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Purpose: Stem cells from the apical papilla (SCAPs) are promising seed cells for tissue regeneration medicine and possess the
osteogenic differentiation potential. Wnt5a, a typical ligand of the noncanonical Wnt pathway, exhibits diverse roles in the regulation
of osteogenesis. The transcriptional co-activator with PDZ-binding motif (TAZ, WWTR1) is a core regulator in the Hippo pathway
and regulates stem behavior including osteogenic differentiation. This study aims to examine how Wnt5a regulates SCAPs osteogen-
esis and explore the precise mechanistic relationship between Wnt5a and TAZ.
Methods: SCAPs were isolated from developing apical papilla tissue of extracted human immature third molars in vitro. ALP
staining, ALP activity and Alizarin red staining were used to evaluate osteogenic capacity. Osteogenic-related factors were assessed by
qRT-PCR or Western blotting. Additionally, the receptor tyrosine kinase-like orphan receptor 2 (ROR2) was detected by immunocyto-
fluorescence staining and silenced by small interfering RNA to verify the function of Wnt5a/ROR2 in TAZ-mediated osteogenesis.
And we constructed TAZ-overexpression and β-catenin-overexpression SCAPs generated by lentivirus to explore the precise
mechanistic relationship between Wnt5a and TAZ.
Results:Wnt5a (100ng/mL) significantly suppressed ALP activity, mineralization nodules formation, expression of osteogenic-related
factors. Meanwhile, it decreased the expression of TAZ mRNA and protein. TAZ overexpression promoted osteogenesis of SCAPs
while Wnt5a could block TAZ-mediated osteogenesis. Furthermore, ROR2 siRNA (siROR2) was found to upregulate TAZ and
canonical Wnt pathway signaling related molecules such as β-catenin, GSK3β and p-GSK3β. The suppression of Wnt5a/ROR2 on
osteogenesis was significantly reversed by β-catenin overexpression through Wnt5a/ROR2/β-catenin/TAZ pathway.
Conclusion: Taken together, the present study demonstrates that Wnt5a suppresses TAZ-mediated osteogenesis of SCAPs and there
may be a Wnt5a/ROR2/β-catenin/TAZ pathway regulating osteogenesis of SCAPs. Moreover, Wnt5a could be a candidate for
regulators in tissue regeneration.
Keywords: Wnt5a, TAZ, stem cells from the apical papilla, osteogenesis, β-catenin

Introduction
With the development of stem cell technology, stem cell-based tissue regeneration therapy is rapidly moving into clinical
application. Recently, dental-tissue-derived MSCs have been extensively studied concerning their characteristics of self-
renewal, proliferation, and differentiation. Stem cells from the apical papilla (SCAPs) are multipotent stem cells retained
at the root of immature permanent teeth. A multitude of evidence describes that SCAPs have the capacity for
differentiation into chondrogenic, osteogenic, and neurogenic tissue.1–3 Besides, there is a trend that alveolar bone
tends to degenerate, which results in appearance of impacted third molar teeth. And therefore, extraction of impacted and
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immature third molars offers abundant SCAPs for stem cell-based tissue regeneration therapy. Because of these
characteristics, SCAPs are promising seed cells for tissue regeneration medicine.

The Hippo pathway is highly conserved and plays an essential role in organ development, tissue homeostasis, and
neoplasia. The transcriptional co-activator with PDZ-binding motif (TAZ, WWTR1) is one of core regulators among
Hippo pathway signaling molecules, reportedly regulating stem cell behavior and regeneration via a post-translational
mechanism.4,5 To date, evidence suggests that TAZ-mediated osteogenesis can be referred to in many cellular physiol-
ogies such as mechanotransduction and BMP-2 signaling.6–9 Besides, TAZ, located in the dental papilla and the entire
enamel organ, mediates signaling center formation, the enamel knot during tooth development.10,11 Thus, Hippo/TAZ
may be important crucial for regulating osteogenic differentiation in SCAPs.

Wnts are a family consisting of 19 secreted glycoproteins that are extensively involved in fundamental bone
metabolism such as osteoblast proliferation, differentiation, and apoptosis.12–14 Wnt 5a is a representative ligand of
noncanonical Wnt pathway and exhibit potentiality on stemness maintenance and osteogenesis of MSCs ex vivo.15 Mice
deficient in Wnt5a exhibited a low bone mass with decreased bone formation,14 retarded tooth development and dis-
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regulated cusp patterning.16 Additionally, Wnt5a/ROR2 signaling involves in BMP-2-mediated osteoblast differentiation
in a Smad-independent pathway.17 It also enhances receptor activation of nuclear factor-κB (RANK) expression in
osteoclast precursors by activating JNK and recruiting c-Jun on the promoter of the gene encoding RANK, thereby
enhancing RANK ligand (RANKL)-induced osteoclastogenesis.18 However, whether Wnt5a affects osteogenic differ-
entiation of SCAPs has not yet been described and the detailed mechanism remains unclear.

