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Purpose: Obesity is a major public health problem. Understanding which genes contribute 
to obesity may better predict individual risk and allow development of new therapies. 
Because obesity of a mouse gene knockout (KO) line predicts an association of the 
orthologous human gene with obesity, we reviewed data from the Lexicon Genome5000TM 

high throughput phenotypic screen (HTS) of mouse gene KOs to identify KO lines with high 
body fat.
Materials and Methods: KO lines were generated using homologous recombination or 
gene trapping technologies. HTS body composition analyses were performed on adult wild- 
type and homozygous KO littermate mice from 3758 druggable mouse genes having a 
human ortholog. Body composition was measured by either DXA or QMR on chow-fed 
cohorts from all 3758 KO lines and was measured by QMR on independent high fat diet-fed 
cohorts from 2488 of these KO lines. Where possible, comparisons were made to HTS data 
from the International Mouse Phenotyping Consortium (IMPC).
Results: Body fat data are presented for 75 KO lines. Of 46 KO lines where independent 
external published and/or IMPC KO lines are reported as obese, 43 had increased body fat. 
For the remaining 29 novel high body fat KO lines, Ksr2 and G2e3 are supported by data 
from additional independent KO cohorts, 6 (Asnsd1, Srpk2, Dpp8, Cxxc4, Tenm3 and Kiss1) 
are supported by data from additional internal cohorts, and the remaining 21 including Tle4, 
Ak5, Ntm, Tusc3, Ankk1, Mfap3l, Prok2 and Prokr2 were studied with HTS cohorts only.
Conclusion: These data support the finding of high body fat in 43 independent external 
published and/or IMPC KO lines. A novel obese phenotype was identified in 29 additional 
KO lines, with 27 still lacking the external confirmation now provided for Ksr2 and G2e3 
KO mice. Undoubtedly, many mammalian obesity genes remain to be identified and 
characterized.
Keywords: obesity, druggable, homologous recombination, gene trapping

Introduction
The obesity pandemic is a major public health problem. The global prevalence of 
obesity has increased steadily since 1980, and by 2015 108 million children and 
604 million adults worldwide were obese.1,2 In the United States, the prevalence of 
obesity in adults increased from 33.7% in 2007–2008 to 42.4% in 2017–2018.3 

These obesity estimates are based on body-mass index (BMI) data, calculated as 
weight/height2 (kg/meter2), with obesity defined as BMI ≥ 30. High BMI is a risk 
factor for many chronic diseases; in 2015, high BMI was linked globally to 4 
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million deaths and 120 million disability-adjusted life 
years.2,4 Clearly, there is a need for new interventions 
that effectively decrease the amount of body fat.

Human obesity, as represented by the surrogate mea-
sure BMI, has a genetic component that explains ~30% of 
the variability.5–9 The value in identifying genes responsi-
ble for this heritability is the potential to predict individual 
risk for future obesity and the potential to identify path-
ways and targets for therapeutic intervention. The first 
obesity genes were discovered by positional cloning stu-
dies using the obese mouse lines ob/ob and db/db, and by 
studying the agouti yellow obese mouse; these efforts 
identified leptin (LEP), leptin receptor (LEPR) and mela-
nocortin 4 receptor (MC4R) as integral proteins regulating 
body fat in mice and humans. Investigating the role of 
these proteins in neural pathways controlling adiposity 
resulted in identification of a few additional genes that 
help to regulate mammalian body fat stores.10–14 To date, 
identifying these obesity genes has not led to therapies 
capable of reversing the obesity pandemic.

The inability of early linkage studies to identify loci 
linked to common obesity suggested correctly that numer-
ous genetic variants make small individual contributions; 
currently, >250 GWAS loci are identified as minor con-
tributors to BMI variance.8,15–18 Attempts to integrate 
these GWAS loci into a single genome-wide polygenic 
score that predicts individual obesity risk had limited 
success.19 Also, these GWAS loci rarely pinpoint novel 
therapeutic targets because most reside in introns as clus-
ters of noncoding variants which likely regulate expres-
sion, not function, of a causal protein encoded by a gene 
which may be located far from the locus itself.16 A good 
example is the locus located in the first intron of FTO (fat 
mass and obesity associated). A role in obesity for the 
demethylase enzyme encoded by FTO is supported by loss 
of function mutations in mice, but not in humans,20,21 and 
recent studies link these FTO variants to altered expression 
of the nearby RPGRIP1L and distant IRX3 and IRX5 
genes, with loss of function mutations of Irx3 and 
Rpgrip1l genes altering energy balance in mice.20–22 Of 
these 4 candidate genes, only FTO encodes a druggable 
protein by conventional standards, where druggable pro-
teins are either secreted, accessible in vivo to a circulating 
antibody, or members of a protein family successfully 
targeted by small molecules.23–25 After a decade of 
research, the FTO locus has not yielded a mature drug 
discovery program. Most recently, an exome-wide search 
for low frequency and rare protein-altering variants (allele 

frequency < 5%) associated with BMI identified 8 novel 
obesity genes.16 These variants contributed little to BMI 
variation due to their rarity. However, this exome-sequen-
cing approach has value over previous GWAS approaches 
because the genes responsible are identified.

Inactivating mutations in mouse genes often identify 
genes that regulate human body fat stores,26 clarify the 
physiologic role of GWAS-associated human genes,27 and 
mimic phenotypes resulting from human gene mutations.28 

Also, mice with knockout (KO) mutations that inactivate 
the targets of drugs usually exhibit phenotypes consistent 
with the effects of those drugs in humans; this correlation 
between effects of genetic manipulation in mice and phar-
macologic manipulation in humans suggests conservation 
of gene function.29,30 This correlation extends to body fat 
regulation; of 21 obesity gene targets reviewed, most 
showed a correspondence between KO phenotype and 
drug effect in rodents, and, when data existed, drug effect 
in humans.31,32 Together, these data suggest that coordi-
nated KO of all mouse genes followed by phenotyping of 
viable KO lines for body fat content will identify genes 
playing a previously unrecognized role in human obesity.

Because mouse global KO phenotypes model drug 
effects, Lexicon Pharmaceuticals pursued, between 2000 
and 2008, the high-throughput Genome5000TM program 
designed to KO and phenotype the druggable genome and 
reveal novel drug targets.29,33–37 We have reported the 
skeletal phenotypes identified by the primary high- 
throughput screen (HTS).37 The HTS also included assess-
ment of body fat in two independent mouse cohorts fed 
either high fat diet (HFD) or chow.35 In a preliminary 
report, we showed that the HTS correctly identified body 
fat phenotypes in 13 benchmark KO lines.36 The present 
report extends these observations and summarizes our 
experience identifying established and novel high body 
fat phenotypes in our screen of the druggable genome.

Methods
Mouse Care and Study
All animal studies were performed in strict accordance 
with the recommendations in the Guide for the Care and 
Use of Laboratory Animals of the National Institutes of 
Health. Protocols for all studies were approved by the 
Lexicon Institutional Animal Care and Use Committee 
(OLAW Assurance Number, A4152-01; AAALAC 
International Accreditation Number, 001025). General 
methods for mouse care are published.36,38,39 Briefly, WT 
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and KO mice were housed together, with a maximum of 5 
mice/cage, in a temperature-controlled environment on a 
fixed 12-hour light/12-hour dark cycle and with free access 
to food and water. Unless stated otherwise, mice received 
standard rodent chow 9F 5020 (Purina, St. Louis, MO) as 
our chow diet, D12450B (Research Diets, New 
Brunswick, NJ) containing 10% of kcals from fat as our 
low-fat diet (LFD), or D12451 (Research Diets) containing 
45% of kcals from fat as our high-fat diet (HFD). In a few 
studies, mice were fed a high-fat diet containing 60% kcals 
from fat (60% HFD; D12492, Research Diets). Pair-feed-
ing studies were performed as described previously.40

Generation of Knockout Mice
Our approach to KO and phenotype mouse orthologs of 
the estimated 5000 potential drug targets in the human 
genome (Genome 5000TM project) is published.29,34– 

37,41–43 Briefly, Lexicon generated KO lines for the 
Genome 5000TM project by manipulating the mouse gen-
ome using either gene trapping (OmniBank® I) or homo-
logous recombination technologies. Gene trapping 
mutagenesis in embryonic stem cells involves inserting 
DNA elements randomly into endogenous genes leading 
to transcriptional disruption and introduction of sequence 
tags. Oligonucleotide primers complementary to the gene- 
trap vector precisely localize the vector insertion site 
within the exon-intron organization of the gene, and gene 
disruption is confirmed using RT-PCR performed with 
oligonucleotide primers complementary to exons flanking 
the vector insertion site.37 This method permitted selection 
of druggable genes for KO generation. Because many 
factors place an upper limit on the percentage of genes 
that are efficiently trapped, gene KO by homologous 
recombination, which allows targeting of selected genes 
including those not targeted by gene trapping, was also 
employed. All mutations were generated in strain 
129SvEvBrd-derived ES cells. Resulting chimeric mice 
were bred to C57BL/6J albino mice to generate F1 hetero-
zygous (HET) progeny. These mice were intercrossed to 
generate F2 wild-type (WT), HET and KO (homozygous 
mutant) offspring, which were studied in our high- 
throughput primary phenotypic screen. All mice were on 
a C57BL/6J X 129SvEvBrd hybrid background. 
Genotyping was performed on tail DNA as described.44

Supplementary Table 1 lists official names and gene 
symbols for every gene with a KO line discussed here. The 
strategies for generating many of these KO lines are pub-
lished, including Asnsd1;45 Htr2c, Brs3, Mc4r, Mc3r and 

Tsn;36 Ffar4 or Gpr120;46 G2e3;47 Hdac5;48 Ksr2;36,49 

Prlhr;50 Slc6a4 or Sert;51 and Kiss1, Kiss1r, and Sost.37 

The Mc3r and Mc4r KO lines were used to generate Mc3r/ 
Mc4r double KO (DKO) mice. Supplementary Table 2 
presents homologous recombination strategies for KO 
lines of Adamts4, Adamts18, Adm2, Ak5, Ankk1, Apln, 
Aqp7, AU040320, Ccn5, Cxxc4, Dgkg, Dpp8, Gpr45, 
Gpr61, Gpx7, Itih1, Lrrn2, Lrrtm1, Mfap3l, Ncs1, Npvf, 
Ntm, Oprm1, P2rx6, Pnpla2, Prok2, Prokr2, Ptprn, Pyy, 
Resp18, Retn, Retsat, Scg3, Sik2, Tnfsf13b, Usp13, Usp38 
and Wnt8b. Supplementary Table 3 describes the location 
of gene trap insertion vectors for KOs of Adamts4, Adcy3, 
Aoc3, Ddah1, Enox1, Glrx2, Hdac6, Herc1, Igfbp2, 
Igdcc4, Kdm3a, Ncoa1, Nr4a1, Pecr, Prdx6, Prmt7, 
Ptp4a1, Rgs10, Scg3, Srpk2, St3gal2, Tenm3, Tle4, and 
Tusc3.

Primary High-Throughput Screen (HTS)
Our primary HTS consisted of a battery of tests performed 
on F2 mice, including audiology, behavior, hematology, 
serum chemistry, bone densitometry, histopathology, car-
diology, metabolism, immunology, oncology and ophthal-
mology assays.35,37 Briefly, 2 cohorts of mice were 
studied. A cohort fed chow diet from weaning usually 
consisted of 4 WT, 4 HET and 8 KO mice, half male and 
half female, for each project. A cohort fed HFD from 
weaning consisted of up to 8 WT and 8 KO male mice 
for each project.

As part of this HTS, body composition was analyzed 
on both mouse cohorts. A cohort of 14-week old mice fed 
chow from weaning was screened, usually by dual-energy 
X-ray absorptiometry (DXA) using a GE/Lunar PIXImus 
scanner (GE Medical Systems, Madison, WI) but in a few 
instances by quantitative magnetic resonance (QMR) tech-
nology using a Bruker Minispec QMR Analyzer (ECHO 
Medical Systems, Houston, TX).36 Briefly, for each KO 
line, the mean KO % body fat/mean wildtype (WT) litter-
mate % body fat ratio was calculated for both male and 
female mice, and then these male and female values were 
averaged to yield a normalized % body fat (n%BF) value. 
For most KO lines, 4 male KO, 2 male WT, 4 female KO 
and 2 female WT mice were studied. KO lines with fewer 
than 4 KO or 3 WT mice were excluded, except for 
X-linked lines where only male data were used, usually 
from 8 KO and 2 WT mice. A separate cohort of 11-week 
old male mice fed HFD from weaning was screened by 
QMR as described previously;49 all lines with between 3 
and 8 KO mice and between 3 and 8 WT littermate 
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controls were included in the analysis. The n%BF for each 
line was calculated as described for the chow-fed cohort. 
Also, for some KO lines, normalized body fat grams 
(nBFg) was calculated from BFg data and normalized 
lean body mass (nLBM) was calculated from LBM data, 
as described for n%BF. Historical mean and SD values for 
%BF and BFg were calculated using data from ~14500 
WT mice studied in the chow-fed cohorts from 3758 
independent KO lines and from ~16000 WT mice studied 
in the HFD-fed cohorts from 2475 independent KO lines.

