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Abstract: The success of selective B-cells depleting therapies, as the anti-CD20 antibodies, 
in patients with multiple sclerosis (MS) has confirmed that B-cells are critical in the immune 
pathogenesis of the disease. Ocrelizumab, a humanized monoclonal antibody that selectively 
targets CD20+ B-cells, profoundly suppresses acute inflammatory disease activity, represent
ing a highly effective therapy for relapsing-remitting multiple sclerosis (RRMS). It is also the 
first proven therapy able to slow disability progression in primary progressive multiple 
sclerosis (PPMS), particularly in patients with signs of acute radiological activity before 
being enrolled. Effectiveness has widely been demonstrated in randomized clinical trials 
(RCTs), and recently confirmed in open-label extension trials. Here, we review the role of 
B-cells in MS, the mechanism of action of ocrelizumab, its pharmacokinetics and pharma
codynamics, and the clinical data supporting its use, as well as safety data. We focus on 
issues related to the maintenance of immunocompetence, essential to ensure an immune 
response to either a primary infection or a vaccination. Lastly, we discuss about the possible 
role of ocrelizumab as an exit strategy from natalizumab-treated patients at risk of develop
ing multifocal progressive leukoencephalopathy. In view of using ocrelizumab chronically, 
collecting long-term safety data and finding strategies to minimize adverse events will be 
extremely relevant. 
Keywords: ocrelizumab, anti-CD20 therapies, relapsing-remitting multiple sclerosis, 
primary progressive multiple sclerosis

Introduction
Multiple Sclerosis (MS) is a chronic autoimmune and neurodegenerative disease of 
the central nervous system (CNS) that typically affects young adults, with an onset 
between 20 and 40 years of age in most cases. Most patients have a relapsing form 
characterized by episodes of neurological deficits corresponding to an acute demye
lination process (relapsing-remitting multiple sclerosis, RRMS), but over time 
a progressive course could develop with accumulation of clinical disability (sec
ondary progressive multiple sclerosis, SPMS). Approximately 15% of patients have 
a progressive disease from onset (primary progressive multiple sclerosis, PPMS).

The pathological hallmark of disease in the acute phase is the accumulation of focal 
demyelinating lesions in the white and grey matter of the brain and spinal cord. Active 
inflammatory lesions are sustained by macrophages, reactive astrocytes, and an infiltrate 
of T and B lymphocytes, which enter the CNS and are histologically characterized by the 
predominance of CD8+ T-cells, B-lymphocytes, and plasma cells, whereas CD4+ T-cells 
are relatively scarce.1,2 This lymphocytic infiltrate is associated with profound blood– 
brain barrier damage, while in the progressive stage, inflammation becomes more 
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compartmentalized within the leptomeninges and the CNS 
parenchyma.3 Chronically activated microglia and macro
phages, as well as B-cells aggregated in meninges, could 
sustain this compartmentalized inflammation4,5 and maintain 
the chronic injury in MS.

Although MS was traditionally considered a T-cell- 
mediated autoimmune disease, during the last years, evidence 
on the implication of B-cells in MS pathophysiology has 
accumulated both in the early stage and with the progression 
of the disease. B-cells have now emerged as an important 
target for several established MS therapies, including inter
feron-β (IFN-β), fingolimod, and cladribine. A more selective 
depletion of B-cells is obtained with anti-CD20 monoclonal 
antibodies (mAbs) such as rituximab, ocrelizumab, and 
ofatumumab.6 These drugs deplete circulating B-cells by tar
geting the CD20 antigen, a surface marker expressed through
out the majority of the B-cell lineage, including pre-B-cells 
and mature B-cells, and results in very effective treatment for 
MS. The exact mechanism by which B-cell depletion is effec
tive in treating MS remains unproven. Antibody production is 
one of the important B-cells functions, however B-cells are 
also antigen-presenting cells (APCs) and have immunomodu
lator activity through cytokine secretion.

Rituximab, a chimeric anti-CD20 mAb, whose effective
ness was demonstrated in two randomized placebo- 
controlled Phase II trials (HERMES in RRMS and 
OLYMPUS in PPMS, respectively)7,8 and in several obser
vational studies, can now be administrated only off-label in 
MS patients. Ofatumumab, a fully human monoclonal anti
body, has been evaluated in phase II and III trials,9–11 and 
just approved by the Food and Drug Administration (FDA) 
and by the European Medicines Agency (EMA).