Recently, cross talk between the Wnt and Hippo signaling pathways has been investigated to uncover the precise
regulatory mechanisms involved. Azzolin and others found that the main regulator of the canonical Wnt pathway, APC,
is responsible for TAZ degradation in the cytoplasm, and the key effector, β-catenin, is required for the interaction of
TAZ with β-TrCP.19,20 Moreover, research has verified that Wnt3a induces nuclear localisation of TAZ during osteogenic
differentiation.21 However, a relationship between the noncanonical Wnt pathway and the the Hippo pathway is rarely
reported. Hyun WooPark and others have even referred to a Wnt5a/b-YAP/TAZ signaling axis, that is, Wnt-FZD/ROR-
Gα12/13-Rho-Lats1/2-YAP/TAZ. They have identified its involvement in osteogenesis and cell migration.22 Other
research focused on kidney fibrosis indicated that Wnt5a stimulates Yap/Taz-mediated macrophage M2 polarization.23

Based on previous studies, our team put forward a hypothesis that Wnt5a may regulate the osteogenesis of SCAPs via the
Hippo/TAZ pathway. This study aims to examine how Wnt5a regulates SCAP osteogenesis and explore the precise
mechanistic relationship between Wnt5a and TAZ.

Materials and Methods
Isolation and Cultivation of SCAPs
SCAPs were isolated from the developing apical papilla tissue of extracted human immature third molars. The inclusion
criteria were as follows: indication for the extracted of third molar teeth; radiographic evidence of an immature stage of
development with open apices (>1.5 mm); patients between 13–25 years of age; willingness to participate in the study;
ability of the patient (or parent/guardian when the patient was <18 years of age) to understand and provide informed
consent. The exclusion criterion was no other indication for the extraction of teeth (eg, carious lesions or pulpal
inflammation/necrosis).24,25 All patients (or parent/guardian when the patient was <18 years of age) gave their informed
consent for inclusion before they participated in the study. The study was conducted in accordance with the Declaration
of Helsinki, and the protocol (No. R20180701) was approved and supervised by the Ethics Committee of the Hospital of
Stomatology, Shandong University (Jinan, China). The isolated tissue was digested with 3 mg/mL collagenase type I
(Solarbio, Beijing, China) and 4 mg/mL dispase II (Sigma, Darmstadt, Germany) at 37 °C for an hour. SCAPs were
grown in minimum essential medium Eagle alpha modification (αMEM; BI, Kibbutz Beit-Haemek, Israel) supplemented
with 10% fetal bovine serum (FBS) (BI, Kibbutz Beit-Haemek, Israel), 100 U/mL penicillin, and 100 μg/mL streptomy-
cin (Biosharp, Anhui, China). Cells were incubated at 5% CO2 and 37 °C.

Colony Formation Assay
A total of 200 SCAPs were plated on a 6-cm diameter culture dish for 10 days in 10% FBS/α-MEM. The cells were fixed
with 4% paraformaldehyde (PFA), washed with phosphate buffer saline (PBS), and stained with crystal violet (Solarbio).
The cells were then washed and dried. Cell clusters of more than 50 cells were counted as one colony. The colony
counting was captured under a microscope (Olympus, Japan).

Alkaline Phosphatase (ALP) Activity and ALP Staining Assay
SCAPs were plated in 6-well plates and cultured in osteogenic inducing medium with or without Wnt5a (R&D,
Minnesota, USA). ALP activity was quantified using an alkaline phosphatase assay kit (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China). Cell culture medium were collected after 3 or 7 days stimuli. The collected
solution were centrifuged at 1000 rpm for 5 min at 4 °C. Then, an aliquot of the supernatant (30 μL per well) and
working assay solution were added to 96-well plates, followed by incubation for 15 min at 37 °C. Separately, double
distilled water and standard phenol solution were added as negative control (NC) and standard control. To quantify the
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ALP activity, the absorbance was measured at 520 nm using the SPECTROstar Nano microplate reader (BMG Labtech,
Ortenberg, Germany).

The BCIP/NBT Alkaline Phosphatase Color Development Kit (Beyotime, Shanghai, China) was used to assess ALP
activity. Like previously mentioned, cells were fixed with 4% PFA, washed with PBS, and then stained with dye liquor.
The stained plates were captured with a scanner and a light microscope (Olympus, Japan).