Studies Using Additional Cohorts
Selected KO lines with high body fat identified in the 
primary chow and HFD screens were studied using addi-
tional mouse cohorts to determine if the HTS high body fat 
phenotype was reproducible. Additional KO lines were 
selected for further study based on published reports link-
ing that KO to obesity. These body composition measure-
ments were made using QMR or DXA technologies as 
described above. In addition to body composition, addi-
tional phenotyping assays were performed; methods for 
these assays are described below.

Blood Sample Analysis
Unless stated otherwise, blood was obtained from fed mice 
by retro-orbital bleed and serum assayed for glucose and 
total cholesterol by Cobas Integra 400 analyzer (Roche 
Diagnostics, Indianapolis, IN).35,39 Serum leptin levels 
were measured using an ELISA kit (Mouse Leptin, 
Crystal Chem, Downers Grove, IL).

VO2 and Physical Activity
VO2 and ambulatory activity were measured in Oxymax 
chambers (Oxymax, Columbus Instruments, Columbus, 
OH) as described previously.49 Gross motor activity was 
measured using the ER-4000 physiological measurement 
system (Mini Mitter, Bend, OR, USA). Three days after 
E-mitter transponders were surgically implanted into their 
peritoneal cavity, mice were placed in individual cages 
within range of an ER-4000 receiver, which measures 
activity by sensing the strength of the signal received 
from the E-mitter. Activity data for each mouse were 
collected in 10 min intervals for a total of 6 days (144 
hours) using the VitalView Data Acquisition System (Mini 
Mitter); gross motor activity data were normalized such 
that mean WT activity = 100%.

Glucose Tolerance Tests
Glucose tolerance tests (GTTs) were performed on con-
scious, unanesthetized mice. After an overnight fast, mice 
were bled at baseline and then received 2 g/kg glucose by 
oral gavage (OGTT) or by intraperitoneal injection 
(IPGTT). Glucose levels from each mouse, obtained on 
whole blood samples at 0 (baseline), 30, 60, 90 and/or 120 
minutes using an ACCU-CHEK Aviva glucometer (Roche, 
Indianapolis, IN) were used to calculate glucose area 
under the curve (AUC) values. Two additional serum 
aliquots obtained at 0 (baseline) and 30 minutes were 
used to measure insulin levels (Ultra-Sensitive Rat 
Insulin ELISA Kit, Cat. 90060; Crystal Chem).

Fertility Testing
For each project, 1–3 male and 2–4 female KO mice were 
examined. Each male KO mouse was bred to 2 WT 
females for 14 days. Each female KO mouse was bred 
individually with up to 3 WT males for 60 days. Pregnant 
females (KO and WT) were monitored daily for births; 
pups were counted at birth and at postnatal day 4 and were 
monitored daily for stomach milk content and for growth. 
Special care was taken not to disturb the litter 
environment.

Systolic Blood Pressure
Systolic blood pressure (SBP) was measured on conscious 
10 to 13 week-old mice using a tail-cuff system (Visitech 
Systems, Apex, NC, USA). SBP was measured 10 times 
daily for 4 consecutive days, and the SBP value reported 
was the mean of the 40 SBP readings.52

Histopathology
Methods for general histopathology are published.49

External Public Database Resources
Human GWAS data identifying clusters of BMI, waist–hip 
ratio adjusted BMI, body fat percentage, weight and T2D 
single nucleotide polymorphism variants located within 
1.2 MBP 5ʹ or 3ʹ of selected genes were obtained at 
https://hugeamp.org/ which links to the Common 
Metabolic Diseases Knowledge Portal; the 1.2 MBP dis-
tance was chosen because that is the distance at which 
FTO intronic variants influence IRX5 expression.22 For 
each gene, the distance between the cluster variant closest 
to the gene and the gene exon closest to that variant was 
calculated. Human gene expression data were obtained 
using the GTEx Portal at https://gtexportal.org/home/ 
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[GTEx Analysis Release V8 (dbGaP Accession 
phs000424.v8.p2)]. HTS data for body weight (BW), 
body fat, fertility and/or total cholesterol levels from 
selected mutant mouse gene KO lines were obtained 
using the International Mouse Phenotyping Consortium 
(IMPC) database at https://www.mousephenotype.org 
(Data Release Version 14). The IMPC HTS typically 
examined 7 male and 7 female mutant and WT mice 
with body composition measured by DXA.53 Catalog des-
ignations and additional information on Lexicon KO mod-
els available at Taconic Biosciences were found at https:// 
www.taconic.com/find-your-model/.

Statistics
Data are presented as mean ± SD. Comparisons between 
two groups were analyzed by unpaired Student’s t test; 
when variances between the two groups were significantly 
different, the data were analyzed using the nonparametric 
Mann–Whitney test. Comparisons among three groups 
were analyzed by one-way ANOVA with Tukey’s test 
used to correct for multiple comparisons. Two-way 
ANOVA was performed on body fat and LBM data from 
Mc3r KO, Mc4r KO, Mc3r/Mc4r DKO and WT littermate 
mice. Viability of KO lines was determined by chi-square 
testing of Mendelian ratios obtained at weaning. All sta-
tistical tests were performed using PRISM 4.03 (GraphPad 
Software, Inc., La Jolla, CA, USA). Differences were 
considered statistically significant when P<0.05.

Results
We obtained HTS body composition data on 3758 inde-
pendent mouse gene KO lines with viable adult homozy-
gous KO mice. Body fat was measured on chow-fed 
cohorts of WT and KO littermate mice from all 3758 
KOs; 3650 KO lines were studied by DXA and 108 KOs 
were studied by QMR. For 2488 of these KO lines, body 
fat was also measured by QMR on an independent cohort 
of high fat diet-fed WT and KO littermate mice. HET 
mice, along with their WT littermates, were also examined 
in our HTS for 755 KO lines exhibiting homozygous 
lethality. For all but three genes with viable KO mice, 
the HET data were not analyzed because there were only 
4 HET mice/KO line. For Adcy3, which is one of 90 KO 
lines showing reduced viability of homozygous KO mice 
prior to 10 weeks of age, data were pooled from 2 KO and 
8 HET littermates. For Scg3, which had 2 independent KO 
lines, and Adamts4, which had 3 independent KO lines, 
data were pooled from 12 HET and 16 KO littermates, and 

from 12 HET and 24 KO littermates, respectively. For each 
of these three genes where data were available for at least 
8 HET mice, HET and KO littermate mice showed a 
similar increase in body fat.

Obese KO Lines Studied with Both HTS 
and Additional Cohorts
Figure 1 shows HTS normalized percent body fat (n%BF) 
values for each of these KO lines within the distribution of 
values for all KO lines fed chow diet from weaning. 
Table 1 presents pooled n%BF data that combined, for 
each KO line, the HTS cohort data shown in Figure 1 
with data from all additional cohorts. These obese KO 
lines studied with both HTS and additional cohorts are 
categorized here as follows: 1) Benchmarks, consisting 
of the 5 KO lines with increased body fat reported in 
two external publications that we used previously to vali-
date our HTS,36 a crucial step which showed that, despite 
examining a small number of mice/KO line, our HTS was 
unlikely to report many false negatives in which high body 
fat was missed in specific gene KO lines; 2) KO lines first 
published by external groups that did not originally serve 
as benchmarks; and 3) Novel KO lines which consist of 
KO lines, either published or unpublished, that were first 
identified at Lexicon. For all normalized data, the mean 
WT value for each cohort is assigned a value of 100%. 
Table 2 presents human expression and associated GWAS 
BMI cluster data for selected non-benchmark KO lines 
presented in Table 1. Human expression data focus on 
CNS, hypothalamic and adipose tissues to provide insight 
into how the targeted gene might regulate body fat, 
because most obesity genes are expressed in the CNS 
and likely regulate food intake centrally through hypotha-
lamic relays, while a few may have a direct effect on 
adipogenesis and/or fat storage by adipocytes.8,54 Data 
on human GWAS BMI clusters located close to the 
human orthologs of targeted mouse genes are presented 
to suggest that these human orthologs may be responsible 
for the GWAS BMI signals.

Benchmark KO Lines
We originally showed, using 5 benchmark KO lines with 
established obesity (Brs3,55,56 Tsn,57,58 Mc4r,13,59,60 

Mc3r60–62 and Htr2c63,64) that our HTS correctly predicted 
the amount of body fat present in additional cohorts.36 Our 
data confirm published data showing that KO models for 
Brs3, Tsn, Mc4r, and Mc3r are obese. Our data also con-
firm that Tsn KO mice have low LBM, with nLBM of KO 
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mice = 89 ± 9 (n=21) vs WT mice = 100 ± 5 (n=13), 
P<0.001; however, in contrast to published data, our Tsn 
KO mice had impaired glucose tolerance with OGTT 
glucose AUC of KO mice = 33227 ± 12131 (n=8) vs 
WT mice = 22978 ± 4187 mg*min/dL (n=9), P<0.05 by 
Mann Whitney test. In addition, analysis of our cohort of 
Mc3r/Mc4r DKO mice showed that the increased BFg of 
DKO mice is comparable to the combined increase 
observed in Mc3r and Mc4r KO mice, suggesting inde-
pendent pathways of fat accumulation, and that only Mc4r 
KO mice have increased LBM (Supplementary Table 4), 
all confirming published data.60,62 In contrast, our Htr2c 
KO mice did not show significantly increased body fat 
either in the HTS or in additional cohorts36 despite the 
obesity reported in 2 independent Htr2c KO lines and the 
ability of the HTR2C inhibitor lorcaserin to both lower 
body fat in obese humans and lower food consumption in 
Htr2c WT, but not KO, mice.63–66 A review of HTS data 
for these benchmark KO lines found that the number of 
KO mice with %BF or BFg >2 SD above the historic 

mean, compiled with data from ~14500 WT mice in the 
chow fed HTS and ~16000 WT mice in the HFD HTS, 
was 15/16 for Mc4r, 3/8 for Mc3r, Brs3 and Tsn, and 1/16 
for Htr2c; in contrast, the number of WT mice was 1/11 
for Mc4r, 0/4 for Mc3r, Brs3 and Tsn, and 1/10 for Htr2c. 
This suggests that KO lines with marked obesity have 
many KO mice that are quite obese.

Additional Externally Published KO Lines Not Used 
as Benchmarks
GPR45 is an orphan GPCR with constitutive activity. 
External Gpr45 KO mice had increased body fat at wean-
ing and developed progressive obesity due mainly to 
decreased energy expenditure, a conclusion based on stu-
dies performed during the development of obesity which 
showed that KO mice had comparable food intake, 
decreased energy expenditure and decreased physical 
activity relative to WT mice; these KO mice were also 
glucose intolerant with high plasma insulin and leptin 
levels, and displayed reduced hypothalamic proopiomela-
nocortin (POMC) expression suggesting a link to the 

Figure 1 High-throughput screen (HTS) normalized %body fat (n%BF) values for individual well-studied KO lines within the distribution of HTS n%BF values for all 3650 
individual KO lines maintained on chow diet from weaning. Body composition analyses performed by DXA on 14-week-old mice were used to calculate n%BF for the cohort 
from each individual KO line. Solid points indicate actual numbers of KO lines within that mean ± 2.5% value of n%BF. Curved line shows the calculated curve. The range for 
1 and 2 SD from the population mean is indicated by lines located below the curve, and the mean n%BF value for the HTS cohort from each individual well-studied KO line is 
indicated by arrows above the curve. Some of these KO lines also had HTS data generated on an independent HFD-fed cohort; these KO lines and their n%BF data from the 
HFD-fed HTS cohort were: Pyy (101%), Sprk2 (106%), Dkk4 (107%), Htr2c (108%), Tenm3 (110%), Prlhr (111%), Oprm1 (123%), Hdac5 (132%), Dpp8 (134%), Mc4r (159%), 
Kiss1 (161%), G2e3 (164%), Asnsd1 (167%) and Ksr2 (189%).
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melanocortin pathway.67 Our Gpr45 KO mice, first 
reported as the LG747 KO line,68 also had increased 
body fat at weaning and developed progressive obesity 
that was still present at 87 weeks of age (Supplementary 
Table 5). Although we did not observe differences in VO2 

or physical activity between KO and WT littermates 
(Supplementary Table 6), a pair feeding study initiated at 
weaning showed clearly that obesity developed in male 
and female Gpr45 KO mice despite food intake that was 
comparable to that of their WT littermates (Supplementary 
Figure 1). Although we did not observe impaired glucose 
tolerance in our KO mice, we found increased insulin 
levels associated with severe insulin resistance, and 
increased serum levels of leptin, triglycerides and total 
cholesterol (Supplementary Table 7).

