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Abstract: The main purpose of this study was to evaluate liposomes containing a bile salt, 

sodium deoxycholate (SDC), as oral drug delivery systems to enhance the oral bioavailability 

of the poorly water-soluble and poorly permeable drug, cyclosporine A (CyA). Liposomes com-

posed of soybean phosphatidylcholine (SPC) and SDC were prepared by a thin-film dispersion 

method followed by homogenization. Several properties of the liposomes including particle 

size, polydispersity index, and entrapment efficiency were characterized. The in vitro release 

of CyA from these liposomes was less than 5% at 12 hours as measured by a dynamic dialysis 

method. The pharmacokinetic results in rats showed improved absorption of CyA in SPC/SDC 

liposomes, compared with CyA-loaded conventional SPC/cholesterol (Chol) liposomes and 

microemulsion-based Sandimmune Neoral®. The relative oral bioavailability of CyA-loaded 

SPC/SDC and SPC/Chol liposomes was 120.3% and 98.6%, respectively, with Sandimmun 

Neoral as the reference. The enhanced bioavailability of CyA was probably due to facilitated 

absorption by the liposomes containing SDC rather than improved release rate.
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Introduction
Cyclosporine A (CyA) is a lipophilic cyclic polypeptide composed of 11 amino acids, 

and has been utilized clinically as a potent immunosuppressant to prevent allograft 

rejection in various organ transplantations and to treat systemic and local autoimmune 

disorders.1 Despite the great therapeutic interest of CyA, its original oil-based oral 

formulation (Sandimmune®) shows high intra- and inter-patient variability and poor 

bioavailability due to its high molecular weight, rigid cyclic structure, and poor water-

solubility.2–4 P-glycoprotein mediated efflux from the enterocytes and extensive pre-

systemic metabolism in the gut wall and liver further reduces CyA oral bioavailability.5 

The current clinically available commercial product of CyA is a microemulsion-based 

pre-concentrate formulation (Sandiummune Neoral®), which shows relatively high 

therapeutic oral bioavailability with reduced variability. In spite of the success of 

Neoral, CyA attracts continuous attention in the field of oral delivery mainly because 

it has extremely poor water solubility and poor permeability, and represents one of the 

most challenging model drugs to test the efficiency of oral delivery systems.6,7

In the past decade, various nanoscale drug delivery systems have been investi-

gated to increase the oral bioavailability of CyA.6–10 Among these vehicles, liposomes 

show promising potential due to their absorption-enhancing capability and excellent 

biocompatibility. The conventional liposome formulation composed of phosphatidyl-

choline and cholesterol showed oral bioavailability similar to Sandimmune Neoral.6 
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 Nevertheless, there are problems associated with orally 

administered liposomes when they are exposed to the harsh 

environment in the gastrointestinal tract. The pH gradient, 

pancreatic lipases, and the bile salts can lead to destabiliza-

tion of the liposomal vesicles,11 among which the key role of 

the bile salts is the most significant.12 In view of this, efforts 

have been made to improve the stability of conventional lipo-

somes for oral delivery, including polymeric coating13,14 and 

encapsulating liposomes into bulk vehicles.15,16 In addition, 

studies revealed that incorporation of bile salts in the lipid 

bilayers could stabilize the membrane against the detrimen-

tal effects of physiological bile acids in the gastrointestinal 

(GI) tract.17,18 Bile salts stabilized vesicles (bilosomes) have 

shown promising potential in oral vaccine delivery.17,19,20 

Bilosomes could provide both protection to the antigen from 

the hostile environment of GI tract as well as enable trans-

mucosal uptake and subsequent immunization.19 Thus, it was 

indicated that liposomes containing bile salts may act as more 

stable carriers than conventional liposomes and facilitate the 

 transmembrane transport and absorption of drugs.

In our previous study, liposomes containing a bile salt, 

sodium deoxycholate, were confirmed to enhance the oral 

 bioavailability of a poorly water-soluble drug fenofibrate by 

5.13-fold,21 which could be interpreted by multiple mecha-

nisms of facilitated solubilization12,22 and facilitated absorption 

through the M-cell uptake pathway.23 However, a 4.4-fold 

increase in oral bioavailability of the same drug can be observed 

for fast-dissolving solid dispersion  formulation.24 It seemed 

that improving dissolution of the poorly water-soluble drugs 

like fenofibrate, which are classified as BCS II drugs accord-

ing to the biopharmaceutics classification system,25 was a 

very efficient way of enhancing the oral bioavailability. The 

superiority of liposomes containing bile salts has not been 

confirmed in the previous study using a BCS II model drug. 