Multipotent Differentiation Assay
For experiments on multipotent differentiation, SCAPs were seeded in a specific differentiation medium. Osteogenic-
inducing medium (OIM) was supplemented with 10% FBS (BioInd, Kibbutz, Israel), 10−8 mol/L dexamethasone, 50 mg/
L ascorbic acid, and 10 mmol/L β-glycerophosphate (Sigma-Aldrich, St. Louis, MO, USA). Adipogenic differentiation
medium was supplemented with 10% FBS, 500 μmol/L 3-isobutyl-1-methylxanthine (IBMX), 1 μmol/L dexamethasone,
200 μmol/L indomethacin, and 10 μg/mL insulin (Sigma-Aldrich). SCAPs were seeded in 6-well culture plates for 21
days and the inducing medium was changed every 3 days. After induction for 21 days or 28 days, mineralization nodules
were identified by Alizarin Red staining (Solarbio) and lipid droplets were identified by Oil Red O staining (Solarbio).

Phenotype Identification
For phenotype analysis, SCAPs (passages 3–5) were suspended and characterized with monoclonal antibodies reactive to
CD34, CD44, CD45, CD90, and CD105 (eBioscience, San Diego, CA, USA), which incubated for 1 h on ice. PBS was
used to wash SCAPs thoroughly and resuspend them in a single-cell suspension. After washing three times, samples were
analyzed using a cell analyzer (Beckman Coulter, Brea, CA, USA).

Generation of TAZ-Overexpression or β-Catenin-Overexpression SCAPs
SCAPs were transfected with lentiviruses to promote the overexpression of TAZ or β-catenin packaged by Genechem
Company (Shanghai, China). The empty vector was employed as the negative control. The cells were incubated in the
culture media plus lentiviruses and HitransG P for 9 h. To estimate whether the overexpression model was constructed
successfully or not, transfection efficiency was evaluated by observation with a fluorescence microscope, mRNA, and
protein.

Small Interfering RNA Transfection
Three different siRNA targeting ROR2 mRNA (siROR2-1#, siROR2-2#, and siROR2-3#) and non-targeting control
(siCTRL) were synthesized by GenePharma Company. The sequences of siRNA are listed in Supplementary Table 1.
SCAPs were seeded on 6-well plates 24 h before siRNA transfection. Lipofectamine 3000 (Invitrogen, Inc., Carlsbad,
CA, USA) were incubated with opti-mem (Gibco-BRL, Grand Island, NY, USA) ahead of the mixture between siRNA
for ROR2 (150 pmol per well) or siCTRL (150 pmol per well) and opti-mem. The above solutions were mixed and
incubated at room temperature for 15 min. Then, they were dropwise added to α-MEM supplemented with 10% FBS.
After 24 h, the medium was replaced with a fresh 10% FBS/α-MEM or osteogenic differentiation medium.

Alizarin Red Staining and Quantitative Analysis
To assess the extent of osteogenic differentiation, SCAPs were washed with PBS and fixed with 4% PFA after 21 days.
The cells were then washed 3 times prior to the addition of 0.2% Alizarin Red S at pH 8.3 (Solarbio) for 1 h. The stained
plates were captured with a scanner and a light microscope. To quantify the mineralized matrix deposition, the
precipitation was dissolved with 10% cetylpyridinium chloride (CPC; Solarbio) and the absorbance was measured at
562 nm using the SPECTROstar Nano microplate reader (BMG Labtech, Ortenberg, Germany).

Quantitative Real-Time PCR
Quantitative real-time PCR (qRT-PCR) was applied to detect gene expression. Total RNA was extracted by Trizol
Reagent (TaKaRa, Shiga, Japan). cDNA was synthesized from 1 μg total RNA using Primer Script® RT Reagent Kit
(TaKaRa) as per the manufacturer’s instruction. Qualitative RT-PCR was performed by SYBR® Premix Ex Taq™
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(TaKaRa) with Roche 480, and each RNA sample was assayed in triplicate. For the relative quantitative analysis of the
target gene, Cq values were obtained and calculated with the comparative CT method.26 The target gene transcript levels
were normalized according to an endogenous reference gene (GAPDH). Primer sequences for ALP, Osterix, RUNX2,
ROR2, β-catenin, TAZ, and GAPDH are shown in Supplementary Table 2.

