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Abstract: As a crucial organ, the lung is exposed to various harmful agents that may induce 
inflammation and oxidative stress, which may cause chronic or acute lung injury. Nigella 
sativa, also known as black seed, has been widely used to treat various diseases and is one of 
the most extensively researched medicinal plants. Thymoquinone (TQ) is the main compo-
nent of black seed volatile oil and has been proven to have antioxidant, anti-inflammatory, 
and antineoplastic properties. The potential therapeutic properties of TQ against various 
pulmonary disorders have been studied in both in vitro and in vivo studies. Furthermore, the 
application of nanotechnology may increase drug solubility, cellular absorption, drug release 
(sustained or control), and drug delivery to lung tissue target sites. As a result, fabricating TQ 
as nanoparticles (NPs) is a potential therapeutic approach against a variety of lung diseases. 
In this current review, we summarize recent findings on the efficacy of TQ and its nanotypes 
in lung disorders caused by immunocompromised conditions such as cancer, diabetes, gastric 
ulcers, and other neurodegenerative diseases. It is concluded that TQ nanoparticles with anti- 
inflammatory, antioxidant, antiasthma, and antitumor activity may be safely applied to treat 
lung disorders. However, more research is required before TQ nanoparticles can be used as 
pharmaceutical preparations in human studies. 
Keywords: anticancer activity, antimicrobial activity, bioavailability, drug delivery, 
molecular potential, lung disease, nanoparticle, thymoquinone

Introduction
Over the last decade, the rising morbidity and mortality rates from acute and 
chronic lung diseases have become critical public health concerns worldwide.1 

Trauma, air contamination, obesity, and multiple types of bacteria are the most 
common causes of pulmonary injury. Acute lung injury (ALI), known as acute 
respiratory distress syndrome (ARDS), is a pulmonary disorder marked by inflam-
mation-associated lesions in various diseases associated with high mortality 
(between 25% and 40% in the USA) and morbidity (35–50%) in both animals 
and humans worldwide.1 ARDS, is a potentially fatal infection caused by acute 
hypoxemic respiratory failure, bilateral convergence on chest radiography, and the 
low of left atrial blood pressure.2

Sepsis, smoke inhalation injury, near-drowning, acute pneumonia, and pulmonary 
hematoma are the most common causes of ARDS.3 Some of the most common chronic 
obstructive pulmonary diseases are asthma, bronchopulmonary dysplasia.3 Several 
in vivo animal models for chronic respiratory disorders such as allergic inflammation, 
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bronchitis, airway remodeling, emphysema, and fibrosis have 
been developed, which are produced using ovalbumin,4 lipo-
polysaccharide (LPS),5 cigarette smoke,6 diesel exhaust,7 

bleomycin,8 and silica.9 Biological studies have revealed 
that LPS is the leading cause of acute and chronic lung injury, 
derived from Gram-negative bacteria and pollution (mainly 
cigarette smoke). LPS induces severe lung inflammation, 
activation of interstitial resident macrophages, and the recruit-
ment of neutrophils in the alveoli and airways of guinea pigs, 
rats, and mice.10,11 Despite the progress made in advanced 
supportive care, ARDS still has a high mortality rate.

There is a need for new approaches to affect certain 
pathological pathways and boost the immune responses in 
order to prevent, treat, and manage allergic and immunode-
ficiency diseases. Nigella sativa L. (family Ranunculaceae), 
known as black seed or black cumin, has been commonly 
used as a food ingredient and herbal medication to treat many 
inflammatory and allergic diseases in various countries, par-
ticularly in the Southwest Asian regions.12 Many reports 
have indicated its broad spectrum of potential therapeutic 
benefits, including bronchodilatory, immunomodulatory, 

antibacterial, hypotensive, antidiabetic, hepatoprotective, 
gastroprotective, neuroprotective, antihistaminic, anticancer, 
anti-inflammatory, and antioxidant effects.12–14 Most of its 
therapeutic benefits have been revealed to be related to the 
presence of thymoquinone (TQ), a primary active ingredient 
of N. sativa oil.15 The potential therapeutic properties and 
biological activity of TQ are presented in Figure 1.

