) Validation Cohort (95% CI)

Radiomics model-T 0.889 (0.853–0.922) 0.585 (0.533–0.925)

Radiomics model-PT (5 mm) 0.870 (0.827–0.910) 0.549 (0.450–0.643)
Radiomics model-PT (5 + 5 mm) 0.867 (0.820–0.901) 0.621 (0.548–0.675)

Radiomics model-T+PT-T1 0.897 (0.865–0.927) 0.620 (0.548–0.673)

Radiomics model-T+PT-T2 0.907 (0.879–0.934) 0.601 (0.555–0.648)
Radiomics model-T+PT-A 0.921 (0.898–0.947) 0.603 (0.550–0.648)

Radiomics model-T+PT-V 0.891 (0.859–0.920) 0.598 (0.540–0.652)

Radiomics model-T+PT-HBP 0.964 (0.951–0.977) 0.647 (0.602–0.688)
Radiomics model-T+PT 0.964 (0.947–0.979) 0.698 (0.640–0.755)

Clinical model 0.656 (0.589–0.722) 0.614 (0.499–0.695)

Combined model 0.975 (0.963–0.985) 0.706 (0.638–0.763)

Abbreviations: T, tumoral; PT, peritumoral; A, arterial phase; V, portal venous phase; HBP, hepatobiliary phase; CI, confidence interval.
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Figure 3 Time-dependent receiver operating characteristic curves of the models for predicting recurrence-free survival. (A) Training cohort; (B) validation cohort.

Figure 4 Decision curves of the models for predicting recurrence-free survival. (A) Training cohort; (B) validation cohort.

Figure 2 Receiver operating characteristic curves of the models for predicting recurrence-free survival. (A) Training cohort; (B) validation cohort.
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developed MRI-based radiomics models using a random 
survival forest algorithm to predict recurrence after cura-
tive ablation. Several models were built and compared, 
and the combined model, which incorporated 20 radiomic 
features (including tumoral, peritumoral [5 mm], and peri-
tumoral [5 + 5 mm] radiomic features) and 4 clinical 
characteristics, had the best predictive performance. 
Based on this combined model, patients with HCC who 
underwent curative ablation were categorized as high-risk 
and low-risk for recurrence and showed distinct RFS dis-
tributions after curative ablation. This approach helped to 
identify patients with HCC who underwent curative abla-
tion but were at a high risk of recurrence. Thus, this 
approach may have the potential to improve prognosis by 
more frequent monitoring25 or by combined use with other 
therapies,26,27 although this is yet to be proven.

Prognosis prediction models for HCC were tradition-
ally developed using clinical characteristics and patholo-
gical characteristics at a macro-level, such as binary 
variables indicating microscopic vascular invasion.28 

However, considering that HCC has heterogeneous geno-
types and phenotypes,29,30 it is difficult to develop an ideal 
predictive model that could be applied to all HCC patients. 
Incorporating predictors strongly associated with events is 
one of the important methods to improve the performance 
of a predictive model. Compared with models developed 
using novel predictors, such as genes, RNA, and serum 
biomarkers,19,20,31 our study used predictors extracted 
from MRI enhanced with gadoxetic acid disodium. 
Tumor segmentation was manually performed by an 
experienced radiologist. This increased the feasibility of 

the model since MRI data were more accessible compared 
with the above-mentioned novel predictors in patients with 
HCC. To some extent, radiomic features extracted from 
medical imaging can be seen as tumor micro-level fea-
tures, which may help to distinguish the heterogeneous 
features of HCC. In addition, compared with pathological 
information obtained via biopsies, radiomic features could 
provide information on the whole tumor in a non-invasive 
way. Numerous studies support the association of radiomic 
features with tumor features and HCC prognosis,32,33 mak-
ing radiomic features potential predictors of prognosis. As 
expected, we noted that the model based on radiomic 
features only (radiomics model-T+PT) showed a nearly 
fair predictive performance (C-index 0.698, 95% CI 0.-
640–0.755), and the performance of the clinical model 
improved after incorporating the identified radiomic fea-
tures (C-index increased from 0.614 [95% CI 0.499–-
0.695] to 0.706 [95% CI 0.638–0.763]). However, it is 
worth noting that models based on a single radiomic 
feature (tumoral or peritumoral) show poor performance, 
suggesting that a combination of tumoral and peritumoral 
radiomic features is necessary. As far as we know, there 
are no MRI-based radiomics models that have been speci-
fically developed to predict recurrence after MWA for 
patients with HCC; thus, we were unable to compare the 
results of our study with those of other studies. Yuan et al34 

developed a contrast-enhanced computed tomography- 
based radiomics model to predict early recurrence after 
curative ablation for patients with HCC, and similar results 
were observed. Specifically, incorporating radiomic pre-
dictors increased the predictive performance of the clinical 