Western Blotting Analysis
SCAPs were lysed by radioimmunoprecipitation assay lysis buffer (Solarbio) with 1% phenylmethylsulfonyl fluoride
(PMSF; Solarbio) and 1% phosphatase inhibitor cocktail (Boster, Hubei, China). Samples were centrifuged at 12,000 rpm
for 15 min and the supernatant was collected. Protein concentrations were measured by BCA assay kit (Solarbio), which
informed the loading volume of total proteins (40 μg). Gels were transferred onto PVDF membranes (Millipore,
Billerica, MA, USA). The membranes were blocked with 5% skim milk and incubated with the following primary
antibody at 4 °C overnight: ALP (Huabio, Hangzhou, China); RUNX2 (Abcam, Cambridge, UK); GSK, p-GSK, and
TAZ (Cell Signaling Technology, Beverly, MA); and ROR2 and β-catenin (Santa Cruz Biotechnology, Santa Cruz, CA).
Secondary antibodies, goat anti-rabbit and goat anti-mouse (Proteintech, Hubei, China), were selected referring to the
instruction of the primary antibodies. Luminescent autoradiography and an enhanced chemiluminescence system were
applied to visualize the membranes. GAPDH was used as an endogenous reference protein.

Immunocytofluorescence Staining
For immunocytofluorescent analysis, SCAPs were washed with PBS and then fixed with 4% PFA for 15 min. After being
pretreated by 0.5% Triton (Solarbio) in PBS for 30 min, the cells were blocked with 5% BSA in PBS for 2 h, which was
prior to the addition of primary antibodies: mouse monoclonal anti-ROR2 (Santa Cruz Biotechnology) at a dilution of
1:50 or CD24 (eBioscience) at a dilution of 1:100. Goat anti-mouse antibody (Proteintech) was used as a secondary
antibody at a dilution of 1:100 and incubating time was about 1 h. The cells were then washed three times with PBS and
stained with DAPI to visualize the cell nuclei.

Statistical Analysis
All experiments were performed in triplicate. GraphPad Prism 8 (GraphPad Software, Inc., La Jolla, CA, USA) was
applied to analyze the statistics. The data are expressed as mean ± standard deviation. Statistical analysis was performed
using Student’s unpaired Student’s t-test and one-way analysis of variance (ANOVA). The statistical significance was set
at P-value < 0.05.

Results
Isolation and Characterization of SCAPs
Primary SCAPs (Figure 1B) separated from root apical papilla (Figure 1A) could be observed under a microscope after 7
days and passage 3 of SCAPs presented spindle-shaped morphology (Figure 1C). The limiting dilution technique was
used to isolate SCAPs and SCAPs-formed colonies (Figure 1D) with 200 SCAPs in a dish (6 cm) within 7 days. To
investigate multi-directional differentiation ability, cells were cultured in an osteogenic- and adipogenic-inducing
medium. Several mineralization nodules were stained in Alizarin Red after 21 days cultured in the osteogenic-inducing
medium (Figure 1E) and lipid droplets presenting Oil Red O-positive formed after 28 days cultured in the adipogenic-
inducing medium (Figure 1F). The expressions of CD34, CD44, CD45, CD90, and CD105 were analyzed by flow
cytometry to characterize phenotypic markers of SCAPs. SCAPs expressed the MSC-related markers such as CD44,
CD90, and CD105 (Figure 1H), but were negative for the hematopoietic markers such as CD34 and CD45 (Figure 1H). A
specific surface marker of SCAPs, CD24,27 was detected by immunofluorescence, suggesting its positive expression
(Figure 1G). These results indicated that SCAPs possess the characteristics of mesenchymal sources and can be used for
further experiments.
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Wnt5a Suppresses Osteogenesis of SCAPs and TAZ Expression
To examine the effects of Wnt5a on the osteogenesis of SCAPs, SCAPs were treated with increasing concentrations of
Wnt5a (10, 50, and 100 ng/mL) for 7 days. Quantitative RT-PCR demonstrated that the expression levels of bone-related
genes, such as ALP, RUNX2, and TAZ, were significantly lower with Wnt5a (100 ng/mL) than cells cultured in OIM
(Figure 2A and F). Therefore, 100 ng/mL was the dose applied to the rest of the experiments.

ALP has been considered a typical marker of the early osteogenic differentiation of stem cells. An ALP staining assay
and ALP activity assay showed that Wnt5a (100 ng/mL) suppressed ALP expression (Figure 2B and C). A similar
conclusion was supported by Alizarin Red staining and quantitative analysis (Figure 2E), with much less mineralized
nodule formation in the Wnt5a (100 ng/mL) group. Western blotting demonstrated that the expression levels of bone-
related genes such as ALP and RUNX2 decreased markedly under Wnt5a stimuli (Figure 2D). The above results suggest
that Wnt5a inhibits the osteogenesis of SCAPs.