KISS1 is a neuropeptide that activates the hypothala-
mic-pituitary-gonadal axis by binding the hypothalamic 
G protein coupled receptor (GPCR) KISS1R; inactivating 
mutations in either gene result in delayed or absent pub-
erty in mice and humans.69 Our Kiss1 and Kiss1r KO 
mice exhibited male and female hypogonadism and 
showed decreased bone mass consistent with 
hypogonadism.37 Published studies also found increased 
body fat in Kiss1r KO mice, more striking in females, 
and decreased LBM, more striking in males; these find-
ings suggest a metabolic role for these genes.69,70 Our 
data confirm these findings for Kiss1r KO mice and show 
the same pattern for Kiss1 KO mice except that both male 
and female Kiss1 KO mice had increased body fat 
(Supplementary Table 8).

Table 1 Normalized % Body Fat Data for KO Lines with Both HTS and Secondary Screen Cohorts

Normalized % Body Fat, Mean ± SD (n)

KO Line KO WT P value Sex Age (Weeks) Diet

Benchmark KO lines

Mc3r 176 ± 36 (43) 100 ± 26 (35) <0.001 M and F 5–14 Chow and HFD

Mc4r 164 ± 41 (104) 100 ± 21 (107) <0.001† M and F 7–21 Chow and HFD

Tsn 160 ± 43 (21) 100 ± 17 (13) <0.001† M and F 14–20 Chow
Brs3 148 ± 42 (29) 100 ± 34 (13) <0.001 M (hemi) 14–19 Chow

Htr2c 105 ± 25 (51) 100 ± 20 (48) 0.268 M (hemi) 11–35 Chow and HFD

Additional published high body fat KO lines

Gpr45 205 ± 59 (118) 100 ± 23 (93) <0.001† M and F 7–38 Chow and HFD
Kiss1r 140 ± 32 (18) 100 ± 13 (13) <0.001† M and F 14–16 Chow

Gpr61 125 ± 31 (68) 100 ± 25 (57) <0.001 M and F 14–21 Chow and HFD

Hdac5 125 ± 30 (35) 100 ± 20 (25) <0.001 M and F 11–25 Chow and HFD
Prlhr 120 ± 36 (54) 100 ± 22 (33) 0.002† M and F 11–24 Chow and HFD

Sost 117 ± 26 (52) 100 ± 24 (56) <0.001 M and F 14–30 Chow

Slc6a4 117 ± 29 (49) 100 ± 29 (48) 0.005 M and F 9–50 Chow
Retn 117 ± 20 (27) 100 ± 20 (31) 0.002 M and F 11–24 Chow and HFD

Oprm1 116 ± 15 (26) 100 ± 23 (29) 0.008 M and F 11–16 Chow and HFD

Pyy 102 ± 24 (25) 100 ± 21 (21) 0.765 M and F 11–37 Chow and HFD
Ffar4 99 ± 17 (38) 100 ± 12 (23) 0.843 M and F 11–14 Chow and HFD

Novel high body fat KO lines

Ksr2 235 ± 46 (127) 100 ± 21 (153) <0.001† M and F 5–14 Chow and HFD
Asnsd1 180 ± 44 (39) 100 ± 24 (34) <0.001† M and F 11–42 Chow and HFD

G2e3a 148 ± 32 (32) 100 ± 28 (31) <0.001 M and F 11–25 Chow and HFD

Srpk2 141 ± 38 (41) 100 ± 26 (48) <0.001† M and F 11–22 Chow and HFD
Dpp8 133 ± 23 (39) 100 ± 17 (32) <0.001 M and F 11–28 Chow and HFD

Cxxc4 131 ± 39 (39) 100 ± 24 (30) <0.001† M and F 14–23 Chow

Kiss1 127 ± 31 (27) 100 ± 30 (24) 0.003 M and F 11–27 Chow and HFD
Tenm3 121 ± 31 (29) 100 ± 25 (34) 0.004 M and F 11–15 Chow and HFD

Notes: KO mice in each group presented by decreasing % body fat; † Statistical analysis by Mann–Whitney test. aData published previously in reference 47. 
Abbreviations: SD, standard deviation; n, number of mice; KO, knockout; WT, wild-type; M, male; F, female; hemi, hemizygous; HFD, high fat diet.
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GPR61 is an orphan GPCR with constitutive activity. 
Gpr61 KO mice were reported as hyperphagic and obese 
with decreased hypothalamic Pomc expression that potentially 
links this GPR to the melanocortin pathway.71 Although 
Gpr61 KO mice were not obese in our HTS (Figure 1), 
sequence similarity of GPR61 to GPCRs activated by biogenic 
amines suggested druggability. This led us to study additional 
cohorts where we found that our Gpr61 KO mice were obese, 
with a 25% increase in n%BF (Table 1), a 45% increase in 
nBFg (KO=145 ± 56 vs WT=100 ± 35, P<0.001 by Mann– 
Whitney test) and a 4% increase in nLBM (KO=104 ± 14 vs 
WT=100 ± 8, P<0.001 by Mann Whitney test).

HDAC5 is an enzyme that influences hypothalamic 
leptin signaling, in part by STAT3 deacetylation.72 Our 
data confirmed that Hdac5 KO mice are obese; our KO 
mice had a 25% increase in n%BF (Table 1), a 19% 
increase in nBFg (KO=119 ± 41 vs WT=100 ± 29, 
P<0.05) and a 12% decrease in nLBM (KO=88 ± 12 vs 
WT=100 ± 7, P<0.001).

PRLHR is a GPCR that confers the ability of prolactin- 
releasing peptide (PrRP) to decrease food intake and 
increase energy expenditure, a role supported by the obe-
sity observed in two independent Prlhr KO models50,73 

and on the anorectic effects of PrRP when delivered to rats 
and Prlhr WT, but not KO, mice.74,75 Our studies confirm 
obesity in Prlhr KO mice; the KO mice showed a 20% 
increase in n%BF (Table 1) and a 35% increase in nBFg 
(KO=135 ± 58 vs WT=100 ± 32, P<0.01).

The serotonin reuptake transporter SLC6A4 regulates 
serotonin action and is a target of antidepressants that may 
affect food intake and BW. The obesity observed in KO 
mice by two groups studying the same Slc6a4 KO mouse 
model76,77 was confirmed in KO mice from our indepen-
dent Slc6a4 KO line (Table 1).

RETN, a protein secreted by adipocytes in mice and 
macrophages in humans, impairs insulin action in 
rodents.78,79 Retn KO mice did not have increased BW 
but ob/ob mice lacking RETN were obese compared to 

Table 2 Human Expression and GWAS Data on Selected Non-Benchmark Obese KO Lines with HTS and Secondary Screen Cohorts

Major GWAS BMI Clusters Within 1.2 MBPb

KO Line Human Expressiona Lead Variant P value Cluster Distance

Additional KO lines with published high body fat

Gpr45 Mainly CNS, highest in Hyp 2:105976344:A:G <5e-8 0.06 MBP 3’

Kiss1r Mainly CNS, mainly Hyp; Pit 19:1956035:G:A <e-14 0.89 MBP 3’

Gpr61 Mainly CNS, incl Hyp; Pit 1:110154688:T:C <e-38 Overlapping
Hdac5 Wide; CNS, incl Hyp; Ad 17:42193185:G:C <e-11 Overlapping

Prlhr Mainly Pit, Hyp 10:120465796:C:G <e-10 0.07 MBP 5’

Sost Mainly Osteocytes, Lung; not CNS 17:42193185:G:C <e-11 0.33 MBP 5’
Slc6a4 Mainly lung, GI 17:28410277:A:G <e-11 Overlapping

Oprm1 Mainly CNS, incl Hyp 6:154309808:C:T <e-14 Overlapping

Novel high body fat KO lines

Ksr2 Mainly CNS, incl Hyp 12:118409274:G:A <e-10 Overlapping

Asnsd1 Wide; CNS, incl Hyp; Ad, SkM None

G2e3 Wide; CNS, incl Hyp; Ad 14:30495719:C:T <e-15 0.49 MBP 5’

Srpk2 Wide; CNS, incl Hyp; Ad 7:104756355:T:C* <e-15 Overlapping
Dpp8 Wide; CNS, incl Hyp; Ad 15:65916527:A:T <5e-8 Overlapping

Cxxc4 Wide; CNS highest, mainly Hyp; Ad 4:106160133:G:A* <e-11 0.65 MBP 5’
Kiss1 Hyp only 1:203491392:T:G <e-11 0.67 MBP 3’

1:204414769:T:C* <5e-8 0.25 MBP 5’

Tenm3 Wide; CNS, incl Hyp; Ad None

Notes: KO mice in each group presented by decreasing % body fat. aData obtained from https://gtexportal.org/home/. bData obtained from https://hugeamp.org/ on 8/17/ 
2021. *Waist–hip ratio adjusted BMI. 
Abbreviations: MBP, million base pairs; incl, including; CNS, central nervous syndrome; Hyp, hypothalamus; Ad, adipose; Pit, pituitary; GI, gastrointestinal tract; SkM, 
skeletal muscle.
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ob/ob mice,78 as were transgenic mice expressing a domi-
nant inhibitory form of RETN.79 Our Retn KO mice were 
modestly obese, consistent with the published data.

The SOST gene encodes sclerostin, an inhibitor of 
WNT signaling secreted mainly by osteocytes.80 In 
humans and mice, inactivating Sost mutations increase 
bone mineral density and strength.37,81 Recently, Sost KO 
mice and mice receiving sclerostin-neutralizing antibodies 
were found to have low body fat, while mice overexpres-
sing sclerostin were obese, apparently due to altered WNT 
signaling in adipocytes.82 However, older work reported 
obesity in Sost KO mice,83 consistent with the finding that 
mice with an osteocyte-specific increase in sclerostin 
release had lower body fat and increased beiging of 
adipocytes;80 our data support these last two studies, 
with Sost KO mice showing modest increases of 17% in 
n%BF (Table 1) and 16% in nBFg (KO=116 ± 38 vs 
WT=100 ± 36, P<0.05 by Mann–Whitney test). This link 
between sclerostin and obesity is intriguing given recent 
evidence that a leptin-independent BW homeostat is 
dependent on osteocytes.84

The opioid system, particularly OPRM1, participates in 
neural reward processes leading to addictive behavior; 
many neural structures involved in addictive behavior are 
also involved in food reward, and opioid receptor antago-
nists inhibit intake of both addictive drugs and palatable 
diet.85 Consistent with these findings, %BF was lower in 
Oprm1 KO mice maintained on highly palatable 
HFDs;86,87 surprisingly, however, some but not all past 
studies found increased BW and/or %BF in Oprm1 KO 
mice fed less palatable chow diets.86–88 Oprm1 KO mice 
reported here had increased %BF (Table 1) and nBFg 
(KO=125 ± 20 vs WT=100 ± 29, P<0.001), with a similar 
increase in body fat for KO mice fed chow or HFD. These 
data suggest that Oprm1 KO mice may develop modest 
obesity when fed certain diets.

PYY is a gastrointestinal peptide that induces central 
satiety. In some Pyy KO mouse studies, body fat was 
increased in male KO mice fed chow89 or HFD90 and in 
female KO mice fed chow90 or HFD,91 but in other stu-
dies, body fat was not increased in male KO mice fed 
chow90–93 or HFD91 and in female KO mice fed chow.91,92 

Body fat was not increased in our male and female KO 
mice fed chow and in our male KO mice fed HFD. These 
data suggest that PYY deficiency plays little if any role in 
regulating mammalian body fat, consistent with the lack of 
obesity in humans with rare genetic PYY variants.54

The GPCR FFAR4, a receptor for long chain free fatty 
acids (FFAs), purportedly mediates anti-obesity, anti- 
inflammatory and insulin sensitizing effects in vivo. In 
one study, BW was increased by 8 weeks of age in Ffar4 
KO mice fed HFD, consistent with increased obesity risk 
in humans with the inactivating FFAR4 variant p.R270H.94 

However, BW was not increased in multiple studies of 
Ffar KO mice fed chow94,95 or HFD,95–97 consistent 
with lack of obesity in our HFD-fed Ffar4 KO mice. 
Further, a FFAR4-selective agonist improved insulin sen-
sitivity but not BW in WT mice and did not improve either 
parameter in Ffar4 KO mice, and recent studies failed to 
link FFAR4 variants, including p.R270H, to human 
obesity.98,99 These data suggest FFAR4 plays a minor, if 
any, role in regulating mammalian body fat.

Table 2 presents human gene expression and GWAS 
BMI data supporting the possibility that GPR45, GPR61, 
KISS1, KISS1R, HDAC5, PRLHR, SLC6A4, SOST and 
OPRM1 variants contribute to obesity in humans as they 
do in mice.

Novel KO Lines
The obesity of KO mice in nine KO lines reported here, 
including Kiss1 KO mice discussed above, is either a 
novel finding or was novel at the time the data were 
published by Lexicon Pharmaceuticals. KSR2 is a scaffold 
protein that likely coordinates signaling through kinase 
cascades. Our Ksr2 KO and HET mice were obese,36,40,49 

with 11/12 of HTS KO mice and 0/10 of HTS WT mice 
>2SD above the historic mean for %BF or BFg. These 
findings were confirmed in independent internal and exter-
nal Ksr2 KO models and in humans with KSR2 
haploinsufficiency;40,49,100 the human phenotype is consis-
tent with human expression data and with a GWAS cluster 
of BMI variants that overlaps with the KSR2 gene 
(Table 2). Here, we extend previous pair-feeding studies40 

to show that the obesity is due to both hyperphagia and 
decreased energy expenditure, and that KO mice survive 
long term only when pair-fed, with all KO mice dying 
soon after resuming ad-lib feeding (Supplementary 
Figure 2).