The field of pulmonary drug delivery has grown tremen-
dously since the mid-20th century and is now a multi-billion 
-dollar industry. Drug delivery for lung injuries differs 
depending on the target site.16 In recent decades, pulmonary 
inhalation has been considered a promising route for admin-
istering drugs, for treating not only local conditions but also 
systemic diseases such as diabetes.16 In asthma, the drug 
needs to be delivered to the upper airways; however, drug 
deposition deep in the lungs is required in alveolar lung 
diseases such as chronic obstructive pulmonary disease and 
idiopathic pulmonary fibrosis.17 Recently, many studies 
have revealed that inhaled nanoparticle-based therapeutics 
can immediately access all areas of the lung tissue, poten-
tially improving the supply of medication to the target 

Figure 1 The molecular function of thymoquinone (TQ) pathways. 
Abbreviations: Bcl2, B-cell lymphoma; Akt, protein kinase; SOD, superoxide dismutase; CAT, catalase; GPX, glutathione peroxidase; IL6-IL8, proinflammatory cytokines IL- 
6, IL-8.
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cells.18,19 Moreover, nanoparticles (NPs) with a size in the 
range of 1 to 5 µm are deposited deep in the lungs, while 
particles >10 µm are generally deposited in the oropharyn-
geal region.20 Targeted respiratory symptoms have been 
treated by many types of NPs, such as chitosan/tripolypho-
sphate NPs for the delivery of proteins to the lungs21 and 
antibody-coated NPs.22 Moreover, solid lipid NPs (SLNs) 
were used for the delivery of insulin to the lungs,23 as were 
insulin-loaded poly-butyl-cyanoacrylate NPs,24 while micro- 
encapsulated chitosan NPs were used for the delivery of 
pulmonary proteins.25

However, few studies investigating the therapeutic role 
of nano-TQ in preventing or treating lung diseases have 
been reported. A recently reported study showed that TQ 
poly-lactide-co-glycolic acid (PLGA)-polyvinyl alcohol 
NPs ameliorated pulmonary fibrosis in rats induced by bleo-
mycin via the regulation of inflammatory cytokines and 
inducible nitric oxide synthase signaling.26 In the recent 
literature, there is evidence of TQ’s therapeutic role in treat-
ing and controlling respiratory diseases and nano-TQ’s 

involvement in the medical control of cancer, diabetes, 
gastric ulcer, and hepato- and neurotoxicity in the treatment 
of Huntington’s disease-like syndrome.26 Based on the 
reviewed findings, it is anticipated that researchers will for-
mulate suitable TQ-NPs to control and treat lung diseases.

Acute Respiratory Distress 
Syndrome (ARDS)
Lung injury might be induced in response to chemicals 
and environmental pollutants, including cigarette smoke, 
diesel exhaust, and silica, in addition to ovalbumin and 
LPS (Figure 2). LPS is found in the cell walls of Gram- 
negative bacteria and can elicit immune responses in 
humans and animals.27 LPS plays a critical role in bacter-
ial pathogenesis because it can act as an immuno- 
modulator and an immuno-stimulator.28 In addition, LPS 
is considered to be chemotactic for pathogen-associated 
molecular patterns and stimulate host inflammatory reac-
tions. LPS was shown to elicit this response through 
binding to Toll-like receptor-4 (TLR-4).29

Figure 2 The pharmacological function of thymoquinone (TQ) as an anti-inflammatory agent in the prevention of lung disease. 
Abbreviations: TGF-β, transforming growth factor β1; NK, natural killer cell activity; IFN-γ, interferon-gamma.
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Experimentally, intratracheal installation of mice with 
10 µg of LPS was found to initiate an inflammatory 
response represented by the infiltration of granulocytes, 
particularly neutrophils, into the extracellular matrix and 
the release of many pro-inflammatory mediators that play 
a fundamental role in lung injury.30 Epithelial cells can 
recognize LPS during pulmonary infection and play 
a crucial role in innate pulmonary immunity.31 Moreover, 
LPS recognition by TLR-4 was found to initiate the 
inflammatory response via the activation of master tran-
scription factors, mainly nuclear factor-κB (NF-κB), and 
cytokines.32

The cytokines are small proteins secreted by certain 
cells that affect other cells’ behavior and regulate cellular 
immunity and inflammatory response. Some of them 
reduce inflammation and promote healing as anti- 
inflammatory cytokines, whereas others induce certain 
disorders as pro-inflammatory cytokines.33

In one study, mice that received 30 mg/kg LPS intra-
peritoneally exhibited significant increases in the produc-
tion of tumor necrosis factor-α (TNF-α) in their tissues. In 
addition, pretreatment of mouse macrophages with a low 
dose of LPS modulated LPS-dependent interleukin-6 (IL- 
6) production in vitro.34 Similarly, LPS was reported to 
induce pro-inflammatory cytokines, including TNF-α, IL- 
6, IL-1, and IL-12, as well as nitric oxide.35

Acute viral pneumonia is a major cause of ARDS, but 
not enough is known about the viruses’ interactions with 
the host immune response.36 Since 2003, there have been 
multiple significant coronavirus outbreaks, leading to epi-
demics such as severe acute respiratory syndrome, Middle 
East respiratory syndrome, and coronavirus disease 2019 
(COVID-19). Since the initial outbreak of COVID-19 in 
Wuhan, China, in December 2019, coronavirus has dra-
matically affected the lives and health of people around the 
world.37 COVID-19 is highly infectious and can lead to 
fatal ARDS,38 which features the dysregulation of lung 
perfusion (cytokine storm) causing increased vascular per-
meability and severe disease.39