Therefore, we sought to confirm the enhancing effect of this 

new oral drug carrier, using more challenging BCS IV drugs 

such as CyA, whose bioavailability cannot be simply enhanced 

by solubilization mechanisms.26 In this study, CyA-loaded 

liposomes containing a bile salt, sodium deoxycholate, were 

prepared and evaluated both in vitro and in vivo with the aim 

to enhance the oral bioavailability of CyA.

Materials and methods
Materials
Cyclosporine A (CyA) was purchased from the  Pharmaceutical 

Factory of Sichuan Institute of Antibiotic Industries 

(Chengdu, China). Soybean phosphatidylcholine (SPC) was 

supplied by Lipoid (Germany). Sodium deoxycholate (SDC) 

was purchased from Sinopharm Chemical Reagent Co. 

Ltd (Shanghai, China). Cholesterol (Chol) was obtained 

from Shanghai Toshisun Enterprise Co. Ltd (Shanghai, 

China). Sephadex G-50 was purchased from Pharmacia 

(Uppsala, Sweden). Ultrapure water was prepared by a 

Milli-Q purification system (Millipore, Molsheim, France). 

High performance liquid chromatograpy (HPLC)-grade ace-

tonitrile and tert-butyl methyl ether was supplied by TEDIA 

(Fairfield, USA). Sandimmune Neoral, a microemulsion-

based CyA soft capsule (25 mg) (Novartis Pharma GmbH, 

Germany) was purchased from a local distributor. All other 

chemicals were of analytical grade and used as received.

Preparation of liposomes containing 
sodium deoxycholate
SPC/SDC liposomes were prepared by an improved thin-film 

dispersion method.21,27 In brief, SPC, SDC, and CyA were 

dissolved in dichloromethane/methanol (9/1, v/v) in a round-

bottom flask. Then the organic solvent was removed using a 

rotary evaporator (RV 10 digital, IKA Works, German) in a 

30°C water bath (HB 10 digital, IKA Works, German) under 

vacuum. The dried lipid films were maintained under reduced 

pressure for 2 hours to remove traces of the solvent. The 

lipid film was then hydrated with phosphate buffer (50 mM, 

pH 7.4) for 30 minutes at 40°C to obtain a crude dispersion of 

the liposomes. The liposome dispersion was further homog-

enized by passing through a high-pressure homogenizer 

(Avestin Em-C3, Ottawa, Canada) to obtain an opalescent 

fine  dispersion. The liposome dispersion was stored at 4°C 

until use. For the preparation of SPC/Chol liposomes, similar 

procedures were followed using Chol in lieu of SDC.

Particle size and zeta potential 
measurement
The particle size of the prepared CyA-loaded liposomes was 

determined by the dynamic light scattering method using 

NICOMP™ 380 ZLS Zeta Potential/Particle Sizer (NICOMP 

Particle Sizing Systems, Santa Barbara, CA). Raw data were 

collected over 5 minutes at 23°C and at an angle of 90°, which 

were further processed with the ZPW388 software program. 

The particle size was expressed with volume-weighted 

Gaussian distribution (with Chi-squared value ,3).28 The 

zeta potential of liposomes was also measured using the 

same equipment.

Entrapment efficiency
The entrapment efficiency of CyA in the liposomes was 

determined by a gel permeation chromatography method.6 
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Briefly, the Sephadex G-50 gel-filled column (20 cm × 1.0 cm) 

was first eluted with 100 µL blank liposomes to saturate 

the  column and improve the column recovery. Subse-

quently, CyA-loaded SPC/SDC or SPC/Chol liposomes 

were mounted and eluted with phosphate buffer (pH 7.4) 

at a flow rate of 0.5 mL/minute to separate free CyA from 

liposomes. The elution was monitored through turbid-

ity measurement at a wavelength of 500 nm by using a 

UV-2401spectrophotometer (Shimadzu, Japan). The eluent-

containing liposomes were dissolved with methanol and 

analyzed for CyA. The  entrapment efficiency (EE%) was 

calculated as:

 EE% = W
c
/W

t
 × 100%

where W
c
 and W

t
 denoted the weight of CyA in liposomes 

and total CyA weight in the liposome dispersion.

