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Background: Globally, glaucoma is the second leading cause of blindness. Detecting glaucoma in the early stages is essential to
avoid disease complications, which lead to blindness. Thus, computer-aided diagnosis systems are powerful tools to overcome the
shortage of glaucoma screening programs.
Methods: A systematic search of public databases, including PubMed, Google Scholar, and other sources, was performed to identify
relevant studies to overview the publicly available fundus image datasets used to train, validate, and test machine learning and deep
learning methods. Additionally, existing machine learning and deep learning methods for optic cup and disc segmentation were
surveyed and critically reviewed.
Results: Eight fundus images datasets were publicly available with 15,445 images labeled with glaucoma or non-glaucoma, and
manually annotated optic disc and cup boundaries were found. Five metrics were identified for evaluating the developed models.
Finally, three main deep learning architectural designs were commonly used for optic disc and optic cup segmentation.
Conclusion: We provided future research directions to formulate robust optic cup and disc segmentation systems. Deep learning can
be utilized in clinical settings for this task. However, many challenges need to be addressed before using this strategy in clinical trials.
Finally, two deep learning architectural designs have been widely adopted, such as U-net and its variants.
Keywords: glaucoma, glaucoma screening, fundus images, big images data

Introduction
Glaucoma is an eye disease that damages the optic nerve and causes visual impairment (7.7 million).1 According to the
World Health Organization (WHO), an estimated 2.2 billion people worldwide have a vision impairment, including 1 billion
classified as moderate to severe. Various reports have been published on glaucoma prevalence worldwide (Table 1).

Glaucoma is known as the “silent theft” of sight because the associated vision loss results from increasing ocular
pressure on the optic nerve, which is often asymptomatic. Thus, early diagnosis of glaucoma is essential to prevent
irreversible vision loss. One major factor in the early detection of glaucoma is identifying optic nerve damage, which can
be detected by using a fundus camera developed for this purpose.14 Fundus imaging is a non-invasive procedure that
relies on the monofocal indirect ophthalmoscopy principle.

Computer vision problems have significantly benefitted from recent advancements in deep learning methods. Image
segmentation is a fundamental component of computer vision and visual-understanding problems. It can be defined as the
sub-division of an image or video based on a distinct visual region with semantic meaning. Over the past few years, deep
learning has achieved greater accuracy rates than traditional image processing techniques and has performed well by
many popular segmentation benchmarks. This has led to a paradigm shift in image segmentation.15,16
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Therefore, the paradigm shift towards deep learning in image segmentation has affected biomedical imaging
applications. Currently, deep learning has become an efficient and effective methodology for a wide variety of biomedical
image segmentation tasks in cardiac imaging,17 neuroimaging,18,19 and abdominal radiology.20

To date, segmentation with deep learning has been used to detect, localize, and diagnose clinical problems such as
breast cancer,21 lung cancer,22 and Alzheimer’s Disease.23 Deep learning segmentation has been successfully used with
most major imaging modalities, including magnetic resonance imaging (MRI),24 computed tomography (CT),25 and
ultrasound.26

The use of computer-aided diagnosis (CAD) systems in ophthalmology to segment the required features has expanded
over the last two decades, particularly using fundus images or optical coherence tomography (OCT) for glaucoma and
retinal diseases such as diabetic retinopathy. This expanding interest has led scientists to investigate machine learning and
deep learning techniques for CAD systems in recent years, which has generated a large volume of published methodol-
ogies, methods, and datasets. Thus, review studies can play a crucial role in advancing CAD systems by providing
specialists with a summary of the current landscape and pathways for future investigation. Previous review studies have
examined artificial intelligence (AI) and its applications in ophthalmology, both in general and in relation to specific
conditions, including glaucoma.27–30

Table 1 Summary of Glaucoma Prevalence Studies Around the World

Author Year Method Findings

Quigley2 1996 Review of published data By 2000, the number of people with primary glaucoma estimated 66.8 million.
6.7 million.

Quigley and
Broman3

2006 Review of published data 79.6 million people with primary open-angle glaucoma (POAG) and primary angle
closure glaucoma (PACG) in 2020.

Eid et al4 2009 Review of clinic data (Hospital-
based study)

Prevalence of (POAG) in the western region in Saudi Arabia was 30.5%, primary angle
closure 24.7%, neovascular 7.6%, surgically induced 6.5%, and exfoliative 5.2%.

Al-Obeidan

et al5
2011 Review of clinic data (Hospital-

based study)

The prevalence of (PACG) in Riyadh, Saudi Arabia was (46.6%) followed by primary

angle closure (PAC) (17.2%), then primary open angle glaucoma (POAG) (12.8%).

Secondary glaucoma (13%).

Day et al6 2012 Systematic review In European Population, the prevalence of PACG in 40 years or more is 0.4%.