In 2017, ocrelizumab, a recombinant humanized anti- 
CD20 mAb, was approved for relapsing MS (RMS) and 
was the first ever approved therapy for PPMS, based on its 
ability to drastically reduce inflammatory disease activity 
and to slow disability progression in Phase III randomized 
controlled trials (RCTs).12,13

In this review we analyze the efficacy, safety, pharma
cokinetics, and pharmacodynamics of ocrelizumab, sum
marizing relevant adverse events and proposing a strategy 
to minimize them.

B-Cells in MS: Implications for 
Clinical Use of Anti-CD20 mAbs
The success of B-cell-depleting therapies in MS has high
lighted the important role that B lymphocytes have in the 

pathogenesis of the disease. The evidence of the involve
ment of B-cells in MS has steadily increased through time 
and several examples are here presented. Despite the 
experimental murine model of MS requirs only the invol
vement of activated myelin-specific T-cells, in other spe
cies, such as the marmoset, B-cells depletion prevents the 
development of clinical and pathological signs of experi
mental autoimmune encephalomyelitis (EAE).14,15 

Anatomopathological studies have also shown that 
B-cells are prominent cell populations together with CD8 
+ T-cells in active MS lesions,2 with B-lymphocytes accu
mulating in perivascular lesions and within the subarach
noid space of leptomeninges rather than in the CNS 
parenchyma.2,16,17 Interestingly, B cell-enriched ectopic 
lymphoid follicles, particularly evident in patients with 
Secondary Progressive MS (SPMS), can be found in the 
proximity of cortical brain lesions and may contribute to 
the propagation of subpial cortical injury.17–19

A deficit of tolerance in autoreactive B-cells is found in 
MS such as in many autoimmune diseases. Two major 
checkpoints, along the B-cell development pathway, con
tribute to the normal elimination of autoreactive B-cells in 
healthy humans: central tolerance in the bone marrow and 
peripheral tolerance in secondary lymphoid organs.20 

While in Neuromyelitis Optica Spectrum Disorders 
(NMOSD),21 systemic lupus erythematosus,22 and rheu
matoid arthritis,23 central and peripheral tolerance are both 
involved, in MS only the peripheral checkpoint seems to 
be dysregulated by deficit of the regulatory T-cells (Treg) 
function.24 Indeed, in MS some individuals treated with 
selective B-cell depletion experience durable quiescence 
of disease activity, even as their B-cells (mainly naive) 
reemerge, thus suggesting that a form of tolerance may 
have been achieved.

Accumulating evidence has highlighted the importance 
of the antigen-presenting function of B-cells for T-cells 
activation in MS. This process can occur in the periphery, 
in fact antigen-experienced B-cells are clearly present in 
the CNS, but maturation and activation seem to occur in 
the deep cervical lymph nodes.25,26 Jelcic et al27 have 
provided a model for how B- and T-cell interactions, out
side the CNS, might generate and maintain autoreactive 
T-cells able to enter the brain. Proliferation of these brain- 
homing autoreactive CD4+ T-cells, that occurred without 
any cell stimuli in patients who express the HLA-DR15 
haplotype, the stronger genetic risk factor for MS, was 
sustained by the presence of B lymphocytes. These were 
substantially memory B-cells and could activate 
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autoreactive CD4+ T-cells that recognize antigens 
expressed in B-cells and in brain lesions. The elimination 
of B-cells via anti-CD20 therapies inhibited T-cell activa
tion and proliferation, providing further evidence that 
interruption of the crosstalk between T- and B-cells could 
be clinically relevant.27 Interesting scenarios are opening 
up on the nature of the autoantigen presented by B-cells to 
autoreactive T-cells and on the underlying mechanism of 
antigen presentation, finding links with the most important 
genetic and environmental risk factors for MS,28,29 already 
previously investigated.30

Anti-CD20 mAbs have been shown to also deplete 
a subset of T-cells that express CD20 at a low level.31 

Despite CD20+, T lymphocytes represent a small percentage 
of total circulating T-cells, approximately 6%, they have 
a highly pro-inflammatory activity and a fast kinetic of pro
liferation in MS patients, suggesting another possible mechan
ism of action of anti-CD20-depleting therapies.32 Moreover, 
beyond B-cell depletion, the involvement of T-cells is emer
ging specifically in ocrelizumab-treated patients.33,34