Determination of cyA by hPLc
In this study, CyA in the formulations and release 

media was determined by an HPLC/UV method.29 The 

LC-10 ATvp HPLC system (Shimadzu, Japan) was com-

posed of a binary pump, a tunable ultraviolet detector, a 

column heater, and a manual injector. The mobile phase 

was a mixture of acetonitrile/water/tert-butyl methyl ether/

phosphoric acid (60/35/5/0.1, v/v/v/v), pumped at a flow 

rate of 1.5 mL/minute. CyA was separated using a C18 

column (Venusil XBP, 5 µm, 4.6 mm × 150 mm; Agela, 

Tianjin, China) guarded with a refillable precolumn (C18, 

2.0 mm × 20 mm; Alltech, Lexington, USA) and a stain-

less pre-heating tube (internal diameter: 0.25 mm; length: 

1000 mm). The detection wavelength and column tempera-

ture were set to 226 nm and 70°C, respectively. The linearity 

range of the calibration curve was within 0.515–51.5 µg/mL 

with a correlation  coefficient of 0.9999.

Transmission electron microscopy
The morphology of CyA-loaded SPC/SDC liposomes was 

observed under a high-resolution transmission electron 

microscopy (TEM) (Tecnai G2 F20, FEI, Holland) with 

a field-emission gun operating at 200 kV after negative 

 staining. Briefly, liposomes were diluted with phosphate 

buffer and adsorbed onto a copper grid and air-dried for 

1 minute at room temperature after removing the excessive 

sample with filter paper. A drop of 2% phosphotungstic acid 

(w/v, pH 6.5 in distilled water) was then added and the lipo-

somes were stained for 30 seconds. At the end, the sample 

was air-dried for another 10 minutes at room temperature 

before TEM observation.

In vitro release study
In vitro release of CyA from SPC/SDC, SPC/Chol liposomes 

and Neoral was evaluated by a dynamic dialysis method29 

in a ZRS-8G release tester (Tianjin, China) according to the 

Chinese Pharmacopoeia Method III (the small beaker method). 

The fundamental properties of both SPC/SDC and SPC/Chol 

liposomes are given in Table 1. Before release test, 3 mL of 

SPC/SDC and SPC/Chol liposome dispersion were sealed in 

dialysis bags (MWCO 14,000, Millipore, Boston, PA), whereas 

Neoral capsules were dispersed in 12.5 mL ultrapure water, 

3 mL of which was sealed in dialysis bags. Then the dialysis 

bags were immersed in 100 mL release medium containing 

0.2% (w/v) sodium lauryl sulfate thermostatically maintained 

at 37 ± 0.5°C and stirred at a rotating speed of 100 rpm. At time 

intervals of 0.5, 1, 1.5, 2, 3, 4, 6, 10, and 12 hours, 0.2 mL of 

release sample was withdrawn and centrifuged at 10,000 rpm 

for 10 minutes at 25°C. The CyA content was then determined 

by HPLC as described above.

sample preparation and determination  
of cyA in rat whole blood
CyA in rat whole blood was determined using the HPLC-UV 

method as described above with modifications. The same 

LC-10 ATvp HPLC system and Venusil XBP C18 column 

with guard column and pre-heating assemblies were used as 

described above, except that the volume ratio of the mobile 

phase acetonitrile/water/tert-butyl methyl ether/phosphoric 

acid was changed to 525/425/50/1 (v/v/v/v), and the detection 

wavelength was set to 210 nm.