To explicate the effect of Wnt5a on TAZ-mediated osteogenesis in SCAPs, the expression of TAZ was examined
under an osteogenic inducing medium with 100 ng/mL Wnt5a or without Wnt5a after 7 days. Quantitative RT-PCR
confirmed that the levels of TAZ expression were markedly downregulated (Figure 2F). Western blotting results revealed
the same outcome (Figure 2G). Based on the above results, it can be concluded that Wnt5a suppresses TAZ during
osteogenesis.

Figure 1 Isolation and characterization of SCAPs (A) Developing root apical papilla tissue of extracted human immature third molars. Scale bar: 200nm. (B) Primary SCAPs
could be observed under a microscope after 7 days. Scale bar: 200nm. (C) SCAPs (passage 3) presented spindle-shaped morphology. Scale bar: 200nm. (D) Colony
formation of cells were stained by crystal violet. Scale bar: 200nm. (E) Mineralization nodules stained by Alizarin red staining after osteogenic induction for 21 d. Scale bar:
50nm. (F) Lipid droplets stained by Oil Red O after adipogenic induction for 28 d. Scale bar: 20nm. (G) SCAPs expressed CD24 positively by immunofluorescent
microscopy. Scale bar: 50nm. (H) Phenotypic markers observed under flow cytometry. SCAPs were positive for CD44, CD90 and CD105, but negative for CD34 and CD45.
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TAZ Overexpression Promotes Osteogenesis of SCAPs
To explore the relationship between TAZ and osteogenesis, lentivirus was transfected to overexpress TAZ in SCAPs.
Transfection efficiency was evaluated by observation fluorescence microscope (Figure 3A), mRNA (Figure 3B), and
protein (Figure 3C) levels of TAZ. The mRNA or protein level of TAZ was significantly upregulated in the OETAZ
group compared with OENC.

After being cultured in OIM for 3 and 7 days, ALP staining and ALP activity assay showed that ALP was higher in
OETAZ than in OENC (Figure 3E and F). A similar result was obtained by the measurement of mineralized nodules
(Figure 3G). In addition, the mRNA and protein levels of bone-related factors were detected, and they were more
markedly expressed in OETAZ than in OENC (Figure 3D and H). Therefore, TAZ overexpression SCAPs showed
stronger osteogenic potential than OENC SCAPs.

Wnt5a Inhibits TAZ-Mediated Osteogenesis in SCAPs
To further confirm the relationship between Wnt5a and TAZ-mediated osteogenesis, OENC and OETAZ were stimulated
with Wnt5a for 7 days. Lighter ALP staining (Figure 4C), lower ALP activity assay (Figure 4D) and fewer mineralized
nodules (Figure 4E) were observed in the OETAZ plus Wnt5a group compared to the OETAZ group. Similarly, levels of
bone-related factors were also downregulated in the OETAZ plus Wnt5a group compared with the OETAZ group
(Figure 4A and B). In summary, Wnt5a inhibits TAZ-mediated osteogenesis in SCAPs.

Figure 2 Effect of Wnt5a on the osteogenesis of SCAPs (A) Quantitative RT-PCR analysis of ALP, Osterix, RUNX2 and TAZ in SCAPs treated with increasing concentration
of Wnt5a (10, 50, 100 ng/mL) for 7 days. (B) ALP staining of groups with or without 50ng/mL at day 7. (C) ALP activity of groups with or without 50ng/mL at day 7. (D)
Western blotting analysis of ALP and RUNX2 after culturing in 50ng/mLWnt5a for 7 days. (E) Alizarin red staining and semi-quantitative analysis of groups with or without
50ng/mL at day 21. (F) Quantitative RT-PCR analysis of TAZ in SCAPs treated with increasing concentration of Wnt5a (10, 50, 100 ng/mL) for 7 days. (G) Western blotting
analysis of TAZ after culturing in 50ng/mL Wnt5a for 7 days. Data are shown as means ± SD.**P < 0.01, ***P < 0.001,****P <0.0001.
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ROR2 Transported Wnt5a to Affect TAZ Mediated Osteogenesis in SCAPs
To investigate crosstalk between the noncanonical Wnt pathway and TAZ, the expression of ROR2, a receptor of the
noncanonical Wnt pathway, was examined. ROR2 was positive in human SCAPs (Figure 5A) stained by immunocyto-
fluorescence, while a control group stained with normal mouse IgG was negative in SCAPs. Afterward, the ROR2
knockdown model was constructed by ROR2 siRNA. The knockdown efficiency of siROR2#1 was the optimal sequence
as evaluated by RT-PCR and western blotting (Figure 5B and C). This sequence was used for the remainder of the
experiment. The expression of ALP, RUNX2 and Osterix protein was upregulated in the ROR2 siRNA plus Wnt5a group
when compared with siROR2 (Figure 5D), indicating that ROR2 transported Wnt5a to affect TAZ-mediated
osteogenesis.