Figure 5 Kaplan–Meier survival analysis of recurrence-free survival according to risk strata defined by the combined model. (A) Training cohort; (B) validation cohort.
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predictor-based model. Compared with the results of our 
study, the combined model in Yuan’s study had better 
performance (C-index  0.755 [95% CI 0.651–0.860] vs 
0.706 [95% CI 0.638–0.763], respectively); however, 
given the different study population, a direct comparison 
may not be suitable. Moreover, our research was based on 
MR images rather than computed tomography images, 
which are recommended in clinical practice.

Our study had some strengths that should be high-
lighted. First, given that reproductivity is a major concern 
in the field of radiomics,23 we only selected radiomic 
features with excellent stability (ICC > 0.75) for model 
development. Second, MR images used in the study were 
enhanced with gadoxetic acid disodium, which allow to 
identify lesion hypointensity that is one of the key steps 
during hepatocarcinogenesis,35 and therefore may help 
radiologists to segment lesions more precisely by better 
delineating lesion boundaries. Third, we extracted differ-
ent radiomic features, including tumoral, peritumoral 
(5 mm), and peritumoral (5 + 5 mm), and in total, 
19,740 radiomics features were identified for each patient. 
This might provide more information and therefore be 
more representative of the heterogeneous features of 
HCC. Although this was a retrospective single-center 
study without external cohort validation, four different 
MR scanners were used in the study, which indicate that 
our radiomics model may be widely performed in multiple 
centers. Finally, a random forest algorithm was employed 
for radiomic feature selection and model construction, 
which enabled a high degree of predictive accuracy.36

There were several limitations in our study that should be 
highlighted. First, the study used a retrospective study design, 
which is prone to information bias. Second, images used in 
this study were obtained using several MRI systems, which 
made it difficult to standardize the acquisition parameters. 
This may have resulted in bias to the post-imaging workflow. 
In addition, the model development was based on limited 
patients from a single center, and only internal validation was 
performed. External validity should be considered in further 
studies to examine the generalizability of our model.

Conclusion
The radiomics model, which combined radiomic features 
extracted from gadoxetic acid disodium-enhanced MR 
images with clinical characteristics, could be useful to 
predict HCC recurrence after curative ablation.

Abbreviations
HCC, hepatocellular carcinoma; MWA, microwave abla-
tion; RFA, radiofrequency ablation; AFP, alpha- 
fetoprotein; MRI, magnetic resonance imaging; RFS, 
recurrence-free survival; HBsAg, hepatitis B virus surface 
antigen; ALB, positivity, albumin; GGT, gamma-glutamyl 
transferase; VOI, volume of interest; ICC, intraclass cor-
relation coefficient; VIMP, variable importance; ROC, 
receiver operating characteristic; DCA, decision curves 
analysis; HR, hazard ratio; CI, confidence interval.

Data Sharing Statement
The data supporting the founding of this paper are pre-
sented in this manuscript (ie Tables, Figure and 
Supplementary Materials). Relevant data can be provided 
from the corresponding author (JXH Email: jiangxh@sy-
succ.org.cn) on reasonable request.

Ethics Approval and Consent to 
Participate
This study was approved by the institutional review board 
of Sun Yat-sen University Cancer Center, and the require-
ment for informed consent was waived because this was 
a retrospective and observational study. The study was 
conducted in accordance with the Declaration of 
Helsinki. We keep patient medical information 
confidential.

Acknowledgments
This work was mainly supported by the National Natural 
Science Foundation of China (grant number 81671743), 
the Clinical Key diseases diagnosis and therapy Special 
project of Health and Family Planning Commission of 
Suzhou (LCZX201801), the High-level Health Personnel 
“six-one” Project of Jiangsu Province (LGY2016035) and 
Program for Advanced Talents within Six Industries of 
Jiangsu Province (WSW-057).

Disclosure
The authors declare that they have no conflicts of interest.