To prepare the rat blood samples, CyA was extracted by 

the reported liquid–liquid extraction procedures with minor 

Table 1 Formulation details of sPc/sDc and sPc/chol liposomes for in vitro release and in vivo bioavailability studies (n = 3)

Liposome 
type

SPC/SDC 
(Chol) ratio

Theoretical SPC 
concentration 
(%, w/v)

Theoretical 
CyA loading 
(mg/mL)

Particle 
size (nm)

Polydispersity Zeta potential 
(mV)

Entrapment 
efficiency (%)

sPc/sDc 3/1 5 2 85.6 ± 1.0 0.064 ± 0.013 -35.25 ± 4.42 94.05 ± 2.76
sPc/chol 5/1 5 2 98.1 ± 2.3 0.117 ± 0.032 -32.09 ± 3.82 95.22 ± 3.02

Abbreviations: chol, cholesterol; cyA, cyclosporine A; sPc, soybean phosphatidylcholine; sDc, sodium deoxycholate.
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modification.28 To 300 µL rat blood, add 15 mg of sodium 

fluoride followed by 40 µL of internal standard solution 

(cyclosporine D, 20 µg/mL in methanol). After vortex mix-

ing for 30 seconds, 750 µL diethyl ether anhydrous was 

added and vortex mixed for 7 minutes. After centrifuging 

at 12,000 rpm for 10 minutes at 4°C, the organic layer was 

transferred to another tube and evaporated under a light 

stream of nitrogen at 37°C. The residue was reconstituted 

using 40 µL methanol/0.05 mol/L hydrochloric acid solu-

tion (6/4, v/v). After washing the injection solution with 

150 µL n-hexane for 2.5 minutes, and a brief centrifugation 

at 12000 rpm for 10 minutes at 4°C, 20 µL of the solution 

was injected for HPLC analysis. Quantification was based 

on the peak area ratio R (A
CyA

/A
CyD

). Linearity was observed 

over the concentration range of 0.147–14.7 µg/mL with cor-

relation coefficients of over 0.99 (a typical calibration curve: 

R = 0.4036C - 0.0423, r2 = 0.9983, n = 7). The lower limit 

of quantification for the determination of CyA in rat blood 

was found to be 0.07 µg/mL. Accuracy for the determination 

of CyA in rat blood (n = 9) was 93.24% ± 4.16%. Intra-day 

and inter-day precisions were all below 7% and the extraction 

recovery of CyA in rat blood (n = 9) was 73.25% ± 5.17%.

Bioavailability study
The pharmacokinetics of the CyA-loaded SPC/SDC lipo-

somes (Table 1) were compared with those of CyA-loaded 

SPC/Chol liposomes and Neoral capsules (25 mg/capsule, 

Sandimmune Neoral) in rats after an oral dose of 15 mg/kg. 

Male Wistar rats, weighing 280 ± 20 g, were supplied by the 

Laboratory Animal Service Center of Fudan University. The 

rats were housed in an air-conditioned room with controlled 

temperature (24 ± 1°C) and humidity (55% ± 5%) and free 

access to water, and maintained on a 12 hours dark/light 

cycle. The experiment adhered to the Guidelines of the 

Ethical Committee of Fudan University on use of experi-

mental animals and followed the principles outlined in the 

Declaration of Helsinki for all human or animal experimental 

investigations. All the animals used in the study were fasted 

overnight before dosing. Animals were randomly assigned 

into 3 groups with 6 animals in each group. The liposome 

formulations were administered directly by gavage using 

18-gauge oral feeding needle, while the content of Neoral 

capsules was administrated similarly, but after diluting with 

10 mL ultra pure water per capsule. After administration, 

about 350 µL of the blood was collected through the tail vein 

into heparinized tubes at time intervals of 0.5, 1.0, 1.5, 2.0, 

2.5, 3.0, 4.0, 6.0, 8.0, 12.0, and 24.0 hours. Blood samples 

were stored at -20°C until analysis.

Pharmacokinetic analysis was performed by a 

 model-independent method, using the DAS 2.1.1 computer 

program (issued by the State Food and Drug Administration 

of China for pharmacokinetic study). C
max

 and T
max

 were 

observed as raw data. Area under the curve to the last mea-

surable concentration (AUC
0-t

 was calculated by the linear 

trapezoidal rule. Area under the curve extrapolated to infinity 

(AUC
0-∞) was calculated as AUC

0-t
 + C

t
/k, where C

t
 and k 

were the last measurable concentration and the elimination 

constant, respectively.

statistical analysis
Raw data were analyzed using SPSS statistical software 

(version 11.0, SPSS, Inc.). Post hoc multiple comparisons 

were done using one-way ANOVA. The difference between 

groups was considered statistically significant with a P value 

less than 0.05.

