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Purpose: Treatment with low-intensity shockwave therapy (LI-ESWT) is associated with 
angiogenesis and is suggested as a treatment for different types of vascular diseases. It was 
hypothesized that LI-ESWT improves the renal filtration barrier and halts the progression of 
GFR decline in diabetic kidney disease (DKD) potentially through VEGF and NO formation. 
We present the first data on LI-ESWT in human DKD.
Methods: The study was designed as an interventional, prospective, one-arm, Phase 1 study. 
We investigated change in GFR and albuminuria in 28 patients with DKD treated with six 
sessions of LI-ESWT over three weeks. The patients were followed for six months. Urine 
excretion of kidney injury markers, vascular endothelial growth factor (VEGF) and nitric 
oxide metabolites (NOx) was studied after LI-ESWT.
Results: There were no significant changes in GFR and albuminuria up to six months after 
LI-ESWT compared to baseline. Urine VEGF was transiently reduced one month after LI- 
ESWT, but there were no other significant changes in urine VEGF or NOx after LI-ESWT. 
Secondary analysis showed that NOx increased after LI-ESWT in patients who had low 
levels of NOx at baseline. Kidney injury marker trefoil factor 3 (TFF3) increased acutely 
after the first session of LI-ESWT indicating transient endothelial repair. Other markers of 
kidney injury were stable in relation to LI-ESWT.
Conclusion: LI-ESWT treatment did not significantly improve kidney function and albumin 
excretion. It is concluded that LI-ESWT is not harmful. A randomized blinded study should 
be performed to clarify whether adjunctive treatment with LI-ESWT is superior to standard 
treatment of DKD.
Keywords: albuminuria, clinical trial, diabetic kidney disease, glomerular filtration rate, 
ESWT, extracorporeal shockwave therapy

Introduction
Diabetes mellitus (DM) affect 493 million adult individuals worldwide1 and is associated 
with a number of complications reducing the life-span and quality of life of patients 
living with DM.2 One of the most serious and devastating complications of DM is the 
presence of diabetic kidney disease (DKD) which may ultimately lead to end-stage 
kidney disease and considerably increased risk of death. DKD is estimated to affect 
20–40% of all patients with DM3 with increasing prevalence found in older patients. 
Thus, more than 50% of patients with DM aged >65 years might be affected by DKD.4

We recently proposed low-intensity shockwave therapy (LI-ESWT) as a new reno- 
protective intervention to reduce the progression of DKD. LI-ESWT is applied with 
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approximately 10% of the energy level that is used in the 
setting of lithotripsy (ESWL). LI-ESWT can be applied to 
different organs exposed to ischemia in order to induce 
angiogenesis via upregulation of local vascular endothelial 
growth factor (VEGF) and nitric oxide (NO) production.5–7 

Other potential beneficial effects associated with LI-ESWT 
include attraction of stem cells8,9 and reduction of 
fibrosis10,11 in target organs. Clinically, LI-ESWT reduces 
symptoms in ischemic heart disease12 and peripheral arterial 
disease.13 Furthermore, LI-ESWT improves the healing of 
diabetic foot ulcers14 and was recently recommended for 
vasculogenic erectile dysfunction.15

LI-ESWT is a type of acoustic wave characterized by 
a high peak positive pressure followed by a slightly nega-
tive, tensile pressure that causes shear stress of the cell 
membrane, cytoskeleton, and extracellular matrix 
components.16,17 The application of LI-ESWT leads to acti-
vation of different intracellular signaling pathways involved 
in endothelial cell proliferation and angiogenesis by stimula-
tion of specific cell membrane receptor proteins18,19 and cell 
membrane poration.20 LI-ESWT can affect tissue fibrosis 
and inflammation through a suppression of TGF-beta 
release,21 NF-kappa-beta pathway,22 and interleukins 1 and 
623 leading to decreased infiltration of fibrocytes,10 

leukocytes,24 and inflammatory macrophages.23

The findings that LI-ESWT may suppress inflammation 
and fibrosis and promote regeneration in vascular diseases 
motivated the hypothesis that LI-ESWT alleviates the 
microvascular complications associated with DKD ie, 
reduced GFR and albuminuria. To test the hypothesis, 
a protocol with six interventions over a period of three 
weeks was performed on 28 patients with DKD. The 
patients were followed for six months.