Tham et al7 2014 Systematic review and meta-

analysis

The number of people (aged 40–80 years) estimated to be 76 million in 2020, and

estimated to be 111.8 million in 2040.

Kapetanakis

et al8
2016 Systematic review of published

population-based surveys

Globally 57.5 million people were affected by POAG in 2015, rising to 65.5 million by

2020.

Chan et al9 2016 Systematic review and meta-

analysis

In Asia in 2013, the overall glaucoma prevalence was 3.54%. POAG (2.34%)

predominated over PACG (0.73%).

Gupta

et al10
2016 National examination survey The estimated prevalence of glaucoma in the US for 40 years of age and older was

(2.1%).

Glaucoma affected 2.9 million individuals, 2.3 million people 60 years of age and older.

Flaxman

et al11
2017 Systematic review and meta-

analysis

In 2015, the global population with moderate or severe vision impairment due to

glaucoma were (4 million)
By 2020, the global population with moderate or severe vision impairment due to

glaucoma rise to 4·5 million.

Khandekar

et al12
2019 Community-based survey The prevalence of glaucoma in Riyadh, Saudi Arabia was 5.6%.

Zhang

et al13
2020 Systematic Review and meta-

analysis

The global PACG prevalence was 0.6% (17 million) for the last 20 years
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This review is structured as follows: a comprehensive literature review is performed in the following section. After
that, the material and methods section is introduced. In the fourth section, the results are presented. Finally, the fifth and
sixth sections constitute the discussion and conclusion.

Literature Review
It is noteworthy that reviews describing the general use of AI in ophthalmology tend to target a broad audience, leading
to limited technical conclusions with implications for specific ocular conditions. Ting et al30 presented a thorough review
of deep learning techniques for ophthalmology, highlighting technical and clinical domains. They provided, in detail,
conventional deep learning models, training, datasets, reference standards (ground truths), and outcome measures.
Furthermore, this review discussed many ocular conditions such as diabetic retinopathy, retrolental fibroplasia (RLF),
age-related macular degeneration (AMD), and glaucoma. Sengupta et al31 discussed and compared the most important
deep learning techniques with applications in ophthalmology, specifically focusing on glaucoma.

Owing to the increasing prevalence of glaucoma, many AI methods, image processing techniques, and glaucoma-related
datasets have been published in recent years, along with several glaucoma-specific reviews.32–45 Mursch-Edlmayr et al35

presented a clinically focused review exploring AI-based strategies for detecting and monitoring glaucoma. This review
examined various glaucoma testing modalities, such as optical coherence tomography (OCT), visual field (VF) testing, and
fundus photos, with minimal technical discussion. They concluded that AI-based algorithms for analyzing fundus images
have high translational potential due to the accessibility and simplicity of fundus photography. Future integration of AI-based
analysis of fundus images may help address the current limitations of glaucoma management around the world.

Several technical review studies have also been published examining machine learning approaches and network
architectures employed for glaucoma assessment and management. Hagiwara et al33 reviewed CAD systems for
glaucoma diagnosis based on conventional machine learning. They examined the entire CAD procedure, including pre-
processing techniques, segmentation methods, feature extraction strategies, feature selection approaches, and classifica-
tion methods. They concluded that integrating deep learning methods simplifies these systems and improves their
reliability. Thakur and Juneja32 compared recent segmentation and classification approaches for glaucoma diagnosis
from fundus images; they also discussed the limitations of these methods and possible avenues to increase their
efficiency. Barros et al34 reviewed machine learning approaches for diagnosing and detecting glaucoma. Their review
examined supervised methods for glaucoma prediction from fundus images and categorized them into deep learning and
non-deep learning approaches. Eswari and Karkuzhali’s46 summarised the advantages and disadvantages of many
segmentation and classification techniques.

This study examines and critiques the deep learning methods that have been explicitly designed for optic cup and disc
segmentation to diagnose glaucoma from fundus images. This reviewwill be considering the methods section covering the most
public fundus images datasets, the evaluation metrics used to evaluate the developed deep learning segmentation approaches,
and finally, the most developed machine learning and deep learning architectures for optic disc and optic cup segmentation.

Materials and Methods
Research Criteria
The required information was retrieved for glaucoma (optic disc and optic cup boundaries) machine learning and deep
learning segmentation approaches. The image datasets presented in this review were obtained from various websites,
conference papers, and journal peer review studies. Therefore, this review was not required to obtain ethical approval to
be conducted.