Results and discussion
Preparation and characterization  
of sPc/sDc liposomes
Liposomes containing sodium deoxycholate can be prepared 

successfully by a thin-film dispersion/homogenization 

method with a wide range of particle size and entrapment 

efficiency. Although we previously reported similar lipo-

somes encapsulating another poorly water-soluble drug 

fenofibrate,21 our preparation was modified when encap-

sulating CyA in this study. Specifically, we used a dichlo-

romethane/methanol mixture solvent rather than diethyl 

ether anhydrous in order to dissolve SPC, SDC, and CyA 

simultaneously because SDC is freely soluble in methanol, 

but not in dichloromethane or diethyl ether anhydrous. On 

the other hand, we used phosphate buffer (50 mM, pH 7.4) 

in this study rather than SDC solution as hydration medium 

in order to avoid possible formation of micelles or vesicles 

by cholate itself during hydration.

Since particle size exerts significant influence on the 

performance of liposomes both in vitro and in vivo,30 we 

first studied the effects of several factors on the particle size 

and distribution. As shown in Figure 1A and 1C, SPC/SDC 

liposomes before homogenization was typically 1 micron in 

size and exhibited wide size distribution. The particle size 

and polydispersity index (PI) was dramatically reduced after 

homogenization, and the lowest diameter (around 80 nm) 

of liposomes could be achieved when the homogenization 

pressure increased to 100 bar (Figure 1B, 1C). Although the 

particle size dropped dramatically, there was no worry about 

phasing-out of CyA. Due to its lipophilic nature and high 
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affinity with the lipid bilayer, CyA would readily associate 

with the lipid and maintain a “solubilized” state. Both the 

TEM observation and entrapment efficiency measurement 

shown below confirmed the itnegrity of the liposomal 

 structure. However, the particle size and PI were signifi-

cantly increased (P , 0.01) when we further increased the 

homogenization pressure to 200 bar. Rupture and aggregation 

of the vesicle under large shearing force of homogenization 

could be employed to interpret this phenomenon. In addition, 

no significant variation in particle size could be observed at 

homogenization cycles of more than 5 and the homogeniza-

tion pressure at 100 bar (P . 0.05) (Figure 1D). Nevertheless, 

the lowest PI could be achieved when we increase the cycles 

of homogenization to 20, and rupture and aggregation might 

occur after 25 times of homogenization, which resulted in 

increased PI (Figure 1D). Thus we chose a homogeniza-

tion pressure of either 100 bar or 200 bar to prepare SPC/

SDC liposomes for the following investigation. We chose 

300 bar and 20 cycles to homogenize SPC/Chol liposomes, 

however, which were less flexible, so as to obtain similar 

mean particle size as SPC/SDC liposomes. Moreover, the 

micron-scale liposomes might have a multilamellar structure 

that is common for liposomes produced by the thin-film dis-

persion method. Further homogenization possibly produced 

unilamellar liposomes due to the typically small particle size 

of less than 100 nm.31 Although energy input increased with 

the increase of homogenization pressure and the number of 

homogenization cycles, the particle size could not be reduced 

further because of the significantly increased surface tension. 

Further reduction in particle size may possibly be achieved 

through monitoring the composition of the lipids. We did not 

use extremely small sized particles, which would not favor 

uptake by the intestinal lymphatic system.32

The ratio of SPC/SDC, concentration of SPC and CyA 

loading also had significant influence on particle size and 

distribution. A substantial increase in particle size corre-

lated with decrease of SDC in the bilayer with about 80 nm 

particle size and PI of 0.1 at a SPC/SDC ratio of 3/1, and 

there was no significant difference until we increased the 

SPC/SDC ratio to 4/1 (P . 0.05) (Figure 2A). In contrast, 

particle size and PI markedly increased when the SPC/

SDC ratio was further increased to 6/1 or 9/1 (Figure 2A). 