In summary, these findings may explain why B-cell- 
depleting agents are so effective in controlling clinical 
relapses and focal inflammation in RMS, but the mechan
isms underlying the benefits on PPMS are less clear and 
investigated. Of note, in the ORATORIO trial, a minority 
of patients with PPMS, especially younger and closer to 
disease onset, have signs of acute radiological activity 
before being enrolled,13 suggesting an action of the drug 
on relapse biology that may have occurred subclinically in 
some of these patients.35 However, it remains difficult to 
explain how B- cells’ accumulation as part of CNS- 
compartmentalized inflammation, may be limited by thera
pies as anti-CD20 antibodies that do not cross the blood– 
brain barrier (BBB).36

Pharmacodynamics and 
Pharmacokinetics
Anti-CD20 mAbs can rapidly and profoundly deplete cir
culating B-cells through three main different mechanisms: 
cell-mediated antibody-dependent cellular cytotoxicity 
(ADCC), complement-dependent cytotoxicity (CDC), and 
antibody-triggered apoptosis. The physiological ligand and 
the precise function of CD20 are currently unknown; 
CD20 is a transmembrane protein involved in B-cell acti
vation and proliferation thought to function as a calcium 
channel.37 CD20 is a B-cell marker expressed during cell 
differentiation by late pre-B, naïve and memory B-cells. 

B-cells that do not express CD20 – pro-B-cells, late 
plasma blasts, and terminally differentiated antibody- 
producing plasma cells – are spared from this selective 
depletion. B-cells precursor on hematopoietic bone mar
row are continuously repopulated, enabling peripheral 
reconstitution after depletion, while antibody-producing 
plasma cells guarantee antibodies production and preexist
ing humoral immunity, at least, in the short-term.38

The understanding about the kinetics of depletion and 
reconstitution of B-cells after anti-CD20 mAbs has come 
almost exclusively from phenotyping analysis of circula
tion B-cells subsets. The proportion of circulating 
B lymphocytes (2% of the entire population) is almost 
totally depleted of the expose to the anti-CD20 antibodies 
where they persist in the bone marrow and in various 
secondary lymphoid organs. There are limited data on 
the degree of depletion of B-cells in secondary lymphoid 
organs and these derive mainly from preclinical studies 
and observations on humans with other autoimmune dis
eases treated with rituximab. In murine MS models, 
B-cell-rich compartments, such as bone marrow, spleen, 
and lymph nodes, are depleted to varying degrees, though 
CD20 cells expressing the maturation marker CD27 
remain detectable in the spleen.39 In patients with rheu
matoid arthritis, switched memory B-cells (CD27+ IgD-) 
persisted in lymph nodes biopsies after rituximab 
treatment,40,41 suggesting that memory B-cells can escape 
depletion in peripheral organs more than in blood.

The very small numbers of circulating B cells that can 
be detected during periods of depletion usually show 
a phenotype of plasma cell precursor but memory cells 
have also been reported.38,42 Following depletion, 
B reconstitution starts from naïve and immature B-cells, 
while memory B-cells and plasma blasts show a slow and 
delayed repopulation.43–45

Ocrelizumab (Ocrevus®), an intravenously adminis
tered glycosylated IgG1, is a recombinant, humanized 
anti-CD20 mAb, that targets the extracellular loop of the 
CD20 epitope on B-cells, a different but overlapping bind
ing site than that of rituximab.46 Due to its mostly human 
origin, ocrelizumab is expected to be less immunogenic 
compared with rituximab, induces fewer anti-drug antibo
dies, as well as milder infusion reactions. In a rituximab 
phase II trial,7 a higher proportion of anti-drug antibodies 
was found compared to the ocrelizumab pivotal trial,12 

suggesting a greater immunogenicity of rituximab. 
However, caution is warranted considering that different 
assay methods were used between studies and the 
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association with the development of anti-drug antibodies 
and infusion reactions are not completely demonstrated. 
Furthermore, compared with rituximab, the mechanism of 
action of ocrelizumab in more dependent on ADCC and 
less on CDC.47

The initial dose of ocrelizumab is administrated as two 
separate 300 mg infusions 2 weeks apart; subsequent doses 
are administrated as a single 600 mg infusion every 24 
weeks. The half-life is 26 days and the pharmacokinetic 
parameters are typical for an IgG1 monoclonal antibody.48 

Because there is a substantial overlap of CD20 and CD19 
expression from pre-B to memory B lymphocytes, CD19 
cell counts are used to evaluate B-cells depletion and 
repopulation.49 Ocrelizumab administration leads to 
a rapid and complete depletion of CD19 peripheral cells 
by 2 weeks,12 which was sustained over time. Slow repo
pulation began about 6 months after the last infusion with 
a median-repletion of over 15 months.50