We previously reported preliminary data demonstrating 
the clinical safety of LI-ESWT in a subset of the cohort of 
patients with DKD.25 The present study reports the full set 
of data after completing the trial with six-month follow-up 
on all included patients. The effect of LI-ESWT treatment 
on glomerular filtration rate (GFR), albuminuria, VEGF 
and NO excretion, blood pressure, and kidney injury mar-
kers is shown in the full cohort of patients with DKD.

Patients and Methods
The study was designed as a one-arm, prospective, interven-
tional cohort study. We recruited 28 patients with diabetic 
kidney disease between May 27th, 2015 and June 27th, 2019 
at Odense University Hospital, Odense, Denmark. The 
inclusion and exclusion criteria for the study are presented 

in Box 1. Patients received treatment with Li-ESWT and 
were followed up at one month, three months, and six 
months after the last treatment session with LI-ESWT. An 
overview of study investigations is provided in Figure 1.

Preliminary results from the present trial were pub-
lished in a safety report.25 In the present analysis, the 
results were reported for a total of 28 patients. Only 14 
patients were included in our preliminary safety report.

Li-ESWT
Six treatment sessions with LI-ESWT were carried out 
over a period of three weeks. There were three to four 
days interval between each of the treatment sessions. The 
treatment was carried out using a Modulith SLX-2 device 
(Storz Medical, Tägerwilen, Switzerland). At every ses-
sion, each kidney was treated with 1000 shocks at the 
upper pole, 1000 shocks at the middle part, and 1000 
shocks at the lower pole. The energy level was increased 
stepwise at every part of the kidney within the first 200 
shocks; we started at minimum energy setting at 0.1 (0.136 
mJ/mm2) and gradually increased up to energy setting 0.7 
(0.265 mJ/mm2). The remaining 800 shock at each part of 
the kidney were applied with energy setting 0.7. All 

Box 1 Inclusion and Exclusion Criteria

Inclusion

Patients with DM and stage 3 CKD

Exclusion

Non-DM kidney diseasea

Kidney or ureteral stone

Obstructive uropathy

Untreated urinary tract infection

Kidney tumorb

Anticoagulant medical therapyc

Bleeding disorder

Pregnancy

Office blood pressure >140/90 mmHg

Abnormal renogrammed

Single kidney

Kidney transplant

AMI within one year

Severe psychiatric disease

Notes: aPatients where non-DM kidney disease was suspected from medical 
history or clinical evaluation. bPatients with simple renal cortical cysts (Bosniak 
class I and II) were allowed to participate. cPatients receiving platelet inhibitors 
were allowed to participate. d<30% function on one kidney
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shocks were applied with extended focal size and 4 Hz 
frequency. The patients were placed on their back or side 
during the treatments. We used water as coupling medium 
between the device and the patients’ skin. The kidneys 
were localized in-line with ultrasound.

Outcomes
GFR was determined with 51-chromium-EDTA or Tc-99m- 
DTPA clearance method. Albuminuria was quantified in 24- 
hour urine collection samples. We measured ambulatory blood 
pressure using an Ambulatory Blood Pressure Monitor model 
90217A (Spacelabs Healthcare, USA) with blood pressure 
readings every 20 minutes during daytime from 6 am to 10 
pm and every 60 minutes during the nighttime. Blood samples 
were drawn from a peripheral vein. Concise methods for these 
outcomes were previously described.25

Spot Urine Samples
Nitric oxide metabolites (NOx), VEGF and kidney injury 
markers were measured in spot urine samples taken at 
baseline, at 1st and 6th treatment sessions, and at follow- 
up after 1, 3, and 6 months. At the 1st treatment session, 
the spot urine sample was taken immediately after LI- 
ESWT to assess the acute effects of the treatment. At the 
6th treatment session, the spot urine sample was taken 
before LI-ESWT to assess the subacute effects of the 
previous treatment which was conducted 3–4 days earlier.

The concentrations of VEGF and kidney injury markers 
calbindin, clusterin, kidney injury molecule-1 (KIM-1), 
osteoactivin, and trefoil factor 3 (TFF3) were determined 
in spot urine samples with a commercially available multi-
plex ELISA assay (Kidney Injury Panel 3 Human Kit, Meso 

Scale Diagnostics, Rockville, Maryland, USA). Nitric oxide 
metabolites nitrite and nitrate (NOx) were quantified in spot 
urine samples using a commercial colorimetric assay 
(Nitrate/Nitrite Colorimetric assay Kit, Cayman Chemical, 
Ann Arbor, Michigan, USA).