The reduction in particle size and PI as a function of SDC 

content in lipid bilayers might be attributable to increased 

flexibility and reduced surface tension of the vesicles.21 

Our f indings were similar to the results obtained by 

 Chingunpitak et al,33 namely, that an increase in weight ratio 

of SDC would reduce the particle size of the  suspension 
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Abbreviations: chol, cholesterol; cyA, cyclosporine A; PI, polydispersity index; sPc, soybean phosphatidylcholine; sDc, sodium deoxycholate.

obtained from binary ground mixtures of DHA/SDC. The 

effect of SPC concentration on particle size and PI was 

investigated further, and the results showed that the particle 

size and PI were not significantly influenced by increasing 

the weight ratio of SPC to 4% (P . 0.05)  (Figure 2B). The 

liposomes were slightly enlarged, however, with increased 

PI when the weight ratio of SPC reached 6%, which was 

possibly due to increased viscosity because of the higher 

concentration of SPC (Figure 2B). The drug loading had no 

significant effects (P . 0.05) on particle size and PI when 

the concentration of CyA was below 2 mg/mL. Particle 

size and PI were dramatically increased at CyA loading 

of 2.4 mg/mL, however (Figure 2C). Although the exact 

mechanisms still need further elucidation, possible interpre-

tation includes recrystallization of non-encapsulated drug 

and significantly increased surface tension.

Figure 3 shows the effect of SPC/SDC ratio, the concen-

tration of SPC and CyA loading on the entrapment efficiency 

of CyA into SPC/SDC liposomes. Being highly lipophilic, 

CyA could be easily encapsulated in the liposomes with 

high entrapment efficiency as reported in a previous study.6 

 However, the results still indicated that the entrapment 

efficiency of CyA was slightly reduced with decreased 

 content of SDC in the liposomal bilayers (Figure 3A). 

Similar results were also reported by Sun et al34 showing 

that SDC could improve the entrapment efficiency of hex-

amethylmelamine, a  lipophilic drug, although this process 

was phosphatidylcholine- dependent. It was also reported that 

SDC, with surface-active properties, can incorporate perpen-

dicularly into the surface of the bilayer membrane, perturbate 

the acyl chains of the lipid matrix, increase the flexibility of 

the membrane, and thereby improve the solubility of highly 

lipophilic drug in the membrane.35 When the ratio of SPC/

SDC was greater than 4/1, however, the change in entrapment 

efficiency was not significant, suggesting that the capacity 

of solubilization by SDC was limited, a result similar to that 

reported by Sun et al.34 A significant increase in entrapment 

efficiency was observed with the increase of SPC content at 

the weight ratio of 3% (Figure 3B), which may be attributable 

to the fact that higher lipid content offers more lipophilic 

space for CyA. When the lipid content was increased fur-

ther from 3% to 6%, however, the amount of CyA loading 

in liposomes showed no marked change. Further experi-

ments showed that entrapment efficiency was not affected 

by drug loading when the drug concentration was below 

2 mg/mL, whereas the entrapment efficiency  significantly 
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decreased when CyA was increased to 2.4 mg/mL (P , 0.01) 

 (Figure 3C). This observation was inconsistent with our 

assumption that there was possible phasing out of nonencap-

sulated CyA as observed for dramatically increased particle 

size and PI at CyA 2.4 mg/mL (Figure 2C). Further evidence 

of white precipitation at CyA loading up to 2.4 mg/mL in 

liposomes after a brief centrifugation at 5000 rpm for 10 min 

at 25°C confirmed our assumption.

The results of zeta potential measurements are shown in 

Table 1. There was no significant different between SPC/SDC 

and SPC/Chol liposomes (P . 0.05). It was reported that 

bilosomes exhibited more stability than conventional vesicles 

in the GI tract17 which, however, cannot be interpreted by 

zeta potential-based stabilization mechanism. The possible 

reason for increased stability of bilosome in the GI tract could 

be attributed to the defending ability of liposomes contain-

ing bile salt against the destructive effect of physiological 

surfactants.18 Furthermore, a short-term stability study of 

1 week was carried out to insure the quality of the formula-

tion before oral administration. The entrapment efficiency, 

particle size, and zeta potential of the SPC/SDC liposomes 

were determined at 0, 1, 4, and 7 days after storage at room 

temperature. As shown in Table 2, the characteristics of the 

SPC/SDC liposomes changed significantly.