References
1. Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular 

carcinoma: trends, risk, prevention and management. Nat Rev 
Gastroenterol Hepatol. 2019;16(10):589–604. doi:10.1038/s41575- 
019-0186-y

2. Tang A, Hallouch O, Chernyak V, et al. Epidemiology of hepatocel-
lular carcinoma: target population for surveillance and diagnosis. 
Abdom Radiol. 2018;43(1):13–25. doi:10.1007/s00261-017-1209-1

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                             

Cancer Management and Research 2021:13 2794

Zhang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=300627.zip
https://www.dovepress.com/get_supplementary_file.php?f=300627.zip
https://doi.org/10.1038/s41575-019-0186-y
https://doi.org/10.1038/s41575-019-0186-y
https://doi.org/10.1007/s00261-017-1209-1
http://www.dovepress.com
http://www.dovepress.com


3. Jemal A, Ward EM, Johnson CJ, et al. Annual report to the nation on 
the status of cancer, 1975–2014, Featuring Survival. J Natl Cancer 
Inst. 2017;109(9). doi:10.1093/jnci/djx030

4. Park JW, Chen M, Colombo M, et al. Global patterns of hepatocel-
lular carcinoma management from diagnosis to death: the BRIDGE 
Study. Liver Int. 2015;35(9):2155–2166. doi:10.1111/liv.12818

5. Yang JD, Mohamed EA, Aziz AO, et al. Characteristics, manage-
ment, and outcomes of patients with hepatocellular carcinoma in 
Africa: a multicountry observational study from the Africa Liver 
Cancer Consortium. Lancet Gastroenterol Hepatol. 2017;2 
(2):103–111. doi:10.1016/S2468-1253(16)30161-3

6. Zheng R, Qu C, Zhang S, et al. Liver cancer incidence and mortality 
in China: temporal trends and projections to 2030. Chin J Cancer 
Res. 2018;30(6):571–579. doi:10.21147/j.issn.1000-9604.2018.06.01

7. Yin XY, Xie XY, Lu MD, et al. Percutaneous thermal ablation of medium 
and large hepatocellular carcinoma: long-term outcome and prognostic 
factors. Cancer. 2009;115(9):1914–1923. doi:10.1002/cncr.24196

8. Liang P, Dong B, Yu X, et al. Prognostic factors for survival in patients with 
hepatocellular carcinoma after percutaneous microwave ablation. 
Radiology. 2005;235(1):299–307. doi:10.1148/radiol.2351031944

9. Vietti Violi N, Duran R, Guiu B, et al. Efficacy of microwave 
ablation versus radiofrequency ablation for the treatment of hepato-
cellular carcinoma in patients with chronic liver disease: 
a randomised controlled Phase 2 trial. Lancet Gastroenterol 
Hepatol. 2018;3(5):317–325. doi:10.1016/S2468-1253(18)30029-3

10. Glassberg MB, Ghosh S, Clymer JW, et al. Microwave ablation 
compared with radiofrequency ablation for treatment of hepatocellu-
lar carcinoma and liver metastases: a systematic review and 
meta-analysis. Onco Targets Ther. 2019;12:6407–6438. doi:10.2147/ 
OTT.S204340

11. Lee DH, Lee JM, Lee JY, et al. Radiofrequency ablation of hepato-
cellular carcinoma as first-line treatment: long-term results and prog-
nostic factors in 162 patients with cirrhosis. Radiology. 2014;270 
(3):900–909. doi:10.1148/radiol.13130940

12. Groeschl RT, Wong RK, Quebbeman EJ, et al. Recurrence after 
microwave ablation of liver malignancies: a single institution 
experience. HPB (Oxford). 2013;15(5):365–371. doi:10.1111/j.1477- 
2574.2012.00585.x

13. Bruix J, Sherman M; American Association for the Study of Liver D. 
Management of hepatocellular carcinoma: an update. Hepatology. 
2011;53(3):1020–1022. doi:10.1002/hep.24199

14. European Association For The Study Of The L, European 
Organisation For R, Treatment Of C. EASL-EORTC clinical practice 
guidelines: management of hepatocellular carcinoma. J Hepatol. 
2012;56(4):908–943. doi:10.1016/j.jhep.2011.12.001

15. Feng J, Zhu R, Feng D, et al. Prediction of Early Recurrence of 
Solitary Hepatocellular Carcinoma after Orthotopic Liver 
Transplantation. Sci Rep. 2019;9(1):15855. doi:10.1038/s41598-019- 
52427-8

16. Ng KK, Cheung T, Wong TCL, et al. Prediction Model for early 
intrahepatic recurrence after hepatectomy for patients with hepato-
cellular carcinoma: an implication for adjuvant treatment. J Am Coll 
Surg. 2018;227(4):e59. doi:10.1016/j.jamcollsurg.2018.08.152