The concentrations of the analytes were determined in 
duplicate and normalized to creatinine concentration.

Statistics
Non-parametric Friedman test with level of significance 
0.05 was used for GFR, albuminuria, ambulatory blood 
pressure, and plasma variables. Unadjusted post-hoc test 
was carried out for significant outcomes of the Friedman 
test. We excluded six patients with non-significant excre-
tion of albumin in urine (<30 mg/24-hours through all 
study visits) from the analysis of albuminuria. Levels of 
NOx, VEGF, and kidney injury markers were compared to 
baseline with Wilcoxon signed rank test with significance 
level set to 0.10 in order to prevent from type II errors 
evaluating the safety of LI-ESWT.

We performed an exploratory analysis of correlations 
between the variables obtained at baseline, treatment ses-
sions, and follow-up. Linear correlations between continuous 
variables were tested using Pearson’s product-moment cor-
relation. Non-linear correlations between continuous vari-
ables were tested using Spearman’s rank-order correlation.

All statistics were performed in SPSS Statistics version 
26 for Mac (IBM, Armonk, NY, USA).

Results
Twenty-eight included patients completed the treatments with 
LI-ESWT as per protocol. One patient dropped out of the 

Figure 1 Overview of investigations.
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study after a three-month follow-up visit. All other patients 
completed the follow-up program and study investigations. 
There were twenty male patients and eight female patients 
(Table 1). The patients had a median age of 61 years (IQR 54; 
69) and were diagnosed with type 2 DM (n=19), type 1 DM 
(n=6), latent autoimmune diabetes in adults (LADA) (n=2), or 
maturity onset diabetes of the young type 3 (MODY3) (n=1). 
The median duration of DM was 25 years (IQR 13; 35).

Clinical Safety
A mild degree of macroscopic hematuria was observed after 
the treatment with LI-ESWT in six of the patients but was not 
associated with significant adverse renal outcomes. 
Macroscopic hematuria was only present in the patients’ first 
urine after the treatments and was dissolved at their next void. 
Microscopic hematuria was observed in six patients (exclud-
ing the patients who had macroscopic hematuria) after the 
treatments. In general, the patients experienced transient mild 
to moderate flank tenderness lasting two to three days after the 
treatments with LI-ESWT. All of the patients reported that 
flank tenderness was reduced before a new treatment session 
was initiated and did not increase from time to time through 
the treatments. Ultrasound scans performed one and three 
months after LI-ESWT showed no hematoma in the kidneys.

Functional Outcomes
There were no significant changes in the patients’ GFR and 
albuminuria after LI-ESWT (Table 3). At baseline, median 
GFR was 37.0 mL/min/1.73m2 (IQR 27.3; 49.0) compared 
to 36.0 mL/min/1.73m2 (IQR 27.0; 46.8) at three-month 
follow-up and 37.0 mL/min/1.73m2 (IQR 24.0; 51.0) at six- 
month follow-up (p=0.351). Median urinary albumin excre-
tion was 302 mg/24-hours (IQR 78; 786) at baseline, 253 mg/ 
24-hours (IQR 80; 1187) at one-month follow-up, 295 mg/ 
hours (58; 907) at three-month follow-up, and 214 mg/hours 
(100; 987) at six-month follow-up (p=0.801). Individual 
curves representing GFR and albuminuria in each patient 
during the study are provided in Figure 2.

Sodium excretion, potassium excretion, or volume in 
24-hour urine samples did not change significantly after 
LI-ESWT. Median creatinine clearance was 56.2 mL/min 
(IQR 36.5; 70.1) at baseline and was not significantly 
affected by LI-ESWT (p=0.165).

Median baseline systolic ambulatory blood pressure 
was 126 mmHg (IQR 119; 133) and median baseline 
diastolic ambulatory blood pressure was 70 mmHg (IQR 
64; 79). The ambulatory blood pressure did not change 
through follow-up visits compared to baseline.

Adjustments made to the patients’ anti-hypertensive 
and anti-diabetic medical treatment during follow-up are 
outlined in Appendix 1.