Transmission electron microscopy
Figure 4 shows the TEM photograph of CyA-loaded SPC/SDC 

liposomes. The spherical vesicular structure could be easily 
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Table 2 The stability of sPc/sDc liposomes for 7 days stored in 4°c (n = 3)

Time (days) Entrapment efficiency (%) Particle size (nm) Polydispersity Zeta potential (mV)

0 93.27 ± 3.85 87.2 ± 2.1 0.074 ± 0.015 -33.05 ± 2.79
1 94.72 ± 2.41 85.3 ± 1.9 0.071 ± 0.009 -35.22 ± 3.42
4 92.53 ± 3.21 88.9 ± 2.0 0.080 ± 0.019 -33.56 ± 3.75
7 90.38 ± 4.33 90.2 ± 3.4 0.085 ± 0.013 -30.45 ± 3.69

Abbreviations: sPc, soybean phosphatidylcholine; sDc, sodium deoxycholate.
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Figure 4 TeM morphology of cyA-loaded sPc/sDc liposomes.
Abbreviations: cyA, cyclosporine A; sPc, soybean phosphatidylcholine; sDc, 
sodium deoxycholate.
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identified, which was similar to a previous report of fenofibrate-

loaded liposomes.21 The particle size of CyA-loaded SPC/SDC 

liposomes was about 90 nm, which was in good correlation with 

results obtained by particle size measurement.

In vitro release
Figure 5 shows the in vitro release profiles of the three CyA 

formulations. The overall release of CyA from CyA-loaded 

SPC/Chol, SPC/SDC liposomes, and Neoral appeared to 

be very slow with no more than 5% at 12 hours. Since 

the solubility of CyA in 0.2% SDS solution was about 

0.921 mg/mL,29 good sink conditions could be maintained 

throughout the release test. CyA in solution could diffuse 

completely across the dialysis bag within 1 hour, indicating a 

negligible hindering effect of the dialysis bag on CyA release. 

Thus the possible reason for slow CyA release from the three 

formulations was ascribed to the high affinity of CyA with 

the hydrophobic materials in the formulations.29

Pharmacokinetics and oral bioavailability
To investigate the role of bile salt in enhancing oral absorp-

tion of CyA, oral bioavailability of CyA-loaded SPC/SDC 

liposomes in rats was compared with those of SPC/Chol lipo-

somes and Neoral. The mean whole blood CyA concentra-

tion versus time plots of three CyA formulations are shown 

in Figure 6 and the pharmacokinetic parameters obtained by 

the statistical moment method are shown in Table 3.

After gavage administration, the T
max

 of Neoral was 

2.67 ± 0.69 hours, which was similar to results reported by 

Wang et al.36 There was no significant difference between the 

SPC/Chol liposomes and Neoral (P . 0.05). However, the 

T
max

 of SPC/SDC liposomes (4.67 ± 1.49 hours) appeared to be 

significantly longer than that of both the SPC/Chol liposomes 

and Neoral (P , 0.01). The C
max

 of the SPC/SDC liposomes, 

Neoral, and SPC/Chol liposomes was 2.65 ± 0.70 µg/mL, 

2.57 ± 0.20 µg/mL, and 2.28 ± 0.31 µg/mL, respectively, and 

no significant difference was observed between each of the 

three formulations (P . 0.05). There was also no significant 

difference in the maximum retention time (MRT) values 

between either two of the three formulations (P . 0.05). SPC/

SDC liposomes showed significantly higher AUC
0–t

 value 

(42.16 ± 6.30 µg ⋅ h/mL) than either the SPC/Chol liposomes 

(34.56 ± 4.08 µg ⋅ h/mL) or Neoral (35.02 ± 4.68 µg⋅h/mL) 
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Table 3 Pharmacokinetic parameters after oral administration of cyA-loaded sPc/sDc, sPc/chol liposomes and sandimmune 
Neoral (n = 6)

Formulation Tmax (h) Cmax (μg/mL) t1/2 (h) AUC0–t 
(μg ⋅ h/mL)

AUC0-∞ 
(μg ⋅ h/mL)