Relationship Between Wnt5a and Canonical Wnt Pathway on TAZ-Mediated
Osteogenesis
The canonical Wnt pathway-related intracellular signaling molecules in SCAPs were examined to gain insight into the
mechanism of the canonical Wnt pathway on Wnt5a/TAZ mediated osteogenesis. The expressions of β-catenin,
p-GSK3β, and TAZ were lower in the ROR2 siRNA plus Wnt5a group than the ROR2 siRNA group, whereas the
total GSK-3β was nearly unchanged in the ROR2 siRNA plus Wnt5a group (Figure 6A). Based on the above results, it
can be concluded that Wnt5a/ROR2 suppresses TAZ with a canonical Wnt pathway.

β-Catenin is Regular for Osteogenesis via the Wnt5a/ROR2/TAZ Pathway
Lentivirus was transfected to overexpress β-catenin in SCAPs to determine whether Wnt5a regulates the canonical Wnt
pathway to suppress TAZ. Transfection efficiency was evaluated by observation fluorescence microscope (Figure 7A),

Figure 3 TAZ overexpression promotes osteogenesis of SCAPs (A–C) Transfection efficiency was evaluated by observation fluorescence microscope, mRNA, and protein
levels of TAZ. (D) Quantitative RT-PCR analysis of ALP, Osterix, RUNX2 in TAZ-overexpression SCAPs (OETAZ) and corresponding control group (OENC) for 3 days and
7 days. (E) ALP staining of OENC and OETAZ for 3 days and 7 days. (F) ALP activity of OENC and OETAZ for 3 days and 7 days. (G) Alizarin red staining and quantitative
analysis of OENC and OETAZ for 21 days. (H) Western blotting analysis of ALP and RUNX2 in OENC and OETAZ for 3 days and 7 days. Data are shown as means ± SD.
***P < 0.001,****P <0.0001.
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mRNA a (Figure 7B), and the protein levels of TAZ (Figure 7C). The mRNA or protein level of TAZ was significantly
upregulated in the OEβ-catenin group compared with OENC.

Further investigation revealed that the TAZ expression of OEβ-catenin was much higher than OENC, whereas TAZ
expression was dominantly downregulated by OEβ-catenin cultured with Wnt5a in comparison to the β-catenin group
(Figure 7H–I). Lighter ALP staining, lower ALP activity assay and fewer mineralized nodules, and less expression of
bone-related proteins were also observed in OEβ-catenin plus Wnt5a (Figure 7D–G). All of the above suggested that β-
catenin regulates TAZ-mediated osteogenesis and there may be a Wnt5a/ROR2/β-catenin/TAZ pathway that regulates the
osteogenesis of SCAPs.

Discussion
Regeneration-based therapy has been a hot issue in modern medicine and seed cells are at its core. SCAPs are promising
cells in the field of regenerative medicine.28 SCAPs isolated and cultured from immature tooth roots possess the
properties of self-renewal, proliferation, migration, and multidirectional differentiation.28,29 Furthermore, SCAPs possess
low immunogenicity and are capable of suppressing T cell proliferation.28,30 CD24 is a specific marker to distinguish
SCAPs from dental pulp cells.27 A high percentage of CD24-expressing SCAPs exhibit osteogenic differentiation

Figure 4 Effects of Wnt5a on TAZ mediated osteogenesis in SCAPs (A) Quantitative RT-PCR analysis of ALP, Osterix and RUNX2 in OENC, OETAZ, OENC plus Wnt5a
and OETAZ plus Wnt5a group for 7 days. (B) Western blotting analysis of ALP and RUNX2 in OENC, OETAZ, OENC plus Wnt5a and OETAZ plus Wnt5a group for 7
days. (C) ALP staining of OENC, OETAZ, OENC plus Wnt5a and OETAZ plus Wnt5a group for 7 days. (D) ALP activity of OENC, OETAZ, OENC plus Wnt5a and OETAZ
plus Wnt5a group for 7 days. (E) Alizarin red staining and quantitative analysis of OENC, OETAZ, OENC plus Wnt5a and OETAZ plus Wnt5a group for 21 days. Data are
shown as means ± SD.*P < 0.05,**P < 0.01,****P <0.0001.
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capacity.27 In this study, CD24 on SCAPs was examined by immunofluorescence and cells showed a high percentage of
expression, which hinted at potential osteogenic differentiation capacity.