Plasma Variables
There were no significant changes in hemoglobin, albu-
min, sodium, potassium, ionized calcium, phosphate, crea-
tinine, or glycated hemoglobin throughout the study 

Table 1 Baseline Demographics

Sex
Male 20 (71%)
Female 8 (29%)

Age (years) 61 (54; 69)

Body mass index (kg/m2) 28 (22; 32)

Smoking
Current 3 (11%)

Former 15 (54%)
Never 10 (36%)

Package years, none-smokers excluded 18 (7; 41)

Alcohol consumption (12g/week) 1 (0; 5)

Diabetes mellitus
Type 1 6 (21%)

Type 2 19 (68%)
Other (MODY/LADA) 3 (11%)

Duration of diabetes (years) 25 (13; 35)

Medical treatment of diabetes mellitus
None 1 (4%)
Metformin 7 (25%)

Insulin 23 (82%)

Sulfunylurea 2 (7%)
DPP-4 inh./GLP-1-RA/SGLT2-inh. 7 (25%)

Medical treatment of hypertension
None 3 (11%)

ACE-inhibitor /AT2-antagonist 23 (82%)
Thiazide 14 (50%)

Furosemide 12 (43%)

Beta-blocker 8 (29%)
Calcium-antagonist 15 (54%)

Other 9 (32%)

Receiving lipid-lowering medication 25 (89%)

Charlson Index scorea

2 12 (43%)

3–4 13 (46%)

5 or more 3 (11%)

Notes: Data are number (%) or median (25% quartile ; 75% quartile). aMinimum 
Charlson Index Score is 2 according to the diagnosis of diabetic nephropathy in all 
patients.
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A

B

Figure 2 Individual curves representing albuminuria (A) and GFR (B) in each patient during the study.
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(Table 2). There was a significant increase in BUN 
(p=0.038). At baseline, median BUN was 10.4 mmol/L 
(IQR 8.8; 14.3) and increased at six-month follow-up visit 
where the median was 13.7 mmol/L (IQR 8.6; 15.8). In 
a post-hoc test, there was a significant increase in BUN 
from baseline to six-month follow-up visit (p=0.018) and 
from three-month follow-up visit to six-month follow-up 
visit (p=0.031).

NOx and VEGF Excretion
In spot urine samples, the concentration of NOx concen-
tration increased numerically after LI-ESWT but not in 
a statistically significant way (Table 3). Median urine 
VEGF was 76.0 ng/mmol (36.3; 123.1) at baseline and 
decreased significantly to 54.9 ng/mmol (39.5; 101.7) at 
one-month follow-up (p=0.056). There were no further 
significant differences in urine VEGF excretion. 
Individual curves representing NOx and VEGF in each 
patient during the study are provided in Figure 3.

Markers of Kidney Injury
Median urine TFF3 increased significantly to 23.1 ng/ 
mmol (12.2; 66.5) after the first treatment session com-
pared to a baseline median value of 13.3 ng/mmol (8.6; 
33.7) (p=0.030) (Table 3). However, at all other visits, 
there were no significant changes in TFF3 relative to base-
line. KIM-1 and clusterin tended to decrease after the first 
treatment session compared to baseline but the results 
were not statistically significant. After the first treatment, 
median urine KIM-1 was 69.8 ng/mmol (47.0; 120.7) 
compared to 394 ng/mmol (62.2; 1150) at baseline 
(p>0.10). Median urine clusterin was 4699 ng/mmol 
(2780; 17,732) after the first treatment in comparison to 
8137 ng/mmol (3131; 23,468) at baseline (p>0.10). 
Individual curves representing TFF3 in each patient during 
the study are provided in Figure 3.

Correlation Analyses Between Outcomes
There were significant correlations between the recorded 
variables with an overview provided in Appendix 2. 
Notably, the levels of NOx, calbindin, clusterin, KIM-1, 
osteoactivin, TFF3, and VEGF tended to change after LI- 
ESWT in a manner that depended on the baseline level. 
The kidney injury markers decreased in those patients that 
displayed high baseline level of these markers. The 
patients who had a low baseline level of injury markers 
tended to have an increase in these markers after LI- 
ESWT. NOx and VEGF tended to increase in the patients 

who had low baseline levels of NOx and VEGF but were 
reduced in the patients with high levels at baseline. These 
effects were evident in close relation to the treatment 
sessions ie first treatment, sixth treatment, and 1-month 
follow-up. However, the effect persisted at six-month fol-
low-up for NOx and calbindin. Furthermore, after the first 
treatment session, the change in VEGF correlated posi-
tively with the change in NOx.