ASNSD1 is an understudied asparagine synthetase. 
Asnsd1 KO mice have increased body fat and a progres-
sive degenerative myopathy characterized by sarcopenia 
and myosteatosis;45 HTS data showed 11/13 KO mice and 
0/9 WT mice >2SD above the historic mean for %BF or 
BFg. Asnsd1 KO mice have reduced viability (114 WT/ 
251 HET/90 KO, P<0.05) that may be related to their 
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seizures and low systolic blood pressure. Additional stu-
dies are required to determine the contribution of myos-
teatosis to the increased body fat. The human ASNSD1 
expression pattern is consistent with a role for ASNSD1 
deficiency in human obesity and myopathy (Table 2).

G2E3 is a dual function ubiquitin ligase.101 We 
observed obesity and impaired glucose tolerance in multi-
ple cohorts of G2e3 KO mice;47 HTS data showed 11/16 
KO mice and 0/11 WT mice >2SD above the historic 
mean for %BF or BFg. These data are consistent with 
IMPC HTS data showing obesity in an independent 
G2e3 KO model. The human gene resides 0.49 MBP 3ʹ 
to a GWAS BMI variant cluster and is expressed in a 
pattern consistent with a role in body fat regulation 
(Table 2).102–104

SRPK2 is a protein kinase overexpressed in many 
cancers.105 We observed obesity in each of 7 small cohorts 
of Srpk2 KO mice; when data were pooled and normal-
ized, Srpk2 KO mice showed a 41% increase in n%BF 
(Table 1), a 51% increase in nBFg (KO=151 ± 62 vs 
WT=100 ± 34, P<0.001 by Mann Whitney test) and 5% 
decrease in nLBM (KO=95 ± 13 vs WT=100 ± 9, P<0.05 
by Mann Whitney test). In humans, only the SRPK2 and 
KMT2E (lysine methyltransferase 2E) genes reside within 
a cluster of variants for waist–hip ratio adjusted BMI, a 
surrogate measure of abdominal adiposity;106 these obser-
vations, and the SRPK2 expression pattern, suggest that 
SRPK2 may regulate visceral fat stores (Table 2). In 
cultured cells with mTORC1 activation, SRPK2 knock-
down inhibits de novo lipogenesis,105 reinforcing the need 
to study additional Srpk2 KO lines to confirm the pheno-
type reported here.

DPP8 is a cytoplasmic serine amino peptidase impli-
cated in immune responses, cancer biology and cellular 
energy metabolism.107,108 Our Dpp8 KO mice were obese, 
with a 33% increase in n%BF (Table 1), a 60% increase in 
nBFg (KO=160 ± 50 vs WT=100 ± 26, P<0.001), and a 
nonsignificant 5% increase in nLBM (KO=105 ± 15 vs 
WT=100 ± 7); HTS data showed 9/16 KO mice and 0/12 
WT mice >2SD above the historic mean for %BF or BFg. 
Dpp8 KO mice also had impaired glucose homeostasis; 
data pooled from 4 independent cohorts of Dpp8 KO and 
WT mice showed that KO mice had fasting blood glucose 
and OGTT AUC values comparable to WT mice but had 
greater OGTT insulin levels at baseline and at 30 minutes 
(Supplementary Figure 3). In humans, DPP8 is expressed 
in multiple tissues including adipose, hypothalamus, basal 

ganglia and amygdala, and the human gene overlaps with a 
GWAS BMI cluster, consistent with a role in human body 
fat regulation (Table 2).

CXXC4, which can inhibit cancer cell growth by inhi-
biting WNT/β-catenin signaling, contains a CXXC-type 
zinc finger domain that can modify DNA methylation 
status.109 Our Cxxc4 KO mice were obese, with a 31% 
increase in n%BF (Table 1) and a 46% increase in nBFg 
(KO=146 ± 53 vs WT=100 ± 31, P<0.001 by Mann 
Whitney test). In humans, CXXC4 is most highly 
expressed in hypothalamus (Table 2).

TENM3 and other teneurins are transmembrane pro-
teins that participate in development of specific neuronal 
connectivity patterns.110 Tenm3 KO mice had a 21% 
increase in n%BF (Table 1) and 24% increase in nBFg 
(KO=124 ± 43 vs WT=100 ± 34, P<0.05). An independent 
model of Tenm3 KO mice had normal BW,111 consistent 
with an insignificant 2% increase in BW of our Tenm3 KO 
mice. In humans, TENM3 is expressed in many tissues 
including adipose and in CNS, where it is highly expressed 
in hypothalamus (Table 2).

Obese KO Lines Studied with HTS 
Cohorts Only
KO Lines with Significantly Increased Body Fat That 
Support External Obese KO Lines
For many KO lines with significantly increased body fat in 
our HTS, confirmatory studies using additional cohorts 
were not performed, but our data support body fat data 
from external independent KO lines that were either pub-
lished or evaluated in the IMPC HTS. Table 3 summarizes 
our data for these KO lines, and Table 4 presents human 
gene expression and/or GWAS data consistent with a role 
for the human orthologs of these targeted genes in regulat-
ing body fat.

ADCY3 and NCOA1 genes are located near each other 
on human chromosome 2. Adenylyl cyclases are down-
stream enzymes for GPCRs, and ADCY3 is a downstream 
effector for MC4R in hypothalamic neurons.112 Our mice 
lacking one or both Adcy3 alleles were obese (Table 3), 
which supported published findings in KO mice,113–115 in 
mice protected from DIO by gain-of-function Adcy3 
mutations,116 and in humans with ADCY3 
haploinsufficiency.117,118 The obesity observed in our 
Ncoa1 KO mice is consistent with published KO data,119 

with studies showing NCOA1 modulates function of 
POMC neurons and energy homeostasis, and with human 
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data linking NCOA1 inactivation to obesity.120 These 
human data suggest that variants linked to both ADCY3 
and NCOA1 contribute to the strong and broad GWAS 
BMI cluster that overlaps these genes (Table 4).

Mice with KOs of genes encoding the secreted proteins 
TNFSF13B,121,122 CCN5,123 and APLN124 are obese, con-
sistent with data from our independent KO lines (Table 3). 
Of note, a third Ccn5 KO line was not obese in the IMPC 
HTS, which may be consistent with the modest obesity 
observed in the published,123 and our (Table 3), KO lines.

Two independent KOs of Kdm3a, encoding a histone 
demethylase, were obese,125–127 findings supported by HTS 
data from an additional IMPC KO line and from our KO 
mice (Table 3), where 4/8 KO mice and 0/4 WT mice were 
>2SD above the historic mean for %BF or BFg. GWAS data 
show KDM3A sharing a BMI cluster with 2 genes, CHMP3 
(charged multivesicular body protein 3) and RNF103 (ring 
finger protein 103), that lack an obvious link to obesity.

The IMPC HTS reported that KOs of Herc1 and 
Usp38, which encode enzymes involved in ubiquitination 
pathways, were obese, consistent with our data (Table 3); 
body composition was not evaluated in two Usp38 KO 

publications.128,129 Although some human HERC1 var-
iants are associated with somatic overgrowth, they result 
in increased, not decreased, HERC1 activation and thus 
are not relevant here.130,131 Both HERC1 and USP38 
reside near BMI clusters in gene-poor chromosomal 
regions (Table 4), suggesting a possible link to human 
obesity for each gene.

Mice with a KO of Prmt7, which influences skeletal 
muscle oxidative metabolism, were obese;132 HTS data on 
our KO line (Table 3) and an independent KO line from 
the IMPC support this finding. GWAS data show PRMT7 
as the only obesity-linked gene among 5 genes located 
within in a BMI cluster (Table 4). The published finding 
that Retsat KO mice were obese133 is confirmed by our 
KO data (Table 3).

Inactivating mutations in the lipase PNPLA2 result in 
neutral lipid storage disease with myopathy (NLSDM) in 
humans and in mice,134–137 with modest obesity observed 
in chow-fed, but not HFD-fed, Pnpla2 KO mice. Our 
Pnpla2 KO mice also had NLSDM (data not shown), 
and the increased body fat data presented in Table 3 are 
from chow-fed mice only because our KO mice were not 

Table 3 Body Fat Data for KO Lines with Significantly Increased Body Fat by HTS Only That Supports an External KO Line with High 
Body Fat

Normalized % Body Fat Normalized Body Fat (g)

Chow HFD Pooled Chow and HFD Data Chow HFD Pooled Chow and HFD Data

KO/WT KO/WT

KO Line Mean (n/n) Mean (n/n) KO WT Mean Mean KO WT

Adcy3a 186 10/4 NM NM 186 ± 84**† 100 ± 12 240 NM 240 ± 184*† 100 ± 22
Aoc3 120 8/4 NM NM 120 ± 21 100 ± 5 133 NM 133 ± 27*† 100 ± 4

Apln 121 8/4 125 6/4 122 ± 22* 100 ± 20 124 142 131 ± 35* 100 ± 36

Ccn5 129 8/4 120 6/6 125 ± 25* 100 ± 31 125 108 118 ± 29 100 ± 43
Ddah1 106 8/4 134 8/8 134 ± 16*b 100 ± 40 116 150 133 ± 45b 100 ± 44

Enox1 116 8/4 126 6/5 120 ± 23* 100 ± 15 127 128 127 ± 36 100 ± 18
Herc1 106 8/4 188 8/8 147 ± 49**† 100 ± 23 106 235 169 ± 80*† 100 ± 30

Kdm3a 150 8/4 NM NM 150 ± 24** 100 ± 25 162 NM 162 ± 42* 100 ± 36

Ncoa1 110 8/4 120 8/8 115 ± 20 100 ± 22 119 130 125 ± 30* 100 ± 32
Ncs1 119 8/4 131 6/6 124 ± 35* 100 ± 28 128 148 137 ± 63 100 ± 38

P2rx6 131 8/4 NM NM 131 ± 27* 100 ± 7 162 NM 162 ± 51*† 100 ± 4

Pnpla2 121 8/8 111 8/8 121 ± 20*†c 100 ± 7 124 104 124 ± 30*†c 100 ± 18
Prmt7 149 8/4 128 8/8 138 ± 32** 100 ± 19 166 124 145 ± 57*† 100 ± 27

Retsat 132 8/4 119 8/8 125 ± 32* 100 ± 26 148 111 130 ± 51 100 ± 38

Rgs10 131 8/4 NM NM 131 ± 19*† 100 ± 4 150 NM 150 ± 43*† 100 ± 15
Tnfsf13b 126 8/4 NM NM 126 ± 28 100 ± 13 141 159 141 ± 36*† 100 ± 16

Usp38 142 8/4 133 8/7 138 ± 33** 100 ± 21 159 140 149 ± 52** 100 ± 28

Notes: KO mice different from WT mice, *P < 0.05; **P < 0.01; † Statistical analysis by Mann–Whitney test. aKO data represent data pooled from 2 KO and 8 HET Adcy3 
mice. bHFD data only. cChow data only. 
Abbreviations: HFD, high fat diet; (g), grams; KO, knockout; WT, wild-type; n, number of mice; NM, not measured.
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obese when fed HFD. Ddah1 KO mice had increased BW 
on HFD but not on chow,138 consistent with our findings 
(Table 3); consistent with these findings, chow-fed Ddah1 
KO mice were not obese in the IMPC HTS.

Mice with a KO of Aoc3 which encodes VAP-1/SSAO 
are modestly obese,139,140 consistent with our findings 
(Table 3); interestingly, the human AOC3 gene is 
expressed in adipose tissue but not CNS and resides within 
a waist-hip ratio adjusted BMI cluster (Table 4), suggest-
ing a role for AOC3 in regulating visceral fat mass. Enox1 
is a little-studied gene,141 and the finding that Enox1 HET 
mice were obese in the IMPC HTS is consistent with the 
obesity observed in our Enox1 KO mice (Table 3).

External KOs for the neuronal calcium sensor Ncs1 and 
the GTPase-activating protein Rgs10 were obese,142,143 

consistent with our findings (Table 3). Although no pub-
lications link the P2RX6 channel144 to obesity, the IMPC 
HTS found that male P2rx6 KO mice were obese; the 
obesity observed in our P2rx6 KO mice (Table 3) was 
present in both males and females (data not shown).