The scheduled dose of ocrelizumab is fixed, but 
ongoing trials are investigating if a higher dose of ocreli
zumab every 24 weeks could be more effective than the 
approved 600 mg dose. Post-hoc analysis of the pharma
codynamics and pharmacokinetics of ocrelizumab in the 
Phase II–III clinical trials suggested that higher exposure 
to ocrelizumab is associated with greater immune B-cell 
depletion in the blood and lower risk of disability progres
sion. No increase of adverse side-effects has been 
reported.51

Ocrelizumab for Relapsing– 
Remitting Multiple Sclerosis: 
Efficacy Data
Two identically designed Phase III, randomized, controlled 
trials (OPERA I and OPERA II) enrolling 821 and 835 
adults with RMS, compared, in a 1:1 ratio, ocrelizumab 
(600 mg every 24 weeks) with subcutaneous IFNβ-1a 
(IFNβ-1a; 44 µg 3-times weekly) for 96 weeks.12 The 
primary endpoint, ie, annualized relapse rate (ARR) at 96 
weeks, and other ten secondary endpoints were analyzed 
specifically for OPERA I and II; a pooled data analysis 
was obtained to evaluate disability progression at 12 and 
24 weeks. Both studies showed a significant decrease in 
the ARR in patients treated with ocrelizumab compared to 
IFNβ-1a at 96 weeks (0.16 vs 0.29; p<0.001), that is 
a 46% lower relapse rate in OPERA I and 47% in 
OPERA II. Regarding the radiological endpoints, the 
mean number of gadolinium-enhancing lesions was 

reduced by 94% and 95%, the number of new and/or 
enlarging T2 lesions was reduced by 77% and 83%, and 
rate of brain volume loss was reduced by 22.8% and 
14.9% in OPERA I and OPERA II, respectively. The 
proportion of subjects with confirmed disability progres
sion was lower with ocrelizumab than with IFNβ-1a at 
both 12 (9.1 vs 13.6%; p<0.001) and 24 weeks (6.9 vs 
10.5% p=0.003). Recently, the results of the open-label 
extension phase of the pooled OPERA I and II studies 
showed that early initiation and continuous treatment with 
ocrelizumab for up to 5 years was associated with 
a reduction of confirmed disability progression compared 
to switching to ocrelizumab after 2 years of IFNβ-1a. 
Furthermore, patients switching from IFNβ-1a to ocrelizu
mab had a near complete suppression of MRI disease 
activity (gadolinium-enhanced and new/enlarging T2 
lesions) from year 3 to year 5.52

Ocrelizumab for Primary 
Progressive Multiple Sclerosis: 
Efficacy Data
The double-blind, placebo-controlled phase III 
ORATORIO trial, randomly assigned 732 adult patients 
with PPMS to receive 600 mg of ocrelizumab or placebo 
every 24 weeks for at least 120 weeks, in a 2:1 ratio.13 

Patients receiving ocrelizumab had lower 12-week con
firmed disability progression (32.9% vs 39.3%; p=0.03) 
and 24-week confirmed disability progression (29.6% vs 
35.7%, p=0.04), compared to placebo. Ocrelizumab also 
reduced walking impairment vs placebo, as assessed by 
the mean percent change from baseline in the timed 25- 
foot walk test (T25FW) at week 120 (mean decline of 
38.9% vs 55.1% with placebo; p=0.04) and led to signifi
cant improvements on other radiological endpoints, 
including change in MRI T2 lesion volume and whole 
brain volume loss. More in detail, the total volume of T2 
lesions decreased in patients treated with ocrelizumab and 
increased in placebo recipients at week 120 (−3.4% vs 
7.4%; p<0.001) and in the ocrelizumab group, brain 
volume loss from week 24 to 120 was smaller than in 
the placebo group (−0.90 vs −1.09%; p=0.02). Based on 
these results, ocrelizumab was the first DMT approved for 
PPMS.

The post hoc analysis of the open-label extension of 
the ORATORIO trial showed sustained benefits on mea
sures of disease progression over a 6.5 years follow-up 
period. The proportion of patients with progression was 
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lower in those who started ocrelizumab early compared to 
those who started, in the double-blind period, placebo in 
most measures of 24-weeks confirmed disability 
progression.53