TAZ is a core effector of the Hippo pathway and combines with TEAD-family DNA-binding transcription factors to
control gene expression in response to the Hippo pathway off, which is involved in proliferation, migration, differentia-
tion, and cell junction contact.31–34 The YAP/TAZ depletion model has been found to decrease bone accrual and reduce
intrinsic bone material properties through impaired collagen content and organization.35 At the cellular level in vivo,
YAP/TAZ ablation reduced osteoblast activity and increased osteoclast activity, in an allele dose-dependent manner,
impairing bone accrual and remodeling.35 At the cellular level in vitro, increasing evidence confirmed that TAZ promotes
osteogenic differentiation.9,36–38 Hao J and others found TAZ translocates into the nucleus and promotes osteogenesis of
bone marrow mesenchymal stem cells (BMSCs) through activating RUNX2.36 Tan FZ and others found TAZ promotes
the osteogenic differentiation of mesenchymal stem cells in the rat model of osteoporosis by repressing the PI3K/Akt
signaling.37 In the present study, we conclude that TAZ promotes osteogenic differentiation of SCAPs, expressing
upregulated bone-related factors, dark ALP staining, and numerous mineralized nodules.

Noncanonical Wnt pathway is independent of LRPs and β-catenin and complex with Frizzled (Fzd) and the receptor
tyrosine kinase-like orphan receptor 2 (ROR2) to activate downstream signaling responses, such as the Ca2+/NFAT
pathway in tumor and kidney cells, as well as osteoblasts, and the planar cell polarity (PCP)/convergent extension (CE)
pathway, which involves JNK and so on.39–41 Wnt5a is a representative ligand of noncanonical Wnt pathway and exhibit
potentiality on stemness maintenance and osteogenesis of MSCs ex vivo.15 Loss-of-function mutations in Wnt5a and
ROR2 cause autosomal recessive Robinow syndrome, characterized by midfacial hypoplasia, limb bone shortening, and
genital abnormalities.17,42,43 ROR2 is a member of the ROR family of receptor tyrosine-protein kinases and mediates
diverse noncanonical Wnt5a signaling pathways such as Wnt/Ca2+ and Wnt/planar cell polarity pathways.15,40,44,45 In

Figure 5 Effects of Wnt5a/ROR2 on TAZ mediated osteogenesis in SCAPs (A) SCAPs expressed ROR2 positively by immunofluorescent microscopy. Control group stained
with mouse control IgG (cIgG) was negative in SCAPs. Scale bar: 50nm. (B–C) Transfection efficiency was evaluated by mRNA, and protein levels of three siROR2. mRNA
was collected after 48h, and protein was collected after 72h. (D) Western blotting analysis of ALP and RUNX2 in siCTRL, siROR2 and siROR2 plus Wnt5a group for 3 days.
Data are shown as means ± SD. **P < 0.01,***P < 0.001,****P <0.0001.
Abbreviation: NS, no significance.
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addition, it also inhibits the β-catenin-T cell factor/lymphoid enhancer factor pathway.45 Previous research found Wnt5a/
ROR2 signaling is involved in the BMP-2-mediated osteoblast differentiation in a Smad-independent pathway.18 It also
enhances receptor activation of nuclear factor-κB (RANK) expression in osteoclast precursors by activating JNK and
recruiting c-Jun on the promoter of the gene encoding RANK, thereby enhancing RANK ligand (RANKL)-induced
osteoclastogenesis.18 In our study, our findings demonstrate that Wnt5a suppressed osteogenesis in SCAPs and 100ng/mL
is the optimal concentration chosen for the remainder of the experiment. ROR2 knockdown partly reverses suppression
of Wnt5a on the expression of bone-related factors such as ALP, RUNX2, and Osterix. This result indicates that ROR2
participates in the process preventing osteogenic differentiation of SCAPs. A similar conclusion has even been made that
adipocyte-derived MVs-miR-148a promoted adipogenic differentiation and suppressed osteogenic differentiation via
targeting the Wnt5a/ROR2 pathway.46 Moreover, Wnt5a/ROR2/JNK signaling was clarified as a negative regulator of
mineralization, preventing the development of non-physiological mineralization in periodontal ligament tissue.17

Recently, cross-talk between Wnt signaling and Hippo signaling has attracted widespread attention. However,
interactions between noncanonical Wnt pathway and YAP/TAZ have been rarely referred. Park and others discovered
that treatment with Wnt5a in MCF10A mammary epithelial cells showed accumulation of YAP/TAZ as well as