Chronic Lung Injury
Chronic lung disease, often recognized as bronchopulmon-
ary dysplasia, occurs when an infected lung is damaged. 
The damaged lung tissue becomes inflamed and might 
break down, resulting in chest trauma.40 Chronic lung 
injury induced by the inhalation of or chronic exposure 
to LPS has been studied by many investigators, who have 
described lesions of chronic lung inflammation due to 

several factors.41,42 Moreover, chronic inhalation of grain 
dust containing LPS was shown to induce classic asthma 
and airflow obstruction.43 After exposure to a nebulized 
solution (30 μg/mL) of LPS, inflammatory cell infiltrates 
in guinea pig lungs were observed. The enlargement of 
alveoli, swelling of the alveolar walls, goblet cell hyper-
plasia in the airways, and accumulation of many inflam-
matory cells such as macrophages and neutrophils were 
also recorded.44

Furthermore, repetitive intratracheal instillation of LPS, 
twice a week for up to 5 weeks, was reported to lead to 
emphysema, fibrosis, and bronchial mucus cell hyperplasia 
in hamsters. The lungs of LPS-treated hamsters had moderate 
to severe bronchial mucus cell hyperplasia, as represented by 
many periodic acid–Schiff-stainable acid muco-substance 
cells such as glycoproteins, glycolipids, and mucins in tis-
sues. The level of fibrosis was recorded after the last dose, 
and it was marked in the visceral pleura 6 months after LPS 
recovery.45 Mucous cell metaplasia in the tracheal-bronchial 
airways of rats was observed after daily injection with 
0.05 mL of saline containing 5 mg of LPS for 3 days.45

In addition, pigs in farms with long-term exposure to 
LPS-laden dust were found to have a pulmonary inflam-
matory response related to the proportional decline in lung 
function with irreversible and progressive lung injury.46 

Moreover, the intranasal instillation of low-dose LPS at 1 
µg per mouse, twice weekly for 20 weeks, led to pulmon-
ary lesions in the form of emphysema and an increased 
number of macrophages, alveolar destruction, and neutro-
phil infiltration. Furthermore, IL-6 and TNF-α were found 
to be significantly upregulated in plasma.47 Taken together, 
these findings reinforce the assertion that occupational 
susceptibility to inhaled LPS is a significant risk factor 
for emphysema in humans. Moreover, LPS-induced 
mechanisms of emphysema are due to activated macro-
phages. Activated macrophages and chemotactic neutro-
phils secrete proteinases, elastases, and cytokines, which 
attack the alveolar wall and capillary beds.40

Protective Effects of TQ Against 
Lung Diseases
Many investigators have focused on TQ as the main bio-
logically active compound of N. sativa. Seeds of N. sativa 
are well known as the primary natural source of TQ.48 

Small amounts of TQ were also detected in N. arvensis 
L. seeds.49 TQ is a key bioactive constituent of the volatile 
oil of different types of black seed (N. sativa), caraway 
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(Carum carvi), coriander (Coriandrum sativum), and nut-
meg (Myristica fragrans).50

The therapeutic pathways by which TQ prevents lung 
disease as an anti-inflammatory agent are illustrated in 
Figure 2. TQ’s anti-inflammatory effects, especially 
against airway and pulmonary inflammation, are achieved 
via decreases in the production of inflammatory mediators 
such as sodium nitrite, which elevates NF-κB and pro- 
inflammatory cytokines, 5-lipoxygenase, leukotriene, and 
eosinophils.51 Meanwhile, TQ inhibits the LPS-induced 
production of IL-1β, ΙL-6, and ΙL-12, suggesting its poten-
tial to suppress pro-inflammatory cytokines.51

In mice, in which ARDS was found to be induced by 
diesel exhaust particles intratracheally, systemic inflamma-
tion was represented by leukocytosis, increased IL-6 
levels, and reduced systolic blood pressure after 4 and 12 
h. TQ’s protective effect on the damaged lung was recog-
nized via decreased platelet numbers and prothrombotic 
cascades, but not platelet aggregation.52