Safety and Tolerability Data
Infusion-Related Reactions
Infusion-related reactions (IRRs) occur commonly with 
ocrelizumab during or within a few hours of infusions, 
although symptoms may be delayed for up to 24 hours. 
They are due to a type 2 hypersensitive reaction sustained 
by cytokine release and are reduced with appropriate pre
medication (ie, with intravenous glucocorticoids). In clin
ical trials, IRRs were the most frequently reported adverse 
events (AEs), which occurred in 34.3% and 39.9% of 
ocrelizumab-treated patients in the pooled analysis of 
OPERA and ORATORIO trials, respectively.54 The fre
quency of IRRs was highest with the first dose and 
decreased with subsequent dosing,54 supporting for 
a shorter infusion period than the conventional 3.5-hour 
infusion, after the first dose. Based on the results of the 
randomized, double-blind ENSAMBLE PLUS study,55 the 
Food and Drugs Administration (FDA) and the European 
Medicines Agency (EMA) approved a shorter two-hour 
infusion time for ocrelizumab in patients with relapsing 
and progressive MS who have not experienced any pre
vious serious IRRs.

Infections and Laboratory Findings
In the phase III clinical trials, the percentage of ocrelizu
mab-treated patients reporting any infection was 59.9% (vs 
54.3% in IFNβ-1a) in OPERA I, 60.2% (vs 52.5% in 
IFNβ-1a) in OPERA II, and 71.4% (vs 69.9% in placebo) 
in ORATORIO. The most frequent infections observed in 
the ocrelizumab group were nasopharyngitis, upper 
respiratory tract, and urinary tract infections.12,13 In large 
open-label extension trials, infective adverse events were 
consistent with the past reports of the double-blind 
phases52,53 and, to date, no particular new safety signals 
emerged regarding infections. Although, compared to 
IFNβ and placebo, ocrelizumab treatment is associated 
with a slight increase in the risk of infections, they are 
generally mild-to-moderate. In fact, the rate of serious 
infection remains low over 7 years of treatment and in 
line with the rate of infection-related hospitalizations 
reported in real-world MS cohorts.56 Also, opportunistic 
infections are rare and the rates remain stable year-on-year 

with the rate observed during phase III studies.56 The 
occurrence of invasive fungal infections was in line with 
the occurrence reported among patients treated with other 
monoclonal antibodies and fingolimod.57 The risk of 
Progressive Multifocal Leukoencephalopathy (PML) will 
be discussed in the following sections.

Hepatitis B virus reactivation is a possible complica
tion in ocrelizumab-treated patients who are positive for 
HBsAg or in those who are negative for HBsAg but 
positive for hepatitis B core antibody (HBcAb+).12,13,58 

Data referring to hepatitis C reactivation are more 
limited56 and mainly concern patients treated with ritux
imab for rheumatoid arthritis.59 Anyway, prior to starting 
ocrelizumab, screening for hepatitis B is mandatory, while 
screening for hepatitis C should be taken into account. 
Patients with evidence of infection should consult liver 
disease experts before treatment and be managed in accor
dance with current practice guidelines.60,61

Late-onset neutropenia (LON) is a rare complication of 
anti-CD20 therapies that occurs after 4 weeks following the 
last dose in less than 6.5% of patients with rheumatoid 
arthritis receiving rituximab, as observed in various 
studies.62,63 Most patients with severe neutropenia recover 
quickly, and there is no evidence that the condition worsens 
with further treatment cycles.64 The cause of LON has been 
poorly investigated and many theories have been formulated; 
the most credited hypotheses is that homeostasis of granulo
cytes may be disturbed by chemokine stromal-derived factor- 
1 interacting with B-lymphocyte recovery.65 In the PPMS 
clinical trial with ocrelizumab, decreased neutrophil counts 
were transiently found in 13% of patients compared to 10% 
in placebo. Only 1% of patients displayed neutrophil counts 
less than 1.0 x 109/L, and none of these cases was associated 
with infections.66 Association with serious infections leading 
to significant adverse outcomes and the necessity of treat
ment with granulocyte colony-stimulating factor (G-CSF) 
are debated.67

While not expressing the CD20 antigen, the plasma 
cells population is based on the evolution of the 
B lymphocyte of the germinal centers and repeated cycles 
of treatment can lead to reduced plasma cell production, 
which might result in a reduction of immunoglobulin 
levels. Rituximab use can be complicated by decreases in 
IgG, IgM, or IgA levels, a condition known as hypogam
maglobulinemia, that has been reported in people receiv
ing long-term rituximab treatment.64 The true frequency of 
hypogammaglobulinemia is unknown and the clinical sig
nificance, ie, the possible association with recurrent or 
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serious infections remains controversial.68 In OPERA 
I and II the proportion of ocrelizumab-treated patients 
with immunoglobulin levels below the normal limits at 
week 96 were 1.5% for IgG, 2.4% for IgA, and 16.5% 
for IgM.12 In the ORATORIO trial only IgM levels dif
fered between groups; treatment with ocrelizumab resulted 
in a higher proportion of patients with IgG levels below 
the lower limit (15.5% for ocrelizumab vs 1.2% for pla
cebo) at week 120.13 Over 5.5 years of ocrelizumab treat
ment, a reduction in immunoglobulin levels and an 
apparent association with increased rates of serious infec
tions, especially for IgG deficits, were observed.69