KO Lines with Numerically Increased Body Fat That 
Support External Obese KO Lines
For many KO lines with a numerical, but not statistically 
significant, body fat increase of at least 15% in our HTS, 
confirmatory studies using additional cohorts were not 

Table 4 Human Expression and GWAS Data for KO Lines with Significantly Increased Body Fat by HTS Only That Supports an 
External KO Line with High Body Fat

Major GWAS BMI Clusters Within 1.2 MBPb

KO Line Human Expressiona Lead Variant P value Cluster Distance

Adcy3 Wide; CNS, incl Hyp; Ad 2:25141538:A:G <e-109 Overlapping
2:25378372:G:A* <e-20 Overlapping

Aoc3 High Ad; no CNS 17:41058634:C:T* <e-10 Overlapping
17:41353410:A:G <e-9 0.08 MBP 3’

Apln Wide; CNS, incl Hyp; low Ad X:128143072:G:A** <e-9 0.64 MBP 3’

Ccn5 Mainly Ad None

Ddah1 Wide; CNS, incl Hyp; Ad 1:86264061:G:C* <e-13 <0.01 MBP 5’

Enox1 Wide; CNS, incl Hyp; Ad None

Herc1 Wide; CNS, incl Hyp; Ad 15:63868761:A:G* <e-9 Overlapping
15:63789952:A:C <e-10 0.1 MBP 3’

Kdm3a Wide; CNS, incl Hyp; Ad 2:86764004:C:T <e-13 Overlapping

Ncoa1 Wide; CNS, incl Hyp; Ad 2:25141538:A:G <e-109 Overlapping
2:25378372:G:A* <e-20 Overlapping

Ncs1 Wide; CNS, incl Hyp; low Ad 9:133787225:A:G <e-13 0.78 MBP 3’

P2rx6 Wide; CNS, incl Hyp; Ad 22:22190163:C:A <5e-8 0.81 MBP 3’

Pnpla2 Mainly Ad 11:817786:C:T* <e-15 Overlapping
11:891338:G:A <e-11 Overlapping

Prmt7 Wide; CNS, incl Hyp; Ad 16:68381978:A:G <e-15 Overlapping
16:67409180:G:A* <e-14 0.94 MBP 5’

Retsat High Ad; low CNS, incl Hyp 2:86764004:C:T <e-13 1 MBP 5’

Rgs10 Wide; low CNS, incl Hyp; Ad 10:120465796:C:G <e-10 0.75 MBP 3’

Tnfsf13b Whole blood; Spleen; Lung 13:107882445:A:G <e-10 1.02 MBP 5'

Usp38 Wide; CNS, incl Hyp; Ad 4:143663206:T:C <5e-8 0.37 MBP 5’

Notes: aData obtained from https://gtexportal.org/home/. bData obtained from https://hugeamp.org/ on 8/17/2021. *Waist–hip ratio adjusted BMI; **Weight GWAS variants only. 
Abbreviations: MBP, million base pairs; incl, including; CNS, central nervous syndrome; Hyp, hypothalamus; Ad, adipose.
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performed but our data support external obesity data. 
Table 5 summarizes our data for these KO lines, and 
Table 6 presents human gene expression and/or BMI 
GWAS data consistent with a role for the human orthologs 
of these targeted genes in regulating body fat.

There are 4 secreted proteins in this category. Our HTS 
data (Table 5) were consistent with the modest obesity 
observed in Igfbp2 KO mice at 8 weeks of age145 and 
with IMPC HTS data showing increased body fat in 
AU040320 KO mice. Male infertility, but no body fat 
data, was reported in an independent AU040320 KO line,146 

consistent with the male infertility of KO mice studied by 
both the IMPC and Lexicon. Our HTS data were also 
consistent with the ability of ADM2 to inhibit HFD-induced 
obesity when overexpressed by adipose tissue of transgenic 
mice147,148 and to inhibit food intake when delivered sub-
cutaneously to WT mice,149 and with the increased BW of 
Adm2 HET mice.150 Central delivery of NPVF, encoded by 
a gene expressed only in hypothalamus (Table 6), induced 
acute anorexia in chicks,151,152 consistent with our Npvf KO 
data; of interest, body fat was significantly increased only in 
our KO mice fed HFD (nBF: KO 157 ± 52 vs WT 100 ± 
35, n%BF: KO 139 ± 21 vs WT 100 ± 25, both P<0.05), 
suggesting that NPVF may regulate intake of palatable 
diets.

For the 7 enzymes in this category, obesity of KO mice 
from published St3gal2, Glrx2, Hdac6 and Prdx6 KO lines 

agrees with our data.153–157 Obesity of KO mice from 
published Gpx7 and Adamts18 KO lines158,159 is consis-
tent with our data and with GWAS data linking obesity to 
GPX7158 and to ADAMTS18 which is closely associated 
with a BMI cluster (Table 6), but not with the absence of 
obesity in independent Gpx7 and Adamts18 KO lines 
studied in the IMPC HTS. Our HTS data for Usp13 KO 
mice are consistent with the obesity of female mice from 
an independent IMPC Usp13 KO line.

The obesity of mice with a KO of the nuclear hormone 
receptor Nr4a1160,161 is consistent with our HTS data. 
AQP7 is the primary glycerol transporter for adipocytes 
and cardiomyocytes. Our HTS data support the obesity 
observed in published cohorts of Aqp7 KO mice.162,163 

We also observed focal myocardial degeneration in 3 of 
4 KO mice (Supplementary Figure 4), consistent with 
published data showing impaired myocardial response to 
pressure overload in Aqp7 KO mice.164

KO Lines with Significantly Increased Body Fat and 
No External Obese KO Lines
For many KO lines with significantly increased body fat in 
our HTS, confirmatory studies examining additional 
cohorts were not performed and no supportive external 
KO data are available. We have many KO lines in this 
category, but our presentation here is focused on data from 
KO lines (Table 7) where the human ortholog of the 

Table 5 Body Fat Data for KO Lines with Numerically Increased Body Fat by HTS Only That Supports an External KO Line with High 
Body Fat

Normalized % Body Fat Normalized Body Fat (g)

Chow HFD Pooled Chow and HFD Data Chow HFD Pooled Chow and HFD Data

KO/WT KO/WT

KO Line Mean (n/n) Mean (n/n) KO WT Mean Mean KO WT

Adamts18 113 8/4 126 6/6 119 ± 27 100 ± 31 103 121 111 ± 36 100 ± 43
Adm2 138 8/4 111 4/4 129 ± 53 100 ± 14 181 126 163 ± 115 100 ± 14

Aqp7 117 8/4 NM NM 117 ± 26 100 ± 8 127 NM 127 ± 36 100 ± 10

AU040320 113 8/4 119 8/8 116 ± 22 100 ± 26 126 128 127 ± 39 100 ± 36
Glrx2 110 8/4 127 8/8 119 ± 32 100 ± 26 109 137 123 ± 44 100 ± 30

Gpx7 124 8/4 123 7/7 124 ± 37 100 ± 21 138 128 134 ± 61 100 ± 24
Hdac6 116 8/4 112 6/6 114 ± 26 100 ± 12 153 117 137 ± 50 100 ± 20

Igfbp2 115 8/4 121 5/5 117 ± 19 100 ± 25 122 126 124 ± 31 100 ± 28

Npvf 105 8/4 139 6/5 119 ± 31 100 ± 21 101 155 125 ± 53 100 ± 41
Nr4a1 116 8/4 132 8/8 124 ± 31 100 ± 40 122 142 132 ± 40 100 ± 54

Prdx6 105 8/4 119 6/6 111 ± 23 100 ± 9 123 124 124 ± 42 100 ± 15

St3gal2 106 8/4 138 5/5 123 ± 31 100 ± 18 113 136 119 ± 35 100 ± 21
Usp13 108 8/4 125 4/4 114 ± 18 100 ± 12 112 132 119 ± 25 100 ± 17

Abbreviations: HFD, high fat diet; (g), grams; KO, knockout; WT, wild-type; n, number of mice; NM, not measured.

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2021:14                                               https://doi.org/10.2147/DMSO.S322083                                                                                                                                                                                                                       

DovePress                                                                                                                       
3765

Dovepress                                                                                                                                                           Powell et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=322083.pdf
https://www.dovepress.com
https://www.dovepress.com


targeted gene is closely associated with a GWAS BMI 
variant cluster and has an expression pattern consistent 
with a role for the ortholog in regulating body fat.

Tle4 KO mice showed reduced viability and poor 
growth in the first few weeks of life.165,166 At weaning, 
our Tle4 mice had a Mendelian ratio of 37 WT, 78 HET 
and 24 KO mice that trends toward reduced viability 
(P=0.1), and BWs of male and female KO mice were 
lower than those of WT littermates. However, by 8 
weeks of age, BWs of KO mice had caught up to or 
surpassed those of WT littermates (Supplementary 
Figure 5). This trend continued as the mice aged. 
Unlike body composition studies of our other HTS KO 
lines, Tle4 KO mice were older with ages ranging from 
19 to 52 weeks; nevertheless, the %BF and BFg for all 
6 Tle4 WT mice were within 1 SD of the HTS historic 
mean, while 13/14 KO mice were >2SD above the 
historic mean for %BF and BFg. Blood glucose and 
total cholesterol levels were also higher for KO vs WT 
littermate mice: for blood glucose, KO = 142±35 (n=19) 
vs WT = 97±27 mg/dL (n=7), P<0.01; for total 

cholesterol, KO = 146±51 (n=11) vs WT = 72±19 mg/ 
dL (n=2), P<0.05 by Mann–Whitney test. In humans, 
GWAS BMI clusters are found within and 0.81 MBP 5ʹ 
to the TLE4 gene, which resides alone in the middle of a 
2.5 MBP stretch of chromosome 9 (Table 8), and a T2D 
cluster (lead variant 9:81908842:T:C, P<e-22) is found 
0.23 MBP 5ʹ to the TLE4 gene (https://hugeamp.org/), 
further supporting a role for TLE4 in obesity and T2D.

No external KOs or published links to obesity were 
identified for the kinase AK5,167 but a strong GWAS BMI 
cluster is found within, and is primarily associated with, 
the human AK5 gene that is expressed almost exclusively 
in the CNS (Table 8). No body composition data were 
presented for an external KO of the cell adhesion molecule 
encoded by Ntm,168 but two independent GWAS BMI 
clusters are found within, and are only associated with, 
the human NTM gene (Table 8). Perinatal lethality 
occurred in the IMPC KO for Tusc3, which encodes a 
subunit of the oligosaccharyl transferase responsible for 
N-glycosylation of nascent proteins;169 no published links 
to obesity were found for Tusc3 but a BMI cluster is 

Table 6 Human Expression and GWAS Data for KO Lines with Numerically Increased Body Fat by HTS Only That Supports an 
External KO Line with High Body Fat

Major GWAS BMI Clusters Within 1.2 MBPb

KO Line Human Expressiona Lead Variant P value Cluster Distance

Adamts18 Mainly Ad and CNS, incl Hyp 16:77255496:A:C <e-9 0.03 MBP 3’

Adm2 Thyroid, Kidney, GI; no CNS, Ad 22:50709495:A:G <e-9 0.2 MBP 5’

Aqp7 Mainly Ad; Heart; not in Hyp 9:33921919:T:C <e-11 0.23 MBP 5’

AU040320 Wide; CNS, incl Hyp; Ad None

Glrx2 Wide; CNS, incl Hyp; Ad 1:193024644:C:G <5e-8 0.02 MBP 3’

Gpx7 Wide; high Ad; CNS low, incl Hyp None

Hdac6 Wide; CNS, incl Hyp; Ad None

Igfbp2 High vAd; Liver; not in CNS 2:218393389:G:A* <e-11 0.82 MBP 3’

Npvf Hyp only 7:25871109:C:T* <e-71 0.56 MBP 5’
7:24325009:G:A <e-14 0.78 MBP 3’

Nr4a1 Wide; high Ad; CNS low, incl Hyp None

Prdx6 Wide; Ad; low CNS, incl Hyp 1:174063646:A:G <e-16 Overlapping
1:172352990:G:A* <e-54 0.99 MBP 5’

St3gal2 Wide; CNS, incl Hyp; Ad 16:69556715:C:T <e-26 Overlapping

Usp13 SkM; Ad; low CNS, incl Hyp 3:180736253:T:C <e-11 0.87 MBP 3’

Notes: aData obtained from https://gtexportal.org/home/. bData obtained from https://hugeamp.org/ on 8/17/2021. *Waist–hip ratio adjusted BMI. 
Abbreviations: MBP, million base pairs; incl, including; CNS, central nervous syndrome; Hyp, hypothalamus; Ad, adipose; GI, gastrointestinal tract; vAd, visceral adipose; 
SkM, skeletal muscle.
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located within, and only associated with, the human 
TUSC3 gene (Table 8).

There are no external Ankk1 KO lines. The human 
Taq1A RFLP (rs1800497) linked to the dopamine 2 recep-
tor (DRD2) causes a single amino acid substitution in the 
ANKK1 substrate-binding domain.170 The A1 allele is 
associated with 1) obesity,171 2) decreased striatal DRD2 
density172 and 3) increased food intake.173 This suggests 
that, if the A1 allele expresses a less active ANNK1 form, 
Ankk1 KO mice will be obese,174 a hypothesis consistent 
with our findings.