Discussion
The present study found no significant changes in GFR 
and albuminuria after LI-ESWT. Albuminuria decreased in 
half of the patients after LI-ESWT but with no overall 
significant decline. BUN increased at six-month follow-up 
compared to baseline but was stable after one month and 
three months. Plasma concentrations of creatinine, potas-
sium, and phosphate and creatinine clearance were unaf-
fected by LI-ESWT. In the present study, the side effects to 
LI-ESWT were comparable to our previous report.25 In 
summary, LI-ESWT is clinically and biochemically safe in 
human diabetic kidney disease.

To our knowledge, this study represents the first data 
on LI-ESWT in human kidney disease. A previous study 
in a pig model of kidney disease demonstrated that LI- 
ESWT improved renal microvascular density, tissue oxy-
genation, and GFR following ischemic kidney injury.26 

Thus, LI-ESWT promoted a regenerative angiogenic 
response in kidneys with ischemic injury through 
a mechanism involving stimulation of focal adhesion 
kinase and beta 1-integrin that transmit the mechanical 
stimulus of LI-ESWT.26 In animals, VEGF increased 
after LI-ESWT in various types of renal disease26–28 

including type-1 DKD.29 Furthermore, eNOS expression 
improved after LI-ESWT in animal models of acute 
ischemic renal disease26 and chronic renal disease.28 

However, in hypertensive renal disease in rats, LI-ESWT 
did not improve VEGF or eNOS expression.30 

Interestingly, recent animal data suggested that LI-ESWT 
increase the expression of stromal-derived cell factor-1 
and promote homing of endothelial progenitor cells to 
injured renal tissue.31

In spot urine samples, we found no overall changes in 
NOx. VEGF was transiently reduced after one month. 
Previous studies show that NOx is increased immediately 
after shockwave lithotripsy (ESWL) in both plasma and 
urine.32 In rodents, ESWL leads to activation of the NO- 
cGMP pathway which may counteract renal 
vasoconstriction.33 In particular, ESWL causes renal 
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vasoconstriction in humans,34 and we therefore speculate 
that the production of NOx could be secondary to transient 
renal ischemia induced by shockwaves. In the present 
study, we did not measure renal blood flow or resistive 
index during LI-ESWT to further investigate this 
mechanism.

Kidney injury markers in spot urine were not signifi-
cantly affected by LI-ESWT except TFF3 which increased 
at the first treatment session. TFF3 is a peptide that plays 
a protective role for epithelial surfaces in the gastrointest-
inal tract but its function in the kidney is not fully 
clarified.35 In rodents, TFF3 decreased in urine and kidney 
tissue a few days following tubular injury whereas urinary 
levels of albumin, KIM-1, and clusterin increased.36,37 

Seemingly, TFF3 changes in an opposite pattern compared 
to other kidney injury markers after acute tubular injury. 
However, in human chronic kidney disease, urinary levels 
of TFF3 are increased suggesting on-going epithelial 
repair.38 In the present study, the increase in TFF3 was 
short lasting (<two or three days after LI-ESWT since the 
level of TFF3 returned to baseline level in the spot urine 
sample that was obtained before initiation of the sixth 
treatment session) and could indicate transiently increased 
epithelial injury/repair as a response to LI-ESWT. Such 
interpretation would fit also with mild hematuria observed 
in some patients after LI-ESWT. Nonetheless, we found no 
correlation of the increase in TFF3 with changes in pri-
mary functional outcomes GFR and albuminuria.

In rats, LI-ESWT reduced serum levels of kidney 
injury markers neutrophil gelatinase-associated lipocalin 
(NGAL) and KIM-1 and renal tissue injury after renal 
reperfusion injury.39 In the present study, KIM-1 and clus-
terin decreased in the majority of patients after the first 
session of LI-ESWT but not overall statistically signifi-
cantly. In animal studies, LI-ESWT reduced renal fibrosis 
following chronic proteinuric kidney disease28 and after 
renal ischemic injury or reperfusion injury.26,40 We did not 
include renal tissue data or circulating fibrosis biomarkers 
in the present report to investigate the potential of LI- 
ESWT to reduce tissue fibrosis. Osteoactivin is suggested 
to trigger upregulation of collagen and matrix metallopro-
teinase expression and induce renal interstitial fibrosis.41 

However, we found no change in the urinary excretion of 
osteoactivin after LI-ESWT.