17. Marsh JW, Dvorchik I, Subotin M, et al. The prediction of risk of 
recurrence and time to recurrence of hepatocellular carcinoma after 
orthotopic liver transplantation: a pilot study. Hepatology. 1997;26 
(2):444–450. doi:10.1002/hep.510260227

18. Al-Ameri AAM, Wei X, Wen X, et al. Systematic review: risk 
prediction models for recurrence of hepatocellular carcinoma after 
liver transplantation. Transpl Int. 2020;33(7):697–712. doi:10.1111/ 
tri.13585

19. Roessler S, Jia HL, Budhu A, et al. A unique metastasis gene 
signature enables prediction of tumor relapse in early-stage hepato-
cellular carcinoma patients. Cancer Res. 2010;70(24):10202–10212. 
doi:10.1158/0008-5472.CAN-10-2607

20. Zhao QJ, Zhang J, Xu L, et al. Identification of a five-long 
non-coding RNA signature to improve the prognosis prediction for 
patients with hepatocellular carcinoma. World J Gastroenterol. 
2018;24(30):3426–3439. doi:10.3748/wjg.v24.i30.3426

21. Zhang Z, Jiang H, Chen J, et al. Hepatocellular carcinoma: radiomics 
nomogram on gadoxetic acid-enhanced MR imaging for early post-
operative recurrence prediction. Cancer Imaging. 2019;19(1):22. 
doi:10.1186/s40644-019-0209-5

22. Ma X, Wei J, Gu D, et al. Preoperative radiomics nomogram for 
microvascular invasion prediction in hepatocellular carcinoma using 
contrast-enhanced CT. Eur Radiol. 2019;29(7):3595–3605. 
doi:10.1007/s00330-018-5985-y

23. Wakabayashi T, Ouhmich F, Gonzalez-Cabrera C, et al. Radiomics in 
hepatocellular carcinoma: a quantitative review. Hepatol Int. 2019;13 
(5):546–559. doi:10.1007/s12072-019-09973-0

24. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the 
treatment of hepatocellular carcinoma. Hepatology. 2018;67 
(1):358–380. doi:10.1002/hep.29086

25. Liu W, Zheng Y, Zou R, et al. Impact of follow-up interval on 
patients with hepatocellular carcinoma after curative ablation. 
BMC Cancer. 2018;18(1):1186. doi:10.1186/s12885-018-5069-z

26. Wu M, Gao S, Song H, et al. Percutaneous thermal ablation com-
bined with simultaneous transarterial chemoembolization for hepato-
cellular carcinoma </=5 cm. J Cancer Res Ther. 2019;15(4):766–772. 
doi:10.4103/jcrt.JCRT_250_19

27. Galanakis N, Kehagias E, Matthaiou N, et al. Transcatheter arterial 
chemoembolization combined with radiofrequency or microwave 
ablation for hepatocellular carcinoma: a review. Hepat Oncol. 
2018;5(2):HEP07. doi:10.2217/hep-2018-0001

28. Mazzaferro V, Llovet JM, Miceli R, et al. Predicting survival after 
liver transplantation in patients with hepatocellular carcinoma beyond 
the Milan criteria: a retrospective, exploratory analysis. Lancet 
Oncol. 2009;10(1):35–43. doi:10.1016/S1470-2045(08)70284-5

29. Lin DC, Mayakonda A, Dinh HQ, et al. Genomic and epigenomic 
heterogeneity of hepatocellular carcinoma. Cancer Res. 2017;77 
(9):2255–2265. doi:10.1158/0008-5472.CAN-16-2822

30. Lu LC, Hsu CH, Hsu C, et al. Tumor heterogeneity in hepatocellular 
carcinoma: facing the challenges. Liver Cancer. 2016;5(2):128–138. 
doi:10.1159/000367754

31. Kim HY, Lee DH, Lee JH, et al. Novel biomarker-based model for 
the prediction of sorafenib response and overall survival in advanced 
hepatocellular carcinoma: a prospective cohort study. BMC Cancer. 
2018;18(1):307. doi:10.1186/s12885-018-4211-2

32. Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of 
contrast-enhanced CT predicts microvascular invasion and outcome 
in hepatocellular carcinoma. J Hepatol. 2019;70(6):1133–1144. 
doi:10.1016/j.jhep.2019.02.023

33. Hui TCH, Chuah TK, Low HM, et al. Predicting early recurrence of 
hepatocellular carcinoma with texture analysis of preoperative MRI: 
a radiomics study. Clin Radiol. 2018;73(12):1056e11–1056e16. 
doi:10.1016/j.crad.2018.07.109