In another study, the effects of crude TQ in ARDS 
induced by LPS were examined. Pulmonary tissue pathol-
ogy, serum levels of cytokines, and immunohistochemical 
analysis of tissue NF-κB expression revealed TQ’s amelior-
ating properties.53 These were characterized by a reduction 
in perivascular and interstitial edema, thickening of inter- 
alveolar septa, and hyperplasia of bronchial-associated lym-
phoid tissue.53 An electron microscopy study revealed active 
pneumocytes in TQ-treated rats and decreased serum levels 
of IL-1β and TNF-α, as well as the absence of NF-κB 
expression in the lung.53,54 Hence, Pourgholamhossein et al55 

studied TQ’s potential to alleviate lung fibrosis induced by 
the herbicide paraquat in mice. They found that TQ had 
a preventive effect against lung fibrosis by inhibiting oxida-
tive stress and downregulating the expression of pro-fibrotic 
genes. TQ was also found to enhance the efferocytotic/ 
phagocytic ability, antagonizing the effects of cigarette 
smoke extract and LPS on phagocytosis.55 Simultaneously, 
the sphingosine-1-phosphate receptor 5 genes were shown to 
protect bronchial epithelial cells from cigarette smoke- 
induced apoptosis.56

In the same context, Keyhanmanesh et al57 found that the 
treatment of ovalbumin-sensitized guinea pigs with TQ sig-
nificantly improved their pathological changes in the lung 
and decreased their IL-4 levels, but increased their interferon- 
gamma (IFN-γ) levels. These results proved the preventive 
role of TQ against lung inflammation in guinea pigs.57 In 
addition, Suddek et al58 stated that TQ protected against 
cyclophosphamide-induced pulmonary damage and 

suggested its ameliorative role against oxidative stress and 
inflammation induced by the pathogenesis through the 
attenuation of serum TNF-α in rats. TQ’s protective function 
may be attributable to its ability to inhibit attenuated allergic 
airway inflammation by reducing eosinophil penetration and 
goblet cell hyperplasia.59 TQ was also shown to greatly 
decrease the production of IL-4, IL-1, and IL-35 while sup-
pressing IFN-γ production in bronchoalveolar lavage fluid.60

These changes were revealed to be associated with the 
inhibition of prostaglandin D2 production and cyclooxy-
genase-2 protein expression.60 Similarly, TQ was found to 
attenuate the inflammatory response in mast cells induced 
by LPS in a rat basophil cell line by modulating NF-κB 
binding and TNF-α transcription.61 TQ also induced 
a significant rise in surfactant protein D expression in the 
lung tissue of toluene-treated rats.62

The local administration of TQ for experimentally induced 
rhinosinusitis in rats showed that TQ had a promising bioac-
tive effect. It was concluded that its histopathological effect 
was equivalent to that achieved upon the use of antibiotics.63 

In the same context, Kanter64 demonstrated that TQ amelio-
rated allergic rhinitis events, had a marked anti-apoptotic 
effect, and reduced lung injury induced by chronic toluene 
exposure. The inhibitory effect of local TQ on corneal neo-
vascularization was also studied in rats and a comparison of 
its efficacy with that of triamcinolone (synthetic corticoster-
oid) was performed.65 It was concluded that the intranasal 
installation of TQ might affect chemical (silver nitrate) burn- 
induced corneal neovascularization by suppressing many oxi-
dative and inflammatory mediators.65

TQ showed a major effect of preventing pulmonary 
vascular damage caused by Escherichia coli-derived LPS 
by inducing substantial reductions in serum IL-1β and 
TNF-α levels in rats.54 In addition, levosimendan and TQ 
were found to attenuate lung injury after myocardial ische-
mia–reperfusion in rats.66 Based on the above-mentioned 
results, TQ effectively attenuated lung diseases through 
downregulating the lung NF-κB pathway and subsequently 
decreasing cytokine and chemokine production, thereby 
alleviating the inflammatory processes of lung diseases.

TQ Nanoformulations for Improved 
Oral Bioavailability
There is a real desire among researchers for TQ to pro-
gress from the bench to clinical testing for use against 
cancer, lung diseases, and other chronic diseases. 
However, the transition of TQ into clinical trials is being 
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impeded by formulation issues due to its physicochemical 
properties and the route of administration.67 In terms of 
TQ’s physicochemical properties, it can be summarized as 
a fat-soluble molecule with a solubility range of 0.549– 
0.740 mg/mL in aqueous medium over 24–72 h.68 

Furthermore, TQ is extremely unstable in aqueous solu-
tions due to the strong influence of pH and light, with the 
latter having a stronger destabilizing effect.69 TQ taken 
orally can induce chemical and enzymatic changes in its 
composition in the gastrointestinal tract, as well as exten-
sive hepatic first-pass metabolism disorders.70 

Consequently, oral administration and the use of pure 
aqueous solutions as medicinal vehicles for TQ formula-
tions fail to achieve the required therapeutic efficacy of 
TQ.71 In this context, the use of organic and aqueous 
solvents as well as nanocarriers appeared to be viable 
solutions.72

In this respect, NP drug delivery systems have recently 
been investigated as a promising option for vehicles for 
delivering TQ. An essential task in nanomedical research 
is to design and develop multifunctional NP complexes 
that can deliver diagnostic and therapeutic agents to tar-
geted sites.73 Nanomedicine can provide drug targeting, 
surface conjugation, and improve bioavailability.74 TQ has 
great biological potential and a nanoformulation of TQ can 
enhance these activities. TQ nanomaterials can easily 
penetrate biological membranes and provide the sustained 
release of TQ, as detailed in reviews by Badary et al75 and 
Rathore et al.76 The biological activities and therapeutic 
potential of TQ’s nanoforms against pulmonary diseases 
are presented in Table 1 and Figure 3.