MRT (h) Relative 
bioavailability*

sPc/sDc liposomes 4.67 ± 1.49 2.65 ± 0.70 20.54 ± 7.63 42.16 ± 6.30 73.90 ± 6.63 10.73 ± 0.90 120.3%
sPc/chol liposomes 2.67 ± 0.69 2.28 ± 0.31 19.84 ± 6.50 34.56 ± 4.08 60.49 ± 10.79 10.42 ± 0.37 98.6%
sandimmun Neoral® 2.67 ± 0.69 2.57 ± 0.20 19.09 ± 10.15 35.02 ± 4.68 65.41 ± 29.55 10.23 ± 0.64

Note: *relative bioavailability (%) of the liposomes calculated on AUc0-t with sandimmune Neoral as the reference.
Abbreviations: chol, cholesterol; cyA, cyclosporine A; soybean phosphatidylcholine; sDc, sodium deoxycholate; MrT, maximum retention time.

(P , 0.05). The relative bioavailability, which was calculated 

on AUC
0–t

, of the SPC/SDC and SPC/Chol liposomes was 

120.3% and 98.6%, respectively, compared with Neoral. The 

results indicated that conventional liposomes showed similar 

pharmacokinetic profiles to Neoral, which was in accordance 

with the results by Guo et al,6 whereas SPC/SDC liposomes 

showed significantly enhanced oral absorption.

In our previous study on fenofibrate-loaded SPC/SDC 

liposomes, several mechanisms were proposed to interpret the 

enhanced oral bioavailability of fenofibrate.21 It seems that both 

enhanced solubilization (facilitated transition from liposomal 

vesicles to mixed micelles) and enhanced uptake of liposomes 

as integral vesicles through the M-cell pathway are potential 

mechanisms. However, the enhanced  solubilization mechanism 

might not function because CyA could not  easily permeate 

across the intestinal epithelia as single CyA  molecules. There-

fore, the potential explanation for enhanced oral bioavailability 

of CyA by lipid-based vehicles was that the intact liposomal 

vesicles may promote the uptake by M-cells in the Peyer’s 

patches and increase the absorption through the lymphatic path-

way. Our current study extended the previous investigation6 to 

reveal that SPC/SDC liposomes further enhanced oral bioavail-

ability of CyA compared with that of SPC/Chol liposomes and 

Neoral. Several mechanisms may contribute to the superiority 

of SPC/SDC liposomes over conventional liposomes. On one 

hand, incorporation of bile salts in lipid vesicles could stabilize 

the membrane against the detrimental effects of physiological 

bile acids in the GI tract,17 resulting in more stable SPC/SDC 

liposomes than SPC/Chol liposomes. The stabilizing effect 

might extend the resident time of SPC/SDC liposomes in the GI 

tract, resulting in longer T
max

 compared with that of SPC/Chol 

liposomes or Neoral. It was assumed that more intact liposomes 

would be available for uptake by the M-cell pathway. On the 

other hand, permeation of intact liposomes through the intestinal 

epithelia pathway was another potential mechanism. Owing 

to the penetration-enhancing effect of sodium deoxycholate, 

enhanced permeation of liposomes containing SDC across the 

Caco-2 cell monolayer has been observed.37 However, these 

mechanisms need further elucidation in vivo.

Conclusion
Liposomes containing SDC could be prepared in high SDC 

content with SPC/SDC ratio of 3/1 by a thin film dispersion 

method followed by homogenization. The entrapment effi-

ciency of CyA was as high as 95% with little escape of CyA 

during the preparation process. The particle size could be easily 

tailored by adjusting the homogenization pressure and the num-

ber of homogenization cycles. The pharmacokinetic results 

revealed that liposomes containing sodium deoxycholate were 

superior to the microemulsion-based formulation (Sandium-

mune Neoral) and conventional liposomes, in improving the 

oral bioavailability of CyA. Comparison between SPC/SDC 

and SPC/Chol liposomes highlights the desirable effect of the 

bile salt SDC on the oral bioavailability of poor water-soluble 

and poorly permeable drugs. A mechanism of enhanced solubi-

lization could be excluded owing to the fact of limited release 

of CyA from either the liposomal or the microemulsion-based 

formulations. Being absorbed as intact vesicles seems to be a 

possible  interpretation to the enhanced oral bioavailability.
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