Figure 6 Relationship between Wnt5a and canonical Wnt pathway on TAZ-mediated osteogenesis (A) Western blotting analysis of β-catenin, GSK3β, p-GSK3β and TAZ in
siCTRL, siROR2, siCTRL plus Wnt5a and siROR2 plus Wnt5a group for 3 days.
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Figure 7 β-catenin is regular for osteogenesis via Wnt5a/ROR2/TAZ pathway (A–C) Transfection efficiency was evaluated by observation fluorescence microscope, mRNA,
and protein levels of β-catenin. (D) ALP staining of OENC, OEβ-catenin, OENC plus Wnt5a and OEβ-catenin plus Wnt5a for 7 days. (E) ALP activity of OENC, OEβ-
catenin, OENC plus Wnt5a and OEβ-catenin plus Wnt5a for 7 days. (F) Alizarin red staining and quantitative analysis of Alizarin red staining of OENC, OEβ-catenin, OENC
plus Wnt5a and OEβ-catenin plus Wnt5a group for 21 days. (G) Western blotting analysis of ALP and RUNX2 in OENC, OEβ-catenin, OENC plus Wnt5a and OEβ-catenin
plus Wnt5a group for 7 days. (H-I) Quantitative RT-PCR analysis and Western blotting analysis of TAZ in OENC, OEβ-catenin, OENC plus Wnt5a and OEβ-catenin plus
Wnt5a group for 7 days. Data are shown as means ± SD.*P < 0.05,**P < 0.01,***P < 0.001,****P <0.0001.
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downstream gene CTGF and CYR61 expression.22 In the present study, we notice that Wnt5a inhibits TAZ expression
and TAZ-mediated osteogenesis. Knockdown of ROR2 can reverse TAZ expression and upregulate ALP, RUNX2, and
Osterix. This result indicates the noncanonical Wnt pathway suppresses Hippo/TAZ mediated osteogenic differentiation,
implying the existence of a Wnt5a/ROR2/TAZ axis. Interestingly, cross-talk between canonical Wnt signaling and Hippo
signaling presents opposite conclusion. In Wnt-ON cells, YAP/TAZ accumulates in the nucleus and activates Wnt/YAP/
TAZ-dependent biological functions such as osteogenic differentiation. In Wnt OFF cells, YAP/TAZ is critical for β-
catenin degradation, and depletion of YAP/TAZ leads to the activation of β-catenin/TCF transcriptional responses.19,38,47

Moreover, Wnt3a promotes the dephosphorylation and nuclear localization of TAZ via PP1A, which stabilizes TAZ and
prevents it from binding 14-3-3 proteins.46 TAZ stimulated by Icariin could be blocked by DKK1, an antagonist of the
canonical Wnt pathway, indicating an interaction of the Wnt/TAZ pathway.48 Based on the above, we wondered if there
might be a connection between Wnt5a/ROR2 and canonical Wnt pathway on TAZ expression. And thus, we detected
canonical Wnt signaling pathway molecules such as GSK3β, phosphorylated GSK3β, and β-catenin. ROR2 knockdown
cultured with the Wnt5a group showed lower β-catenin, TAZ, and higher phosphorylation of GSK-3β than the ROR2
knockdown group. Therefore, we propose that Wnt5a/ROR2 downregulates TAZ via antagonism to the canonical Wnt
pathway. To further elucidate the mechanism, we constructed a β-catenin overexpression model in vitro. The results of
the present study show that β-catenin overexpression upregulates the TAZ gene and partly prevents suppression of
Wnt5a, which demonstrates that the noncanonical Wnt pathway regulates the Hippo pathway partly through the
canonical Wnt pathway in osteogenesis.

In summary, the present study verified that Wnt5a, the representative ligand of the noncanonical Wnt pathway,
suppressed the osteogenesis of SCAPs and TAZ expression. Moreover, TAZ, a core regulator of the Hippo pathway,
promoted osteogenesis of SCAPs and was downregulated when SCAPs were cultured with Wnt5a. Further research
confirmed that the typical receptor of the noncanonical Wnt pathway, ROR2, could reverse the suppression effect of
Wnt5a on both bone-related factors and TAZ. And the canonical Wnt pathway was identified as a participant in Wnt5a/
ROR2/TAZ mediated osteogenesis, demonstrating that there may be a Wnt5a/ROR2/β-catenin/TAZ pathway that
regulates the osteogenesis of SCAPs.

Conclusion
Taken together, the present study demonstrates that noncanonical Wnt5a/ROR2 signaling suppresses TAZ-mediated
osteogenesis of SCAPs. And the process is regulated by canonical Wnt signaling molecules such as GSK3β, phosphory-
lated GSK3β, and β-catenin. In conclusion, noncanonical Wnt5a signaling suppresses Hippo/TAZ-mediated osteogenesis
partly through the canonical Wnt pathway in SCAPs.
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