Broad-Spectrum Benefits of TQ
Anticancer Activities
Cancer is generally a genetic disease induced by changes 
to genes that regulate cell functions, especially cell growth 
and division.77 Mutations that can potentially lead to can-
cer can be passed down from the parents or caused by 
various types of DNA damage triggered by certain envir-
onmental stressors.78 These can include environmental 
exposure to cancer-causing substances, such as the chemi-
cals in tobacco smoke, as well as radiation, such as ultra-
violet rays from the sun.79 Genetic damage that leads to 
cancer tends to affect three main types of gene: proto- 
oncogenes, tumor suppressor genes, and DNA repair 
genes.80 A representative example of a tumor suppressor 
gene is p53, which plays a vital role in controlling cell 

division and cell death through regulating the accumula-
tion of proteins in the nucleus. Mutations in this gene may 
cause cancer cells to grow and spread in the body.81

The mechanisms of action of TQ include activation of 
the p53 gene and its downstream effector p21WAFI and 
reduction of the concentration of the anti-apoptotic protein 
B-cell lymphoma 2 (Bcl-2). However, TQ’s antiprolifera-
tive effects were shown to be achieved via the induction of 
p53-independent apoptosis and the activation of caspase-8, 
−9, and −3.82 Activated caspase-8 prompts mitochondria 
to release cytochrome C. TQ was found to modulate the 
Bcl2-associated X protein (Bax)/Bcl2 ratio by upregulat-
ing pro-apoptotic Bax and downregulating anti-apoptotic 
Bcl2 proteins in p53−null HL-60 cells during apoptosis.83 

These results clarified TQ’s pharmacological effects and 
identified it as a chemopreventive or chemotherapeutic 
agent to treat p53-deficient cancers.

Formulated TQ-NPs were shown to exhibit 
a significant delay in the release of TQ, implying greater 
effectiveness against tumor cells.84 In addition, TQ-NPs 
exhibited a major improvement in cytotoxicity against 
MCF-7 cells. This was particularly regulated through 
increased apoptosis, as shown by a cell cycle study, 
annexin V staining, and caspase-3 determination, which 
reinforced the cytotoxicity of TQ-NPs, as described by 
Fahmy et al.84 In the same context, TQ-loaded NP emul-
sion was shown to be more effective than free TQ against 
the growth of MDA-MB-231 breast cancer cells.85 In 
addition, TQ-loaded liposomes inhibited the MCF-7 breast 
cancer cell line.86 Likewise, MCF-7 cells were shown to 
be more sensitive to TQ- beta-cyclodextrin (CD) NPs than 
to free TQ, with an IC50 of 4.70 ± 0.60 µM for TQ-CD but 
24.09 ± 2.35 µM for free TQ.87

Additionally, PLGA-NPs loaded with paclitaxel and 
TQ exhibited higher anticancer activity against MCF-7 
cells and alleviated paclitaxel’s toxic effects compared 
with the free drugs.88 Similarly, the proliferation of the 
MCF-7 cell line was found to be controlled by crude TQ, 
and the nano-TQ therapy of which resulted in 50% cell 
death.89 Moreover, TQ-loaded nanostructured lipid car-
riers (TQ-NLCs) were very cytotoxic to breast cancer 
MDA-MB-231 cells, which was achieved through cell 
cycle arrest and the induction of apoptosis.62 In another 
study, TQ-encapsulated NPs significantly increased the 
expression of miR-34a through p53, leading to the down-
regulation of Rac1 expression, followed by actin depoly-
merization, thereby disrupting the actin cytoskeleton and 
retarding the migration of the human mammary carcinoma 
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cell lines MCF-7 and HBL-100.90 In addition, Ahmad 
et al91 reported the selective cytotoxic effects of synthe-
sized TQ-PLGA-polyethylene glycol (PEG) NPs in tamox-
ifen-resistant breast cancer cells (UACC-732).91

Moreover, Rajput et al92 stated that multi-lamellar gold 
niosomes helped TQ to overcome Akt-induced drug resis-
tance in MCF-7 cells.92 Moreover, El-Ashmawy et al93 

investigated the use of TQ in combination with the che-
motherapeutic agent doxorubicin (DOX) in F2 gel to con-
trol tumor progression in Ehrlich solid tumor-bearing 
mice. The nano-combination of TQ and DOX showed 
significant reductions in tumor volume, cardiac markers, 
tumor Bcl-2, and p53 upregulation compared with free 
conventional therapies. Moreover, co-treatment with 
DOX+TQ+F2 gel achieved superior effects compared 
with all other treatments, with less DOX cardiotoxicity.93