Estimation of infectious risk in ocrelizumab-treated 
patients is challenging. Generally, DMTs impact on the 
immune response and may carry an increased probability 
of infections; data from RCTs70 and large observational 
studies have been consistent with an increase of serious 
infections in patients taking natalizumab and 
rituximab.71,72 As for any other DMTs, it would be desir
able to perform a baseline evaluation of infectious disease 
history and of the vaccinal immunization status. A strict 
monitoring to detect infections during treatment is just as 
important to consider.73 A screening before starting ocre
lizumab is reported in Table 1. Post-marketing- 
surveillance initiatives and pharmacovigilance studies 
will be essential to determinate the safety of the use of 
ocrelizumab.

The COVID-19 pandemic has raised many questions 
about risks of infection in patients with MS and treated 
with immunotherapies. In non-MS patients who have 
recovered from COVID-19, CD4+ T-cells, CD8+ T-cells, 
and neutralizing antibodies all contribute, with different 
roles, to control the primary SARS-CoV-2 infection,74 as 
well as the innate immune response.75 Anti-viral neutraliz
ing antibodies levels decrease over time76,77 and could not 
be essential to recover from the disease, such as shown in 
two adults with X-linked agammaglobulinemia that fully 
recovered from COVID-19 despite the absence of 
B lymphocytes.78 On the contrary, the development of 
SARS-CoV-2-specific T and B memory cells may confer 
durable protective immunity against the virus.79,80 In view 
of this immunological knowledge, the possible impact of 
MS therapies on the SARS-CoV-2 infection should be 
evaluated.

Giving the emerging data, MS patients appear to 
respond to SARS-CoV-2 in a similar way to non-MS 
patients; in fact the risk of severe COVID-19 disease 
increases with older age, greater disability, and comorbid
ity such as cardiovascular disease and obesity.81–83 DMTs 
have been shown to be generally safe, while concerns 
regarding anti-CD20 therapies have emerged. Indeed, as 
reported by an Italian MS Registry, anti-CD20 mAbs 
(rituximab and ocrelizumab) may increase the risk of 
severe COVID-19, defined as infection requiring 

Table 1 Suggested Screening Before Ocrelizumab Starting

Laboratory Test Action to Take

VZV VZV IgG If negative, consider vaccination before OCR starting

HIV HIV serology If positive, consider choosing other DMTs

HBV* HBsAg, HBsAb, HBcAb OCR is contraindicated in patients with active hepatitis B; if latent, chronic, or active infection 
refer to liver disease specialist; consider vaccination if HBsAg is negative before OCR starting

HCV HCV serology If positive, refer to liver disease specialist

TB IGRA or tuberculin skin 
test

If positive, consider prophylaxis for latent TB or active TB, then start OCR if possible

Lymphocyte 
counts

Total WBCs, CD4, CD8, 
CD19, CD20

Consider risk-benefit in patients with lymphopenia induced by previous DMTs

Immunoglobulin 
level*

IgG, IgM, IgA Evaluate baseline level of immunoglobulins

Immunization 
state*

- Administer missing or required vaccines before OCR starting

Note: *Recommended by Ocrevus Prescribing Information. 
Abbreviations: VZV, varicella zoster virus; OCR, ocrelizumab; HIV, human immunodeficiency virus; DMTs, Disease Modifying Therapies; HBV, hepatitis B virus; HCV, 
hepatitis C virus; TB, tuberculosis; IGRA, interferon-γ release assay; WBCs, white blood cells.
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hospitalization, intensive care, or death.82 However, this 
does not seem to be confirmed in two other multicenter 
retrospective studies,81,83 and further evidence collecting 
more data is required. Recently, a study investigating the 
characteristic of COVID-19 severity in the largest cohort 
of people with MS and COVID-19 available showed that 
use of rituximab and ocrelizumab is associated with 
increased risk of hospitalization, Intensive Care Unit 
(ICU) admission, and for rituximab also risk for requiring 
artificial ventilation.84 In the context of the ongoing pan
demic, the evaluation of the risk-vs-benefit of the use of 
ocrelizumab should be evaluated case by case.