A few of our KO lines target genes having human 
orthologs that share GWAS BMI clusters with other 
genes that have no published or IMPC HTS data linking 
them to obesity. No external KO was identified for the cell 
adhesion protein Igdcc4, which is linked to early child-
hood adiposity;175 IGDCC4 is located in a BMI cluster 

(Table 8) shared with DPP8, discussed above, and with 5 
other genes with no clear link to obesity. No external KO 
was identified for Itih1, which encodes a heavy chain for 
the serine protease inhibitor inter-alpha trypsin inhibitor. 
Although ITIH1 is expressed only in liver, studies link this 
secreted protein to mood disorders and report that over-
expressed ITIH1 can deposit on hyaluronan surrounding 
mouse adipose tissue.176,177 ITIH1 is centrally located in, 
and the landmark for,104 a large BMI cluster which over-
laps 14 additional genes, none of which have been linked 
to obesity. Although external Lrrtm1 KO lines had normal 
BW,178,179 and body fat was not increased in the IMPC 
HTS, this KO line is included because of the robust body 
fat phenotype with 5/12 KO mice and 0/8 WT mice >2SD 
above the historic mean for %BF or BFg, and because 
LRRTM1 and CTNNA2 (catenin alpha 2) are the only 
genes sharing a BMI cluster (Table 8). No external KOs 

Table 7 Body Fat Data for KO Lines with Significantly Increased Body Fat by HTS and No External KO Line with High Body Fat

Normalized % Body Fat Normalized Body Fat (g)

Chow HFD Pooled Chow and HFD Data Chow HFD Pooled Chow and HFD Data

KO/WT KO/WT

KO Line Mean (n/n) Mean (n/n) KO WT Mean Mean KO WT

Adamts4a 119 36/12 NM NM 119 ± 27**† 100 ± 13 137 NM 137 ± 44***† 100 ± 17

Ak5 136 8/4 135 8/8 135 ± 29** 100 ± 15 183 166 173 ± 48***† 100 ± 15
Ankk1 126 8/4 135 8/8 129 ± 34* 100 ± 33 138 148 144 ± 59* 100 ± 40

Dgkg 118 8/4 123 7/7 121 ± 31 100 ± 19 127 139 133 ± 45* 100 ± 29

Igdcc4 120 8/4 177 8/8 149 ± 49* 100 ± 41 126 176 150 ± 59* 100 ± 57
Itih1 120 8/4 110 8/8 115 ± 18* 100 ± 20 120 129 125 ± 32* 100 ± 29

Lrrn2 157 8/4 123 8/8 141 ± 46** 100 ± 14 175 125 151 ± 47* 100 ± 18
Lrrtm1 164 8/4 105 4/4 144 ± 42* 100 ± 23 170 104 150 ± 52* 100 ± 31

Mfap3l 135 8/4 136 7/7 135 ± 26** 100 ± 29 140 148 144 ± 42** 100 ± 31

Ntm 128 8/4 131 7/7 129 ± 17*** 100 ± 17 125 132 128 ± 28* 100 ± 27
Pecr 139 8/4 131 6/3 136 ± 42*† 100 ± 16 152 120 138 ± 62*† 100 ± 17

Prok2b 154 5/4 NM NM 154 ± 100 100 ± 12 129 NM 129 ± 108 100 ± 18

Prokr2 161 8/4 NM NM 161 ± 23*** 100 ± 7 121 NM 121 ± 27 100 ± 10
Ptp4a1 126 8/4 137 7/9 131 ± 19*** 100 ± 15 129 152 140 ± 33** 100 ± 18

Ptprn 121 8/4 NM NM 121 ± 27 100 ± 10 144 NM 144 ± 34* 100 ± 11

Resp18 107 8/4 131 8/8 119 ± 24* 100 ± 23 110 159 134 ± 39* 100 ± 35
Scg3c 131 28/11 101 6/6 126 ± 36**† 100 ± 22 139 100 132 ± 52*† 100 ± 21

Sik2 135 8/4 140 7/7 137 ± 31** 100 ± 27 146 157 152 ± 57* 100 ± 36

Tle4d 189 14/6 NM NM 189 ± 41***† 100 ± 14 312 NM 312 ± 130***† 100 ± 25
Tusc3 134 8/4 115 6/6 126 ± 29 100 ± 35 149 122 137 ± 42* 100 ± 42

Wnt8b 149 8/4 137 8/8 144 ± 37** 100 ± 27 172 143 157 ± 54** 100 ± 39

Notes: KO mice different from WT mice, *P < 0.05; **P < 0.01; ***P < 0.001; † Statistical analysis by Mann–Whitney test. aData pooled from 3 independent Adamts4 KO 
lines, 2 targeting exon 4 and 1 gene trap in the intron between coding exons 1 and 2; pooled data from 24 KO and 12 HET mice compared to pooled data from 12 WT mice. 
bDifferences not statistically significant, but Prok2 data included due to similarity with receptor Prokr2. cData pooled from 2 independent Scg3 KO lines, 1 targeting exons 
1–4 and 1 gene trap in the intron between the last 2 coding exons; pooled data from 22 KO and 12 HET mice compared to pooled data from 17 WT mice. dAge of Tle4 KO 
and WT littermate mice ranged from 19 to 52 weeks. 
Abbreviations: HFD, high fat diet; (g), grams; KO, knockout; WT, wild-type; n, number of mice; NM, not measured.
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or published links to obesity were identified for the gene 
encoding the protein kinase Mfap3l;180 MFAP3L and 
AADAT (aminoadipate aminotransferase) are the only 
genes sharing a BMI cluster (Table 8). No external KOs 
or published links to obesity were identified for the gene 
encoding the short-chain dehydrogenase/reductase 
PECR;181 PECR and MREG (melanoregulin) share a 
BMI cluster and are the two closest genes to a body fat 

percentage cluster (lead variant 2:216661156:G:C, P<e- 
21) located 0.2 MBP 3ʹ to the PECR gene (https:// 
hugeamp.org/). Although one external KO line for the 
gene encoding the protein tyrosine phosphatase Ptp4a1182 

did not evaluate body fat and a second showed normal 
body fat in the IMPC HTS, support for our finding of 
obese KO mice was provided by the link between 
PTP4A1 and addictive behaviors183 and by a BMI cluster 

Table 8 Human Expression and GWAS Data for KO Lines with Significantly Increased Body Fat by HTS Only and No External KO 
Line with High Body

Major GWAS BMI Clusters Within 1.2 MBPb

KO Line Human Expressiona Lead Variant P value Cluster Distance

Adamts4 vAd highest; low CNS, incl Hyp 1:160412880:G:A* <e-11 0.74 MBP 3’

Ak5 Mainly CNS, incl Hyp 1:77967507:T:A <e-35 Overlapping

Ankk1 Wide; CNS, incl Hyp; Ad 11:113271360:C:T <5e-8 Overlapping

Dgkg Wide; CNS, incl Hyp; Ad 3:185834499:A:T <e-66 Overlapping

Igdcc4 Wide; CNS, incl Hyp; Ad 15:65916527:A:T <5e-8 0.08 MBP 5’

Itih1 Liver-specific 3:52555316:G:A* <e-45 Overlapping
3:52740182:C:G <e-41 Overlapping

Lrrn2 Wide; CNS, Hyp highest; high vAd 1:204414769:T:C* <5e-8 0.17 MBP 3’
1:203491392:T:G <e-11 1.1 MBP 3’

Lrrtm1 Mainly CNS, incl Hyp 2:80456138:T:C <5e-8 Overlapping

Mfap3l Wide; highest in CNS, incl Hyp; Ad 4:170955277:G:T <e-9 Overlapping

Ntm Mainly CNS, incl Hyp; low Ad 11:131452912:T:C <e-11 Within NTM
11:131957293:T:C <e-10 Within NTM
11:130877142:T:C <e-15 0.35 MBP 5’

Pecr Wide; high Ad; lower CNS, incl Hyp 2:216904019:A:T <5e-8 Within PECR
2:216295312:T:A* <e-13 0.55 MBP 3’

Prok2 Mainly whole blood; Lung; Spleen 3:71668037:T:C <5e-8 0.15 MBP 3’

Prokr2 Mainly CNS, incl Hyp; Pit; no Ad 20:5667459:T:C* <e-28 0.35 MBP 5’

Ptp4a1 Wide; CNS, incl Hyp; Ad 6:64247773:G:C <e-10 Overlapping

Ptprn Wide; CNS, Hyp highest; Pit 2:219903258:T:G <e-14 Overlapping

Resp18 CNS-specific, incl Hyp 2:219903258:T:G <e-14 Overlapping

Scg3 Mainly CNS, incl Hyp; Pit; no Ad 15:51754451:T:C <e-12 Overlapping

Sik2 Wide, incl CNS; highest in Ad 11:111642119:G:A* <e-34 Overlapping

Tle4 Wide; CNS, incl Hyp; Ad 9:82229981:T:G <e-10 Within TLE4
9:81341229:G:T <e-11 0.81 MBP 5’

Tusc3 Wide; CNS, Hyp highest; Ad 8:15565257:T:C <e-10 Within Tusc3

Wnt8b Wide; CNS, incl Hyp; Ad 10:102395440:T:C <e-20 0.15 MBP 3’

Notes: aData obtained from https://gtexportal.org/home/. bData obtained from https://hugeamp.org/ on 8/17/2021. *Waist–hip ratio adjusted BMI. 
Abbreviations: MBP, million base pairs; incl, including; CNS, central nervous syndrome; Hyp, hypothalamus; Ad, adipose; vAd, visceral adipose; Pit, pituitary.
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that overlaps PTP4A1 and is shared only by PHF3 (PHD 
finger protein 3) and EYS (eyes shut homolog) (Table 8). 
SCG3 is a protein that is co-expressed with, and forms 
secretory granules with, several appetite-regulating pep-
tides in the hypothalamus; analysis of human genetic var-
iants suggested that decreased SCG3 expression increases 
obesity risk.8,184 Although an independent IMPC line of 
Scg3 KO mice was not obese, our finding of obese KO and 
HET mice in 2 independent Scg3 KO lines (Table 7), one 
targeted by homologous recombination and the other by 
gene trapping (Supplementary Tables 2 and 3), and the 
observation that SCG3 resides within a BMI cluster 
(Table 8) that is shared with DMXL2 (Dmx like 2) which 
has no clear link to obesity, support a role for SCG3 in the 
regulation of body fat.

RESP18 and PTPRN are intracellular proteins that 
participate in hormone secretion pathways; the genes for 
these proteins, which share ~40% amino acid similarity 
over a 200 amino acid stretch of PTPRN, are located 
adjacent to each other in a head-to-tail orientation in 
mammalian genomes, suggesting they are evolutionarily 
related.185,186 Resp18, first identified as a gene coregulated 
with POMC, is downregulated by dopamine and is highly 
expressed in the diencephalon, suggesting a role in salt and 
water balance and/or feeding behavior;185 indeed, a rat 
Resp18 KO line, although not evaluated for body fat, did 
show increased SBP.187 PTPRN, also known as IA-2, is an 
autoantigen linked to T1D but not obesity, and published 
Ptprn KO mice have normal BW.186 Surprisingly, KO 
lines for both genes had increased body fat in our agnostic 
screen, and in addition Resp18 KO mice had increased 
SBP (KO, n=8, 101±7 vs WT, n=4, 92±7 mmHg, P<0.05) 
supporting the finding in Resp18 KO rats. PTPRN and 
RESP18 are the only 2 of 8 genes located in a BMI cluster 
(Table 8) that are currently linked to obesity.

A few of our KO lines target genes having human 
orthologs that share a GWAS BMI cluster with other 
genes linked to obesity. Genes for the kinase Dgkg188 

and the neuronal membrane protein Lrrn2189 have no 
publicly available KO data or published links to obesity 
despite having increased body fat in our HTS (Table 7). 
DGKG and ETV5 (ETS variant transcription factor 5) are 
the only genes sharing a BMI cluster on human chromo-
some 3, while LRRN2 and MDM4 (MDM4 regulator of 
p53) are the only genes sharing a BMI cluster on human 
chromosome 1 (Table 8); the low body fat observed in 
Etv5 KO mice190 and Mdmx KO mice191 suggests that one 
or both genes in each of these two BMI clusters may 

contribute to the GWAS signal. A published KO of 
Wnt8b192 did not provide body fat data and the limited 
BW data did not support the finding of obesity that we 
observed in our KO line (Table 7). WNT8B shares a nearby 
BMI cluster (Table 8) with 4 other genes including 
HIF1AN (hypoxia inducible factor 1 subunit alpha inhibi-
tor); the low body fat observed in Hif1an KO mice193 

suggests that multiple genes might contribute to this 
GWAS cluster. External Sik2 KO mice had impaired glu-
cose homeostasis and increased circulating TG and adipo-
cyte size consistent with a role for SIK2 in adipogenesis, 
but body fat was not increased.194 Our Sik2 KO mice had 
an insignificant 23% increase in OGTT glucose AUC and 
a significant 9% increase in HbA1c with KO = 4.8±0.4% 
(n=8) vs WT = 4.4±0.2% (n=4), P<0.05, consistent with 
modestly impaired glucose tolerance observed in the pub-
lished Sik2 KO mice. However, our KO mice also had 
increased body fat, consistent with high expression of the 
human SIK2 gene in adipose tissue and the association of 
this gene with an overlapping waist-hip ratio adjusted BMI 
cluster (Table 8). This BMI cluster is shared with 11 genes 
including CRYAB; the possible link of CRYAB to 
adiposity195 suggests that multiple genes might contribute 
to this GWAS BMI signal.