In addition, Ong et al94 investigated the anticancer 
properties of TQ using NLCs in breast cancer cell line 
(4T1) tumor-bearing female BALB/c mice. The use of 
NLC as a carrier enhanced TQ’s therapeutic effects by 
increasing the survival rate of mice via modulating Bcl-2 
and caspase-8 in the intrinsic apoptotic pathway. The 
metastasis of 4T1 was also restricted to the lung, as 

evidenced by the downregulation of matrix metalloprotei-
nase 2.94

Briefly, nanoformulations of TQ, either alone or in 
synergy with chemotherapeutic agents, have increased 
bioavailability and apoptotic potential against various 
types of cancer, mainly targeting the intrinsic apoptotic 
pathway.

Antidiabetic and Antiulcer Activities
Diabetes is a long-term health condition that influences 
cells’ ability to generate energy from food. The majority of 
consumed food is converted into glucose and released into 
the bloodstream.95 When blood glucose levels rise, it 
induces pancreatic cells to release insulin stored as 
glycogen.96 Natural bioactive compounds exhibit 
a powerful antidiabetic effect, which overcomes oxidative 
stress.97

Rani et al98 prepared polymeric nanocapsules (NCs) of 
TQ and metformin using a gum rosin nanoprecipitation 
method.98 TQ (20, 40, and 80 mg/kg), metformin (150 mg/ 
kg), and their nanoformulations (20, 40, and 80 mg/kg for 
TQ and 80 mg/kg for metformin) were orally administered 
for 21 successive days in type 2 diabetic rats. The 

Figure 3 Thymoquinone (TQ) nanoformulations’ bioavailability, pharmacokinetics, and pharmacodynamic prospects against lung diseases.
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nanoformulations significantly decreased the rats’ blood 
glucose levels and glycated hemoglobin and improved 
their lipid profile compared with the findings in diabetic 
and control rats.98 Interestingly, TQ-NCs (containing 10, 
20, and 40 mg) produced a dose-dependent antihypergly-
cemic effect. Moreover, TQ-NCs produced a better anti-
hyperglycemic effect in type 2 diabetic rats than TQ 
alone.98

The gastric mucosa can suffer ulceration due to several 
factors, but some natural products were shown to exhibit 
a strong protective effect against ulceration.99 The use of 
TQ-NLCs against ethanol-induced ulcers was evaluated by 
monitoring the mucus content, hydrogen concentration, 
and biochemical and histochemical parameters. It was 
concluded that TQ loading into the NLCs significantly 
improved the gastroprotective effects. 
Immunohistochemical results also revealed that the TQ- 
NLCs inhibited ulcer formation compared with TQ 
(60 mg/kg) administered orally in rats.100 Moreover, 
recently, gastric histopathological examination of animals 
with alcohol-induced gastric ulcers showed the possible 
role of TQ-loaded coconut oil nanostructure (NLC) in 
ameliorating ulcer formation.101

In summary, TQ encapsulation within nanostructures 
was discovered to more effectively spread the adminis-
tered drug when delivered orally, resulting in protective 
effects against ulcers.

Hepatoprotective Activities
The liver plays a central role in all metabolic processes in 
the body. Therefore, hepatocytes’ protection against dif-
ferent environmental xenobiotics is of great importance.102 

Numerous studies evaluating the protective effects of 
nano-TQ against hepatotoxicity have thus been performed. 
Singh et al103 formulated and characterized solid lipid 
nanoparticles (SLNs) of TQ (TQ-SLNs) to treat liver cir-
rhosis. The TQ-SLN formula caused a nearly 5-fold 
increase in bioavailability compared with free TQ. It 
achieved significant decreases in serum biomarker 
enzymes such as alanine transaminase, aspartate transami-
nase (AST), and alkaline phosphatase (ALP), compared 
with a control and a marketed formulation (SILYBON®), 
against paracetamol-induced liver cirrhosis.

Moreover, using lipid NPs, Elmowafy et al104 prepared 
TQ-NLCs with high-speed homogenization followed by 
ultrasonication in vitro. There was a significant decline in 
hepatic malondialdehyde, reduced glutathione, and 
improved hepatic architecture. This study proved the 

antioxidant efficacy of TQ-NLCs in hepatic protection. 
Owing to TQ’s low aqueous solubility and bioavailability, 
Kalam et al105 developed a self-nano-emulsifying drug 
delivery system (SNEDDS) of TQ to enhance its bioavail-
ability and hepatoprotective effects. TQ’s relative bioavail-
ability was enhanced 3.87-fold by optimized SNEDDS 
compared with that with TQ suspension.105

Neuroprotective Activities
Multiple natural products have been used as protective 
agents against different neurotoxicants and neural 
diseases.106 For example, an ionic gelation method of 
chitosan NPs of TQ was established and used for brain 
targeting via intranasal instillation. The results showed that 
TQ-chitosan NPs exhibited more brain targeting than con-
ventional TQ.107 This strongly supported the neuroprotec-
tive activity of TQ.