Malignancies
Among patients treated with ocrelizumab in the phase III 
RCTs, 15 patients with neoplasms were identified (1.1%), 
compared to four cases in the placebo or IFN-β arms 
(0.38%). Six cases of breast cancer were diagnosed in 
women who received ocrelizumab, while no such cases 
were observed in the comparator group.12,13 Updated data 
from ongoing ocrelizumab clinical trials shows that rates 
of all malignancies, including breast cancer, remain stable 
over time and within the range reported in epidemiological 
studies.56 Furthermore, long-term safety studies have not 
revealed an increased risk of malignancy in patients trea
ted with rituximab than in patients treated with other 
DMTs, either in MS or in rheumatoid arthritis.64,85 

Although these data are encouraging, it is important to 
continue monitoring the long-term safety of ocrelizumab 
to identify potential cumulative risks associated with pro
longed and repeated peripheral blood B-cell depletion, 
such as immunosuppression-associated malignancy.

PML Risk and Possible Use in 
JCV-Positive Patients
DMTs for MS are associated with various degrees of risk 
of PML, a rare opportunistic infection caused by the John 
Cunningham virus (JCV). While natalizumab is associated 
with the highest overall incidence, lesser degrees of risk 
exist for other drugs.86 As of December 2020, ten con
firmed cases of PML were reported in MS patients treated 
with ocrelizumab, but nine of these cases are carry-over 
PML from previous treatment with either natalizumab 
(n=8) or fingolimod (n=1).87 An additional two case 
reports, which occurred 78 and 97 days after natalizumab 
withdrawal, were recently described by Toorop et al.88 

Therefore, to date only one PML case was considered to 

be directly associated with ocrelizumab. This case 
occurred in a 78-year-old patient treated with ocrelizumab 
for approximately 2 years, without history of a previous 
DMT, but notably with lymphopenia (Grade 1 before 
treatment and Grade 2 during treatment).87,89 The occur
rence of PML is very rare among rituximab-treated 
patients with autoimmune systemic disorders, despite the 
increasing use of this therapy.90

Because the risk of PML related to anti-CD20 therapies 
is much lower than natalizumab, the possibility of using 
ocrelizumab as an effective exit strategy from natalizumab 
is under investigation. In patients at high risk, even though 
discontinuation of natalizumab can lead to MS disease 
recurrence, the suspension of treatment and the shifting 
to other highly efficacious DMTs represents a possible 
strategy to limit the occurrence of PML. Recently, results 
from a study on 42 JCV-positive patients suggests that 
switching to ocrelizumab could be considered a possible 
choice to mitigate the risk of MS reactivation in patients 
who were previously treated with natalizumab and at risk 
of PML.91 Other studies, where switching to ocrelizumab 
was analyzed in 28, 39, and 64 natalizumab-treated 
patients, respectively,92–94 come to the same conclusions. 
Overall, in these observations, no case of carry-over PML 
has been described. The small sample size and the short 
follow-up warrant cautious interpretation of these data; 
a clinical trial is currently ongoing, evaluating the efficacy 
and safety of switching patients from natalizumab to ocre
lizumab, with estimated completion in June 2022 
(Clinicaltrial.gov Identifier: NCT03157830).

Another issue that must be considered is the washout 
time interval for the switch, that should be as short as 
possible to reduce disease reactivation,95 but sufficient to 
exclude a carry-over PML. In fact, a possible diagnosis of 
asymptomatic PML should be ruled out in patients who 
discontinue natalizumab before starting ocrelizumab. 
Because it is now known that PML lesion volume is 
related with viral load and smaller natalizumab-PML 
lesions are associated with a higher likelihood of undetect
able JCV DNA in CSF,96 the strategy to perform CSF 
analysis after natalizumab interruption and before ocreli
zumab starting could be insufficient to detect asympto
matic PML.88 A stringent MRI surveillance plan for JCV- 
positive patients remains a chance to potentially lead to an 
early diagnosis and detect asymptomatic PML,97 before 
starting high effective DMT like ocrelizumab.

Whether the anti JCV antibody index, determined by 
the two-step second-generation STRATIFY JCVTM 
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enzyme-linked immunosorbent assay (ELISA), changes 
after natalizumab interruption and during ocrelizumab 
treatment remains uncertain and uninvestigated, as well 
as its link with PML risk in these patients. Anyway, 
screening for anti-JCV antibody status is not recommended 
for ocrelizumab treatment.