In a secondary correlation analysis, we found 
a remarkable association between the urinary level of 
NOx, VEGF, and kidney injury markers at baseline and 
the respective changes in these molecules during Ta
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treatments and follow-up. Thus, there was a tendency 
towards an increase in NOx in urine after LI-ESWT in 
those patients who had a relatively low excretion of NOx 
at baseline. Apparently, with increasing baseline levels, the 
changes in the NOx, VEGF, and kidney injury markers 
decreased linearly after LI-ESWT. That also meant that 
NOx and VEGF tended to decrease in the patients who had 
a relatively high level at baseline. Interpreting these 
results, the patients with most extreme excretions of 
NOx, VEGF, and kidney injury markers regressed towards 
mean levels after LI-ESWT. In the present study, we found 
no explanation as to why this effect in the kidney was 
seen.

At baseline, we found that albuminuria was present 
almost exclusively in patients with relatively low levels of 
NOx and relatively high levels of VEGF, and that lower NOx 
or higher VEGF was associated with exponentially increas-
ing albuminuria. In animals, VEGF is increased under the 
circumstances of DKD.42 Conversely, in some studies of 
human DKD, VEGF is reduced and VEGF antagonism lead 
to adverse renal outcomes.43 It is suggested that in DKD 
there is an impairment of the VEGF-NO axis where VEGF 
is uncoupled from its normal stimulation of NO and regula-
tion of angiogenesis.44 The fact that NOx tended to increase 
after LI-ESWT in the patients who had a low level of NOx at 
baseline could potentially work as a protective factor against 
albuminuria. In the patients who had increasing VEGF dur-
ing the treatment sessions and early follow-up, GFR tended 
to improve later after three and six months. It is possible that 
VEGF may be used in future studies to divide patients in 
response/non-response groups after LI-ESWT. However, in 
correlation analysis, we found no other clinical feature or 
biomarker that could be used to predict changes in GFR, 
albuminuria, or blood pressure. After the first session of LI- 
ESWT, VEGF and NOx acutely changed in the same direc-
tion within the patients as demonstrated in our secondary 
correlation analysis. However, at follow-up, there was no 
clear relationship between the change in NOx and the change 
in VEGF that could indicate a possible restoration of the 
balance between VEGF and NO.

Our study is limited in that no control group was imple-
mented. Furthermore, the patients were followed for relatively 
short time (six months) which, in the absence of LI-ESWT, 
may be too short to record significant changes in GFR or 
albuminuria in patients with diabetic kidney disease. We did 
not count how many patients were screened for participation. It 
is possible that our study population is selective considering 
that the most fragile or comorbid patients might have declined 

participation due to the relatively intense study program. We 
detected no significant changes in GFR and albuminuria after 
LI-ESWT demonstrating that LI-ESWT is not harmful. In 
perspective, LI-ESWT can prevent loss of kidney function or 
reduce the rate of kidney functional decline, but a control group 
and longer-term follow-up is needed to evaluate such effects. 
Moreover, the interventions should likely be repeated in order 
to maintain the effect on long-term. In patients with DKD, 
small annual reductions in GFR is expected in both type-1 
DM45 and type-2 DM.46 In the present study, we carefully 
monitored covariates that could bias GFR and albuminuria. 
There were no changes in ambulatory blood pressure or 
HbA1c during follow-up. Two patients discontinued their 
treatment with ACE-inhibitor early during follow-up possibly 
constituting a bias for renal functional outcomes. LI-ESWT 
elicited a number of positive effects in animal models of renal 
disease.26,28,29 However, in these studies, LI-ESWT was 
applied with lower energy at 0.09–0.13 mJ/mm2 compared 
to our study. Future clinical studies need focus on dose– 
response relationship of LI-ESWT. It is also likely that the 
effective dose of LI-ESWT energy received in the kidney 
might be variable based on different patients’ weight and soft 
tissue thickness. In futures studies, it would be useful to deter-
mine whether there is a need to individually adjust the energy 
level of LI-ESWT based on factors such as skin to kidney 
distance.

In conclusion, we report that LI-ESWT is clinically 
safe and does not adversely affect markers of kidney injury 
in patients with DKD. We found no change in primary 
renal functional outcomes, ie GFR and albuminuria. LI- 
ESWT had no overall effect on VEGF and NOx excretion 
in urine. An exploratory analysis indicated that NOx 
increased in patients who had low levels of NOx. VEGF 
temporarily increased after LI-ESWT in patients with low 
level of VEGF. Furthermore, an increase in VEGF after 
LI-ESWT was associated with improving GFR. We recom-
mend that LI-ESWT is evaluated in a randomized, pla-
cebo-controlled trial.
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