In another study, TQ-PLGA-chitosan NPs were intra-
nasally instilled and evaluated for their neuroprotective 
efficacy in a rat cerebral ischemia–reperfusion model.108 

Biochemical measurements revealed that the TQ-PLGA- 
chitosan NPs significantly reduced lipid peroxidation but 
elevated reduced glutathione, catalase, and superoxide dis-
mutase in rats with middle cerebral artery occlusion. As 
such, the intranasal delivery of TQ-loaded PLGA-chitosan 
NPs to the brain could be applied to achieve neuroprotec-
tive effects and treat cerebral ischemia.108

The inability of beneficial agents to reach the central 
nervous system (CNS) limits the efficacy of noninvasive 
therapy for neurological diseases. Since most CNS medica-
tions cannot penetrate the brain parenchyma due to the 
blood–brain barrier, overcoming this barrier has been one 
of the most important obstacles to progress in neurological 
therapeutics.109 To date, several different forms of nanoma-
terials have been developed and applied to treat neurological 
diseases, including liposomes, micelles, polymeric NPs, car-
bon nanotubes, quantum dots, and metallic NPs.109

In this context, TQ-mucoadhesive nanoemulsion was 
found to improve neurobehavioral activity (locomotor and 
grip strength) in rats with cerebral ischemia due to middle 
cerebral artery occlusion.110 Excessive amyloid-β accumu-
lation due to abnormal amyloid-β precursor protein proces-
sing is crucial to the pathogenesis of Alzheimer’s disease.111 

TQ-rich fraction nanoemulsions were found to decrease the 
levels of amyloid-β40 and -β42 by modulating amyloid-β 
precursor protein processing, upregulating insulin- 
degrading enzyme and low-density-lipoprotein receptor- 
related protein 1, and downregulating β-secretase 1 and 
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advanced glycation end products (RAGE) in response to the 
consumption of a high-fat/cholesterol diet in rats.111

In conclusion, TQ nanoscale drug carriers allow the 
successful delivery of drugs through the blood–brain bar-
rier, overcoming the challenges associated with treating 
the CNS. Furthermore, TQ encapsulated by nanocarriers 
should penetrate deeper into target sites, thus avoiding 
degradation.

Protection Against Huntington’s Disease- 
Like Symptoms
Researchers have identified four HDL syndromes, called 
Huntington disease-like 1 to 4 (HDL1–4). These progres-
sive brain disorders are differentiated by uncontrollable 
movements, emotional problems, and a loss of thinking 
ability.112

Ramachandran and Thangarajan113,114 created SLNs 
encapsulating TQ (TQ-SLNs) and studied their effects on 
3-nitropropionic acid-induced Huntington’s disease-like 
symptoms in Wistar rats. The TQ-SLNs significantly 
restored the antioxidant defense system and alleviated the 
anticholinergic effect induced by 3-nitropropionic 
acid.113,114 These researchers suggested that supplementa-
tion with a low dose of TQ-SLN was highly efficient at 
attenuating behavioral, biochemical, and histological mod-
ifications in the HD model created by exposure to 3-nitro-
propionic acid.113,114

The limited studies performed to date clearly indicate 
the need for progress with nanoparticulate formulations of 
TQ, which have the potential to increase therapeutic effec-
tiveness at lower doses in order to counteract the striatal 
assaults and motor complications shown in 3-NP neuro-
toxicity. Consequently, TQ-SLNs may be recommended as 
a promising formulation for treating Huntington’s disease.

Immunomodulatory Aspects of TQ
Recently, it has been revealed that some COVID-19 cases 
requiring intensive care exhibited high concentrations of 
pro-inflammatory cytokines, including TNFα (tumor 
necrosis factor-alpha) and IL-6, as well as lymphopenia 
with ARDS.115 As high IL-6 levels were found to be 
related to the severity of respiratory diseases,116 

a reduction in IL-6 might be useful therapeutically. 
However, it is critical to choose the correct time for 
therapy, which, if delayed, is both ineffective and detri-
mental. TQ was found to be effective in downregulating or 

reducing inflammatory responses, such as those associated 
with IL-1, IL-6, IL-10, IL-18, TNF-α, and NF-κB.117