In humans, PROK2 is a CNS peptide that binds the 
GPCR PROKR2; inactivating mutations of either gene can 
result in Kallmann Syndrome, the combination of hypogo-
nadotropic hypogonadism and anosmia.196 Consistent with 
these findings, Prok2 and Prokr2 KO mice have hypoplas-
tic olfactory bulbs and atrophic reproductive organs.197,198 

Our Prok2 and Prokr2 KO mice confirm these findings, 
including male and female infertility for Prok2 KO mice, 
but likely also share an obesity phenotype not previously 
reported; although our KO mouse numbers were small, 7/8 
Prok2 and 3/5 Prokr2 KO mice were >2SD above the 
historic mean for %BF, compared to 0 WT mice for either 
cohort. These data are consistent with the ability of 
PROK2, a hypothalamic peptide, to inhibit food intake 
and promote weight loss when administered to rats.199 

Recent data suggest this link to obesity may also extend 
to humans.200

Published and IMPC HTS data describing external 
KOs for the secreted protein Adamts4201 did not provide 
body fat or BW data supporting the obesity of our mice 
(Table 7), and the human ortholog is not closely associated 
with a BMI cluster (Table 8). Adamts4 was included 
because KO and HET mice from each of our 3 indepen-
dent KO lines, two targeting exon 4 by homologous 
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recombination and one the result of a gene trapping vector 
introduced into the intron between coding exons 1 and 2 
(Supplementary Tables 2 and 3), showed similar increases 
in both body fat (pooled data in Table 7) and in total 
cholesterol, where data pooled from all KO (n=24) and 
HET (n=12) mice = 143±31 vs data pooled from all WT 
mice (n=12) = 118±30 mg/dL, P<0.05.

Discussion
We provide data for multiple mouse KO models with 
established and novel high body fat phenotypes. To better 
understand the potential value of these observations, we 
considered 1) if there is fidelity between mouse and human 
obesity genes; 2) if there is value in identifying obesity 
genes; and 3) criteria for what constitutes confirmation of 
a novel mouse KO obesity phenotype.

The High Fidelity Between Mouse and 
Human Obesity Genes
Mice are considered a good model for human disease,26,202 

consistent with our finding that skeletal and other pheno-
types are highly conserved between mice and man.28,37 

Nevertheless, the limited ability of mouse models to 
mimic human inflammatory diseases203 demands a thor-
ough analysis of the fidelity between mouse and human 
obesity genes. As shown in Table 9, inactivating mutations 
in many human genes are sufficient by themselves to result 
in obesity; for our purposes here, these are referred to as 
monogenic obesity genes.40,117,118,120,204–233 For each of 
these 18 human monogenic obesity genes, inactivating 
mutations in the orthologous mouse gene closely repro-
duce the human phenotype;10–13,36,49,59– 

62,100,114,115,119,220,232,234–261 in fact, 13 of these genes 
were initially reported as monogenic obesity genes in 
mice, including Lep,10,204 Lepr,10,207 Mc4r,13,209 

Pomc,212,235 Sh2b1,214,238 Bdnf,216,241 Ntrk2,217,243 

Ksr2,36,40 Adcy3,114,117,118 Cpe,222,249 Tub,223,249 

Ncoa1119,120 and Mc3r.60,61,227,256 In addition, Mrap2,220 

Cep19224 and Cartpt225,253 were simultaneously reported 
as obesity genes in mice and humans. Only Sim1218,245 and 
Pcsk1228,232,257–261 were first reported as obesity genes in 
humans. For Mc3r, KO mice are clearly obese with 
decreased LBM36,60–62 but evidence in humans was weak 
until recent studies focused on the human C17A+G241A 
haplotype encoding a partially inactivated receptor that, 
when homozygous, is associated with increased fat mass 
and decreased LBM.226,227 This phenotype was recently 

reproduced in mice homozygous for the human MC3R 
containing this haplotype compared to mice homozygous 
for WT human MC3R; of interest, this mouse phenotype is 
less severe than that observed in Mc3r KO mice.226,256

PCSK1 encodes proprotein convertase 1/3 (PC1/3), an 
enzyme that processes precursor neuropeptides and pro-
hormones in endocrine tissues. Humans with complete 
deficiency develop severe obesity and a complex set of 
endocrinopathies,228,229 while Pcsk1 KO mice that survive 
to adulthood are not obese,257 which suggests that PC1/3 
enzymatic pathways regulating body fat in humans are not 
operative in mice. However, humans heterozygous for the 
null mutation or with mutations causing partial loss of 
PC1/3 function develop obesity,230–233 a finding duplicated 
in HET mice and in mice with partial loss of PC1/3 
activity,257–261 suggesting that the PC1/3 enzymatic path-
ways regulating body fat in humans are indeed shared by 
mice. Thus, the available evidence indicates a remarkable 
conservation between mice and man of the genes that 
regulate body fat.

Only 5 of the 72 obese mouse KO lines reported here 
appear on this list of shared mouse and human obesity 
genes. For 4 of the 5, Ksr2, Adcy3, Mc4r and Mc3r, the 
KO mice are among the most obese we studied, with a 
64% or greater increase in %BF relative to WT littermates, 
suggesting that the fidelity between mouse and human 
obesity genes may extend to the relative strength of their 
obese phenotypes. If so, then GPR45, ASNSD1 and TLE4 
are the most likely of the remaining 65 genes to be con-
firmed as human obesity genes. Nevertheless, identifica-
tion of obesity in individuals heterozygous for inactivating 
NCOA1 mutations120 despite the modest obesity of 
published119,120 and our Ncoa1 KO mice suggests that 
homozygous inactivating mutations in human orthologs 
of any of the other 65 genes may be associated with severe 
human obesity. Despite the large effect of such homozy-
gous inactivating mutations, their rarity precludes a major 
contribution to the polygenic obesity that results from 
small effects of many common genetic variants.16 

However, homozygosity of complete loss-of-function 
mutations occurring simultaneously for 2 or more of 
these genes in the same person, undoubtedly a rare 
event, could result in morbid obesity due to the strength 
of the individual effects. This would most likely occur if 
the mutations in the 2 genes induce obesity through non-
redundant pathways, resulting in an additive effect on fat 
mass; a good example is the increased body fat of Mc3r/ 
Mc4r DKO mice, which equals the sum of the increased 
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body fat found in the individual Mc3r and Mc4r KO lines 
(Supplementary Table 4).60,62

The Value in Identifying Genes That 
Regulate Body Fat
The major value in identifying novel mouse obesity genes 
is that the product of the orthologous human gene is likely 
to regulate body fat content in man. One advantage of this 
conservation across species is that identifying a novel 
mouse obesity gene may suggest that, among many 
genes associated with a human GWAS BMI cluster, the 

orthologous human gene is likely responsible for the sig-
nal. In support of this hypothesis, 10 of the 13 human 
obesity genes originally identified in mice are surrounded 
by or overlap with a GWAS BMI cluster (LEP, LEPR, 
MC4R, POMC, SH2B1, BDNF, NTRK2, KSR2, ADCY3 
and NCOA1), while the other 3 (CPE, TUB and MC3R) 
are located within 1 MBP of a cluster (https://hugeamp. 
org/). Thus, going forward, novel mouse obesity genes can 
focus research efforts on their orthologs located in poorly 
characterized BMI clusters. For example, a BMI cluster 
located within the PRKD1 gene and 0.49 MBP 5ʹ to the 

Table 9 Shared Mouse Phenotypes for 18 Established Human Monogenic Obesity Genes

Human 
Gene

OMIM 
Gene

OMIM 
Disease

Shared Human and Mouse Phenotypes in Addition to Obesity 
and Hyperphagia

References

Human Mouse

ADCY3 600291 None Impaired glucose homeostasis; HET phenotype [117,118] [114,115]

BDNF 113505 None Impaired glucose homeostasis; hyperactivity; HET phenotype [216] [241,242]

CARTPT 601606 601665 HET phenotype [225] [253–255]

CEP19 615586 615703 Impaired glucose homeostasis; insulin resistance; dyslipidemia; male 

infertility

[224] [224]

CPE 114855 None Impaired glucose homeostasis; hyperproinsulinemia; hypogonadotropic 

hypogonadism; impaired prohormone processing

[222] [249–251]

KSR2 610737 None Impaired glucose homeostasis; HET phenotype [40] [36,40,49,100]

LEP 164160 614962 Delayed puberty; mild hypothyroidism; insulin resistance; dyslipidemia; 

impaired immunity

[204–206] [10,11,234]

LEPR 601007 614963 Delayed puberty; mild hypothyroidism; insulin resistance; dyslipidemia; 

impaired immunity

[207,208] [10,12,234]

MC3R 155540 602025 Low lean body mass [226,227] [36,60–62,256]

MC4R 155541 618406 Impaired glucose homeostasis; increased linear growth and lean body 

mass; HET phenotype

[209–211] [13,36,59,60]

MRAP2 615410 None None [220,221] [220,248]

NCOA1 602691 None HET phenotype [120] [119,120]

NTRK2 600456 613886 HET phenotype [217] [243,244]

PCSK1 162150 600955 Impaired prohormone processing; diarrhea; hyperproinsulinemia; HET 

phenotype

[228–233] [232,257–261]

POMC 176830 609734 Defective adrenal function; altered pigmentation [212,213] [235–237]

SH2B1 608937 None Impaired glucose homeostasis; maladaptive, aggressive behavior; HET 
phenotype

[214,215] [238–240]

SIM1 603128 None Increased linear growth; HET phenotype [218,219] [245–247]

TUB 601197 616188 Retinal dystrophy [223] [249,252]

Abbreviation: HET, heterozygous.
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G2E3 gene led to characterization of PRKD1 as an obesity 
gene262 and inclusion of PRKD1 in a functional protein 
interaction network for childhood BMI263 despite the lack 
of functional data linking PRKD1 to obesity. Our finding 
of obesity in G2e3 KO mice but not in Prkd1 KO mice47 

suggests that future work should focus on the role of 
G2E3, rather than PRKD1, in human obesity.

Knowing the gene mutation responsible for obesity in an 
individual may predict obesity risk in current and future family 
members and guide management of the biological effects 
associated with inactivation of that specific gene.264,265 In 
addition, some single gene mutations that result in obesity 
are associated with specific effective therapies. For example, 
recombinant leptin effectively treats obesity in people lacking 
functional leptin.206 Also, setmelanotide is a subcutaneously 
administered peptide, which decreases appetite and increases 
energy expenditure by selectively activating the MC4R 
through a novel and incompletely understood mechanism 
that avoids the cardiovascular toxicity of earlier generation 
MC4R agonists.266,267 Setmelanotide can effectively treat obe-
sity in individuals with inactivating mutations in LEPR, 
POMC and PCSK1 genes, which all encode proteins acting 
upstream of MC4R,268,269 and may also prove to be effective 
in individuals with specific MC4R mutations or with inactivat-
ing mutations in other genes, including CPE and ADCY3, that 
may result in impaired MC4R pathway function.266,268 This 
evidence supports the current recommendation for genetic 
testing of individuals with extreme early onset obesity, before 
the age of 5, that is associated with extreme hyperphagia, other 
features of genetic obesity syndromes, and/or a family history 
of extreme obesity.264

In humans with syndromic obesity, where obesity is 
one of multiple characteristic findings that constitute the 
syndrome, mouse KO models may also predict genes 
contributing to the obesity and suggest potential treat-
ments. For example, MAGEL2 is one of 4 paternally 
expressed genes located in a chromosome 15 locus asso-
ciated with Prader-Willi syndrome or PWS (OMIM 
176270). Among the characteristic findings of PWS is 
early failure to thrive followed by overeating and marked 
childhood obesity. Magel2 KO mice reproduce many of 
the characteristic findings in PWS including obesity and 
hyperphagia,270 observations that preceded comparable 
findings in humans with truncating MAGEL2 mutations.271 

Magel2 KO mice may potentially have a role to play in the 
development of therapeutics that reverse the hyperphagia 

and obesity of individuals with PWS or isolated MAGEL2 
deficiency.272

Perhaps the greatest value in identifying obesity genes 
is the potential that the gene product is a target for a 
therapeutic, or a therapeutic itself, that can lower body 
fat in people with common polygenic obesity. 
Retrospective analyses found that mouse KO phenotypes 
for most genes targeted by drugs correlate well with the 
effects of those drugs.29–31 These data are supported by 1) 
Lexicon’s prospective development of neutralizing antibo-
dies that reproduce in WT mice the phenotypes found in 
Angptl4,273 Fzd4,274 Dkk1,37 Notum37,275 and Angptl3276 

KO mice; 2) the prospective development by Regeneron 
Pharmaceuticals of a human therapeutic antibody that 
reproduces in humans the Angptl3 KO phenotype;277,278 

and 3) Lexicon’s prospective development of small mole-
cules that reproduce in rodents the phenotypes observed in 
Sglt1,39,279,280 Notum,28,275,281,282 Aak1,283 Limk2,284 

Rock1/2285 and Sgpl1286,287 KO mice, along with small 
molecules that reproduce in multiple species including 
humans the Sglt2 KO phenotype.39,288–291