Maintenance of 
Immunocompetence: Possible 
Implication in Vaccination Strategy
In MS patients using DMTs, the entity of the immune 
response to either a primary infection or a vaccination 
must be considered. Immunization for vaccine- 
preventable infections is an important aspect of MS dis
ease management, because infections can exacerbate MS 
symptoms and can represent relevant adverse events dur
ing treatment.71,72,98

Generally, vaccines confer protection through the 
induction of neutralizing antibodies, but the role of T-cell 
response, although less characterized, seems to be also 
important.99 Immunocompetence is essential for the main
tenance of the preexisting specific humoral immunity to 
common pathogens and to allow the valid immune 
response to neoantigens, therefore vaccination strategies 
in people with altered immunocompetence may not confer 
a complete protection.99 However, the level of immuno
suppression is difficult to define and, in patients receiving 
immunosuppressive drugs, could vary according to doses, 
duration of therapy, and concomitant use of other drugs.100

Memory B-cells are crucial in the development of an 
effective active immunization through differentiation in 1) 
long-lived antibody-secreting plasma cells that do not 
express CD20 and produce protective antibodies and 2) 
long-lived memory CD20+ B-cells that are able to respond 
on reinfection to pathogens.101 Regarding the possible 
impact of ocrelizumab on the immunization after vaccina
tion, the same considerations can be drawn. First, long- 
lived plasma cells are not the target of anti-CD20 therapies 
and peripheral B-cell depletion is not linked to the same 
degree of depletion in secondary lymphoid organs.39–41 

Second, long-lived plasma cells survive in absence of 
memory B-cells.102,103 However, upon antigen re- 
exposure memory B-cells can re-enter the germinal center 
and differentiate in plasma cells, ensuring a response to 
reinfection and providing a second layer of defense against 
variants of the original pathogens that escape neutraliza
tion by serum antibodies.101,104

In the VELOCE trial, a randomized open-label study, 
the population treated with ocrelizumab was exposed to 
four different antigens: tetanoid, pneumococcal, and influ
enza vaccine, as well as a new antigen, keyhole limpet 
hemocyanin (KLH). In patients receiving ocrelizumab, 
pre-existing humoral immunity is not affected and patients 
mount humoral responses, although attenuated, to the inac
tivated vaccines studied and to the neoantigen KLH.105 

Inactivated vaccines, and in particular inactivate seasonal 
influenza vaccine,105,106 are recommended in ocrelizumab- 
treated patients, whereas live and live-attenuated vaccines 
were not used during and after discontinuation of anti- 
CD20 therapies until B-cell repletion has occurred.98,107 

Correct timing for vaccine administration is also para
mount; waiting at least 4 weeks before starting ocrelizu
mab for live vaccines and at least 2 weeks or more for 
non-live vaccines should be considered.98,107 During the 
course of the treatment, vaccinations with inactivate vac
cines should not overlap with the infusion and, recently, 
a 3-months’ delay was proposed,106 but it is unknown 
what degree of B-cell repopulation needs to make vaccine 
responses effective. The different repopulation kinetics of 
memory B-cells and naive B-cells should be exploited to 
try to personalize the timeframe to vaccinate these 
patients, and these elements should be taken into account 
in the course of anti-SARS-CoV2 vaccination. In fact, first 
data by Achiron et al.108 on the immune response after 
vaccination with BNT162b2 provided evidence that 
humoral vaccine responses were attenuated in most 
patients under treatment with ocrelizumab.

Conclusions
The effectiveness of ocrelizumab in patients with multiple 
sclerosis has now been widely demonstrated in RCTs, 
profoundly suppressing disease activity in RRMS, and 
mildly slowing disability progression in PPMS. Infusion- 
related reactions are the most common adverse events 
reported in RCTs, whereas, even if in the absence of new 
safety signals, the risk of infections should be carefully 
monitored, given the profound and sustained depletion of 
circulating B-cells that ocrelizumab leads to. However, 
there are several critical points that need further elucida
tion. Among these, the best degree and duration of B-cell 
depletion is still not entirely known, particularly consider
ing that anti-CD20 therapies do not fully deplete B-cells in 
peripheral lymphoid tissue, thus providing a possible 
source of peripherally maintained disease activity. 
Moreover, the best time window to allow vaccinations 
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and to schedule a pregnancy safely has yet to be defined. 
Different dosing and administration of anti-CD20 thera
pies are being evaluated to identify the best approach 
balancing efficacy with safety.

Taken together, ocrelizumab has been a great step for
ward in the treatment of MS, however collecting long-term 
safety data and finding strategies to minimize adverse 
events will be extremely relevant in the future.
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