Several recent reports have indicated that TQ reduces 
the levels of 5-lipoxygenase, leukotriene B4, C4, and Th2 
cytokines in bronchoalveolar lavage (BAL) fluid with sig-
nificant increments of eosinophilia and goblet cells in lung 
tissue.116 In addition, TQ was found to alleviate the 
mRNA expression of inducible nitric oxide synthase and 
transforming growth factor β1 (TGF-β1).118 The anti- 
inflammatory potential of TQ might be related to the 
upregulation of heme oxygenase-1 (HO-1) in human ker-
atinocytes (HaCaT), which is stimulated by nuclear factor 
(NF) by ROS-mediated phosphorylation of protein kinase 
B (PKB) and protein kinase alpha (PKα).119 Thus, it indir-
ectly antagonizes the side effects caused by an increase in 
ROS level.120 The antioxidant properties of TQ may be 
due to the redox potential of the quinone structure and the 
unlimited ability of TQ to cross substantial barriers to 
cellular niches.121

The clinical findings mentioned above indicate that TQ 
is an important immunomodulatory agent in both cell- and 
antibody-mediated immune systems. Furthermore, TQ was 
shown to induce phagocytic reactions, increase antibody 
levels, and promote immunoglobulin hemagglutination 
after exposure to pesticide toxicity.122 Moreover, TQ was 
shown to decrease the levels of T- and B-lymphocyte 
receptors, innate cell markers, and islet cell antibodies in 
autoimmune disorders. As such, TQ is highly anticipated 
to become a successful treatment for lung immune 
disorders.

Remarks and Future Directions
The present review provides insight into TQ’s therapeutic 
potential against various diseases, particularly those asso-
ciated with lung injury. Since ancient times, TQ as 
a natural molecule found in many plant species has been 
used for pharmacological purposes and considered to be 
safe. TQ’s low toxicity confers enormous potential for 
consumption as food, pharmacological applications, ther-
apeutic development, and pharmaceutical benefits for 
human use. TQ has been recommended for pharmacologi-
cal usage as a nutraceutical, prophylactic, or adjuvant, for 
chronic diseases with limited persistent inflammation and 
side effects associated with oxidative stress.

Recent molecular pharmacology studies have attributed 
TQ’s therapeutic effects to its ability to modulate enzy-
matic, apoptotic, cell signaling pathways, transcription 
factors, numerous receptors, and ion channels. The 
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antimicrobial, antiviral, and pharmacological modes of 
action inherent in its medical application warrant further 
scientific investigations of TQ’s therapeutic potential.

There is a need for further investigation of the syner-
gistic effects of TQ and other pharmacological products or 
drugs. The results of this investigation can provide the 
primary basis for the usage of TQ and other pharmacolo-
gical products or drugs in treatment of infectious diseases 
induced by multiple factors using one medication or multi-
ple therapeutic goals.

Although the results obtained from laboratory work are 
promising, there is a clear need to examine TQ’s translational 
properties. For example, there is a need to understand the 
selective antibacterial and antiviral effects of TQ. However, 
to achieve the potential benefits of these natural molecules 
and their nanoscale forms, clinical trials are required to 
convert the in vitro indications into clinical benefits.

Conclusion
This current report describes TQ’s biological properties and 
reveals its medicinal potential for treating various diseases, 
including respiratory infectious diseases, cancer, diabetes, 
hepatic cirrhosis, and neurodegenerative disorders such as 
Huntington’s disease. TQ reduces the intensity of ARDS by 
promoting lung antioxidant and anti-inflammatory 
responses to infection.

Nano-TQ was found to be more effective than crude TQ 
in ameliorating numerous inflammatory diseases, so it may 
be of value in preventing and treating lung diseases. Overall, 
existing evidence clearly shows that TQ in nanoform can 
achieve efficient delivery to target tissue and alleviate lung 
damage. Nano-TQ’s low toxicity has attracted considerable 
commercial interest worldwide for use in pharmacological 
applications, and for achieving medicinal benefits and phar-
maceutical progress. The existing evidence raises the possi-
bility of its usage as a nutraceutical, prophylactic, or 
adjuvant for chronic illnesses induced by low-grade persis-
tent oxidative stress and inflammation.

Thus, we encourage researchers to formulate nano-TQ 
with a suitable size for each type of lung injury and 
investigate its effects against various lung injury- 
associated diseases by evaluating the following cellular 
molecules: TLR and its associated pathway; RAGE and 
its ligands; NF-κB, activator protein 1; matrix metallopro-
teinases; inflammatory markers including interleukins; 
TNF-α, transforming growth factor-β; inducible nitric 
oxide synthases; tissue repair factors such as epidermal 
growth factor, keratinocyte growth factor or hepatic 

growth factor; vascular endothelial growth factor; and 
antioxidant enzymes such as superoxide dismutase, cata-
lase, glutathione reductase, glutathione peroxidase, and 
glutathione S-transferase.
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