The above work confirms the ability of mouse KO phe-
notypes to model drug effects. Importantly, mouse KO phe-
notypes model what happens when a drug target is inhibited; 
thus, when inactivating a gene leads to obesity, drugs must 
activate the protein product of that gene, or the protein 
product must itself be an agonist. Agonist drugs are often 
developed from secreted protein and GPCR families, and 
both families have been mined for possible obesity 
therapies.23–25,31 The secreted protein leptin is, of course, a 
LEPR agonist, and leptin treatment of adults with leptin 
deficiency dramatically lowered their BW, body fat and 
food intake.205,206,292 However, treating common polygenic 
obesity with leptin achieved only modest weight loss,293,294 

consistent with studies in rodents295–297 and inconsistent 
with broad use of leptin as a weight loss therapy. Also, 
agonists against the MC4R and HTR2C GPCRs have been 
developed. As noted above, while early MC4R agonists 
showed significant toxicity, the more recently developed 
agonist setmelanotide is less toxic and treatment for 4 
weeks in 5 subjects with common polygenic obesity led to 
weight loss of ~0.9 kg/week; a better understanding of how 
setmelanotide works may lead to MC4R agonists that are 
safe and effective weight loss drugs for individuals with 
common polygenic obesity.266,298 Of more relevance here, 
the obesity of Htr2c KO mice63 inspired development of the 
HTR2C agonist lorcaserin; HTR2C is neither associated with 
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a GWAS BMI cluster (https://hugeamp.org/) nor a human 
monogenic obesity gene. Lorcaserin, which has the advan-
tage over peptide drugs of being an orally available small 
molecule, was approved by the FDA after demonstrating 5% 
weight loss in 49% of people with common polygenic over-
weight or obesity after 1 year of treatment.66,299–301 

Lorcaserin was removed from the market in 2020 due to 
increased cancer risk, but development and approval of lor-
caserin serves as a precedent for screening KO mouse models 
to identify obesity drug targets. Finally, identifying drug 
targets is not the only way that KO mouse models can aid 
obesity drug discovery. First, our KOs are global, they inac-
tivate the targeted gene throughout the body, just as would a 
drug targeting the product of that gene; thus, thoroughly 
characterizing global KO mice may identify undesirable 
phenotypes that portend undesirable side effects of an on- 
target drug. Second, global KO models can be used to con-
firm that the anti-obesity effects of a drug are on-target, as 
shown by the ability of both lorcaserin and setmelanotide to 
lower food intake in WT mice but not Htr2c KO or Mc4r KO 
mice, respectively.65,302

Confirmation of Novel Obesity 
Phenotypes in Mouse KO Models
The lack of reproducibility in published research has long 
been recognized but became a major issue a decade ago 
with reports that industry scientists could not reproduce 
most published preclinical studies.303–305 A recent update 
reviewed progress and emphasized that the research cul-
ture, particularly at academic institutions, remains a trans-
cending challenge.306 These observations demand 
confirmation of all novel obesity phenotypes in mouse 
KO models; data from one KO model at one center is 
insufficient regardless of investigator, center, study design, 
data or P value. Confirmation of an obese mouse KO 
model can be based on studies of:

1. A KO of the same gene generated using an inde-
pendent strategy by a different research group. This 
is the most frequent approach, and 43 examples are 
provided above.

2. A KO of the same gene generated using an inde-
pendent strategy by the same research group. For 
example, Lexicon confirmed the obesity phenotype 
of Ksr2 KO mice by reproducing the phenotype in 
an independent Ksr2 KO model.49

3. A KO of a different gene that expresses the sole 
ligand or receptor of the gene product of the obese 
KO model. Lep/Lepr (ob/ob and db/db) and α-MSH 
and Mc4r (Pomc/Mc4r) are examples that support 
this approach.10–13,235 As examples from this report, 
we used our obese Kiss1r KO mice to first confirm 
the published phenotype69,70 and then to confirm the 
obesity of our Kiss1 KO mice, which lack the ligand 
for KISS1R; in addition, the strikingly similar obe-
sity phenotypes of Prok2 KO and Prok2r KO mice 
suggest roles for each gene in regulating body fat.

4. A KO or inactivating mutation of the same gene in 
a different species. The best examples are mouse 
KOs for Mrap2,220 Cep19224 and Cartpt,225,253 

which were simultaneously reported as human obe-
sity genes, and KOs for Sim1218,245 and 
Pcsk1,228,257–261 which were first reported as 
human obesity genes. In addition, human GWAS 
data may provide support for a KO obesity pheno-
type; for example, our Tle4 KO mice are obese and 
a human GWAS BMI cluster sits within the TLE4 
gene, which is at the center of, and the only gene 
in, a 2.5 MBP stretch of human chromosome 9.

5. The effect of a drug that specifically targets the gene 
product of the obese KO model. The best example is 
the HTR2C agonist lorcaserin, which lowers body 
fat of WT mice but not Htr2c KO mice.65

Often, multiple approaches are combined to confirm that a 
gene is linked to obesity. For Ksr2, confirmation was 
achieved by observing 1) obesity in two independent in- 
house KO models; 2) obesity in an external KO model; 3) 
a strong link of the human KSR2 gene to GWAS BMI 
clusters; and 4) obesity in humans with KSR2 
haploinsufficiency.36,40,49,100 Rather than depend on data 
from one KO cohort, confirmation requires supporting data 
from multiple cohorts, following the Bayesian statistical 
paradigm.307 In the absence of supporting data, there is a 
real risk that the obesity is a false-positive observation. 
This caution is particularly appropriate for KO lines that 
are linked to obesity based exclusively on HTS data. The 
obesity of these KO lines is best viewed as a hypothesis- 
generating observation requiring confirmation using an 
independent KO model.

If a mouse KO obesity phenotype is not confirmed with 
an independent mouse KO model, there are many issues to 
consider that may explain the discrepancy:
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1. Study power.303 Study power depends on strength 
of phenotype and the number of mice studied/ 
group. As shown in Table 1, the strength of obesity 
phenotypes characterized under very similar condi-
tions has a wide range, with the well-established 
Mc4r KO and Prlhr KO phenotypes differing 
greatly in strength. Power calculations can deter-
mine if the number of mice/group was adequate to 
observe the phenotype in the original and/or con-
firmatory studies and are particularly important to 
perform for subtle phenotypes.

2. Bias.303 Study methods and interpretation should 
be reviewed for evidence of bias. Agnostic 
approaches, such as our HTS approach, are one 
way to minimize the contribution of bias to study 
results.

3. Mouse KO strategy. Homozygous inactivating PCSK1 
mutations led to obesity in humans but not mice; 
however, obesity was observed in more targeted 
mouse Pcsk1 mutations and in HET mice.228,257–261 

Also, an initial G2e3 KO strategy resulted in embryo-
nic lethality, but two recent and different KO strategies 
both found that G2e3 KO mice were obese.47 Of note, 
in our experience gene trap and homologous recombi-
nation technologies produced comparable KO pheno-
types for Angptl4,273 Tph1,308 and Adamts4 (this 
manuscript), suggesting that differences between 
KOs generated by these two techniques are more likely 
due to differences in specific mutation strategies rather 
than differences in the two techniques.

4. Mouse phenotyping strategy. In our experience, 
body fat data derived from DXA and QMR tech-
nologies are comparable and accurate surrogate 
measurements of body fat; excellent correlations 
were found between % body fat measured by both 
QMR and DXA and by both QMR and carcass 
analysis.36 However, BW is a less sensitive surro-
gate measurement for body fat, as exemplified by 
multiple cohorts of chow fed G2e3 KO and WT 
mice that showed significant differences in body fat 
measured by QMR but not in BW.47 For many KO 
lines, a subtle but significant increase in body fat 
detected by DXA and/or QMR was not accompa-
nied by a significant increase in BW.

5. Mouse age. Obesity would be missed in many 
mouse KO lines if body fat was measured only at 
weaning; for example, Ksr2 KO and Adcy3 KO 
mice show reduced viability with low BW and 

body fat at weaning but rapidly develop obesity 
over the next few weeks,49,114 similar to our find-
ings here for Tle4 KO mice.

6. Mouse genetic background. Classic studies show 
that the obesity of ob/ob (Lep) and db/db (Lepr) 
mice is influenced by background mouse strain.-
10,309 Similarly, cold tolerance is decreased when 
Ucp1 KO mice are on a C57BL/6J or 129/SvImJ 
background but not when on a hybrid C57BL/6J X 
129/SvImJ background.310 Background may also 
explain why Htr2c KO mice were obese on a 
C57BL/6J background63,64 but not on our hybrid 
C57BL/6J X 129SvEvBrd background. We often 
saw phenotypes in adult KO mice maintained on 
our hybrid background when embryonic lethality 
was reported for an IMPC KO of the same gene 
maintained on their C57BL/6N background;28 this 
hybrid vigor is likely due to a different and broader 
complement of modifier genes in our KO lines that 
allows survival and phenotyping.

7. Mouse diet. Mouse diet likely influences the 
strength of the obesity phenotype for certain 
mouse KO lines. For example, Pnpla2 KO mice 
were reported as obese when fed chow diet but not 
HFD135 and Ddah1 KO mice were reported as 
obese when fed HFD but not chow diet,138 obser-
vations supported by our data for each KO line. 
However, for almost all KO lines reported here, 
obesity was observed regardless of whether KO 
and WT littermate mice were fed chow or HFD.

8. Mouse sex. Sexual dimorphism has been reported for 
many phenotypes but was rare in our skeletal37 and 
obesity phenotyping programs; in our experience, sex 
differences in either bone or fat HTS data were 
usually spurious findings associated with an overall 
weak phenotype that was not reproduced when addi-
tional cohorts were studied. Confirming the finding of 
obesity in mice of a single sex requires additional 
adequately powered studies that provide data on 
both male and female KO mice.

9. Environment. Environment can influence the 
amount of body fat stored. For example, Ucp1 
KO mice were more likely to be obese at thermo-
neutrality than at lower temperatures311 and Mc4r 
KO mice were obese in the absence, but not the 
presence, of running wheels.312 These observations 
suggest that researchers evaluate the effects of spe-
cific environmental conditions on the phenotype 
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they are studying; ambient temperature, cage size 
and numbers of mice/cage can all influence body 
fat accumulation.

10. Use of large-scale mouse KO HTS data for confirma-
tion. The ongoing IMPC and the completed Lexicon 
Pharmaceuticals Genome5000TM programs are the 
two large-scale mouse phenotyping campaigns that 
used reverse genetics, which analyzes phenotypes 
resulting from KO of specific genes, to provide data 
on the physiologic function of those genes. Their 
major advantage is using a panel of assays with 
standardized protocols to discover, in an unbiased 
manner, a broad range of phenotypes in mice. Their 
major disadvantages are that mouse cohorts are small 
and are studied within a narrow age range, creating a 
risk for false positive and negative results. These and 
other issues are discussed in a recent review of these 
two campaigns28 but a few observations on the fide-
lity of phenotyping by the Lexicon HTS are war-
ranted. Importantly, each KO line compares KO and 
WT littermates/cagemates for each assay, which con-
trols for environmental differences and for genetic 
drift of the colony over time. The Lexicon HTS 
identified established, strong body fat and skeletal 
KO phenotypes with high fidelity, including correct 
identification of the body fat phenotype of all 5 KO 
lines with established published obesity.28,36,37 Novel 
subtle phenotypes were more challenging. One 
strength of the Lexicon HTS was that 2 independent 
cohorts were usually screened for body fat, one fed 
chow and the other HFD from weaning, which pro-
vided insight into the consistency of a body fat phe-
notype. Nevertheless, the modest obesity observed by 
HTS in some KO lines was not reproduced when 
additional in-house cohorts were studied even when 
both chow- and HFD-fed HTS cohorts appeared 
obese.36 False-positive phenotypes are also expected 
for IMPC HTS KO lines.313 Of the 29 KO lines 
reported here with the novel finding of increased 
body fat in HTS KO mice, body fat data for 2 of the 
KO lines (Ksr2 and G2e3) were supported by data 
from additional internal and external KO cohorts and 
for 6 of the KO lines were supported by data from 
additional internal cohorts, but body fat data for the 
remaining 21 KO lines were unsupported by data 
from additional cohorts and are at higher risk of 
being false-positive observations. Ultimately, the 
novel finding of high body fat in 27 of our KO lines 

is a hypothesis-generating observation for each line 
that requires demonstration of significant obesity in 
an independent external KO model for confirmation.

Summary
Lexicon Pharmaceuticals used high-throughput approaches 
to both create KO lines for mouse genes that had drug-
gable human orthologs and to analyze body fat in adult 
littermate/cagemate WT and KO mice from each KO line. 
Body fat was usually analyzed in 2 independent cohorts of 
these mice, one maintained on chow diet and the other on 
HFD from weaning. This program identified dozens of 
obese KO lines; for many of these lines, the obesity 
observed in the KO mice confirmed data from previously 
established KO models, while for others the obesity was a 
novel finding that will require external confirmation. 
Undoubtedly, many mammalian obesity genes remain to 
be identified and characterized.
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