34. Yuan C, Wang Z, Gu D, et al. Prediction early recurrence of hepato-
cellular carcinoma eligible for curative ablation using a Radiomics 
nomogram. Cancer Imaging. 2019;19(1):21. doi:10.1186/s40644- 
019-0207-7

35. Vernuccio F, Cannella R, Meyer M, et al. LI-RADS: diagnostic 
performance of hepatobiliary phase hypointensity and major imaging 
features of LR-3 and LR-4 lesions measuring 10–19 mm with arterial 
phase hyperenhancement. AJR Am J Roentgenol. 2019;213(2):W57– 
w65. doi:10.2214/ajr.18.20979

36. Rigatti SJ. Random Forest. J Insur Med. 2017;47(1):31–39. 
doi:10.17849/insm-47-01-31-39.1

Cancer Management and Research 2021:13                                                                               submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                       
2795

Dovepress                                                                                                                                                           Zhang et al

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1093/jnci/djx030
https://doi.org/10.1111/liv.12818
https://doi.org/10.1016/S2468-1253(16)30161-3
https://doi.org/10.21147/j.issn.1000-9604.2018.06.01
https://doi.org/10.1002/cncr.24196
https://doi.org/10.1148/radiol.2351031944
https://doi.org/10.1016/S2468-1253(18)30029-3
https://doi.org/10.2147/OTT.S204340
https://doi.org/10.2147/OTT.S204340
https://doi.org/10.1148/radiol.13130940
https://doi.org/10.1111/j.1477-2574.2012.00585.x
https://doi.org/10.1111/j.1477-2574.2012.00585.x
https://doi.org/10.1002/hep.24199
https://doi.org/10.1016/j.jhep.2011.12.001
https://doi.org/10.1038/s41598-019-52427-8
https://doi.org/10.1038/s41598-019-52427-8
https://doi.org/10.1016/j.jamcollsurg.2018.08.152
https://doi.org/10.1002/hep.510260227
https://doi.org/10.1111/tri.13585
https://doi.org/10.1111/tri.13585
https://doi.org/10.1158/0008-5472.CAN-10-2607
https://doi.org/10.3748/wjg.v24.i30.3426
https://doi.org/10.1186/s40644-019-0209-5
https://doi.org/10.1007/s00330-018-5985-y
https://doi.org/10.1007/s12072-019-09973-0
https://doi.org/10.1002/hep.29086
https://doi.org/10.1186/s12885-018-5069-z
https://doi.org/10.4103/jcrt.JCRT_250_19
https://doi.org/10.2217/hep-2018-0001
https://doi.org/10.1016/S1470-2045(08)70284-5
https://doi.org/10.1158/0008-5472.CAN-16-2822
https://doi.org/10.1159/000367754
https://doi.org/10.1186/s12885-018-4211-2
https://doi.org/10.1016/j.jhep.2019.02.023
https://doi.org/10.1016/j.crad.2018.07.109
https://doi.org/10.1186/s40644-019-0207-7
https://doi.org/10.1186/s40644-019-0207-7
https://doi.org/10.2214/ajr.18.20979
https://doi.org/10.17849/insm-47-01-31-39.1
http://www.dovepress.com
http://www.dovepress.com


Cancer Management and Research                                                                                                   Dovepress 

Publish your work in this journal 
Cancer Management and Research is an international, peer-reviewed 
open access journal focusing on cancer research and the optimal use of 
preventative and integrated treatment interventions to achieve improved 
outcomes, enhanced survival and quality of life for the cancer patient. 

The manuscript management system is completely online and includes 
a very quick and fair peer-review system, which is all easy to use. 
Visit http://www.dovepress.com/testimonials.php to read real quotes 
from published authors.  

Submit your manuscript here: https://www.dovepress.com/cancer-management-and-research-journal

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                             

Cancer Management and Research 2021:13 2796

Zhang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com/testimonials.php
http://www.dovepress.com
http://www.dovepress.com

	Introduction
	Materials and Methods
	Study Design and Study Population
	Ablation Procedure
	Study Outcome
	Clinical Characteristics and Selection of Predictors
	MRI Examination and Extraction of Radiomic Features
	Model Construction and Evaluation
	Statistical Analyses

	Results
	Baseline Characteristics of the Study Population
	Follow-Up and Survival of the Study Population
	Clinical Characteristics Associated with RFS
	Radiomic Features Associated with RFS
	Performance of Different Models
	Subgroup Analysis

	Discussion
	Conclusion
	Abbreviations
	Data Sharing Statement
	Ethics Approval and Consent to Participate
	Acknowledgments
	Disclosure
	References