Study Selection
Standard academic web search engines were used, such as Google Scholar, PubMed, and Web of Science. Glaucoma,
optic disc, and cup segmentation were placed after or before the following keywords or phrases: deep learning, machine
learning, artificial intelligence, telemedicine, fundus datasets, and fundus databases. The search was conducted from
October 2020 to March 2021.
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Results
Datasets
Multiple fundus retinal image datasets were developed for glaucoma detection. Several datasets were also developed for
different retinal diseases, such as diabetic retinopathy, which this review will not consider. These images may not meet
crucial criteria, such as sufficient image quality, which can subsequently limit the efficacy of machine learning analyses.
In addition, these image sets may be insufficient for the development of machine learning processes for certain diseases
that focus on specific areas of the retina, as is the case with the optic nerve head in glaucoma. Moreover, some datasets,
such as RIM-ONE and Drishti-GS, only have a small number of images, hindering the development and testing of
machine learning algorithms. Therefore, efforts have been made to develop task-oriented datasets to overcome the
limitations of existing datasets and identify the images required to train algorithms to detect glaucoma automatically. This
study reviews the available retinal images datasets currently used for automated glaucoma detection (Table 2).

Evaluation Metrics
Evaluating segmentation maps for optic disc and cup segmentation is not a straightforward task. In the literature, various
evaluation metrics have been used to assess the performances of machine learning and deep learning models. The optic
cup and disc are objects in segmentation tasks where both the ground truth and segmentation encompass both
foreground and background partitions. The evaluation of a segmentation algorithm can focus on assessing how well
the pixels of the ground truth are detected; therefore, most researchers use a pixel-wise approach to assess the efficacy of
their models. To further assess the quality of the detected object, some researchers have used the boundary assessment
approach.

In this section, we will discuss the evaluation metrics used in the literature. First, we need to define the relevant
notation. Given a segmentation method m and a ground truth gt, denote Pm and Nm as the positive and negative pixels of
an image, respectively, such that Im = Pm [ Nm is the resulting object detected. Similarly, the ground truth is represented
as I_gt = Pgt [ Ngt, where Pgt and Ngt are the positive and negative pixels, respectively. To achieve optimal detection,
a model should aim for Pm= Pgt. For a pixel-based object detection measurement, there are four fundamental indicators as
follows:

● True positive (TP) results represent the pixels that are labelled and predicted as an object, such that TP = Pm ∩ Pgt.
● False negative (FN) results represent the pixels that are labelled as an object but predicted as non-object, such that
FN = Nm ∩ Pgt.

● False positive (FP) results represent the pixels that are not labelled as an object but are predicted an object, such
that FP = Pm ∩ Ngt.

● True negative (TN) results represent the pixels that are both labelled and predicted as non-object, such that TN = Nm
∩ Ngt.

Pixel Accuracy
Pixel accuracy56 reflects the ratio of successful object detection using the total number of true positives and true
negatives to report the total number of correct predictions. This metric is a standard and simple evaluation technique
that was initially developed for classification. However, pixel accuracy is used similarly for segmentation evaluation by
reporting the percentage of pixels in the image that are correctly classified. The mathematical expression for pixel
accuracy is as follows:

Accuracy ¼
Precisionþ Recall

2
¼

TPþ TN
TPþ TN þ FPþ FN

(1)

Generally, pixel accuracy is a misleading metric when the object representation within the image is small because the
measure will be biased in reporting how well the negative case is identified. This bias is very relevant in evaluating the
accuracy of optic cup detection in a fundus image, because this structure is typically a small portion of the fundus
image.
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Table 2 Current Available Public Datasets with Labelling and Manual Annotation for Glaucoma Fundus Images

Data Name No of Images Collection/Annotation
Method

Data Source Acquisition Device Comments/Data
Collection Purpose

RIM-ONE47 169 ONH image

from full fundus

images (manually

cropped)

Patients’ selection and

segmentation by 4

ophthalmologists and 1

optometrist. Each image has 5

manual segmentations.

1) Hospital Universitario

de Canarias, 2) Hospital

Clínico San Carlos, and 3)

Hospital Universitario

Miguel Servet

Non-mydriatic retinal

photographs Nidek AFC-210

with a body of a Canon EOS 5D

Mark II of 21.1 megapixels

REFUGE48 1200 fundus images

with ground truth

segmentations and

labelled with

(glaucomatous or

non-glaucomatous)

Provided by seven independent

glaucoma specialists from the

Zhongshan Ophthalmic Center

(Sun Yat-sen University, China),

with an average experience of 8

years in the field. Manually

drawing a tilted ellipse by means

of a free annotation tool with

capabilities for image review,

zoom and ellipse fitting

(electronic)

These photos correspond

to Chinese patients,

retrieved retrospectively

from multiple sources,

including several hospitals

and clinical studies

1) Zeiss Visucam 500 fundus

camera with a resolution of

2124×2056 pixels (400 images)

2) Canon CR2 device with

a resolution of 1634×1634

pixels (800 images)

Drishti-GS49 101 images. It is

divided into 50

training and 51

testing images.

Ground truth was collected

from four glaucoma experts

with experience of 3, 5, 9, and

20 years, respectively.

A dedicated tool was developed

to get the boundary marking on

images from human experts.

(electronic)

Collected at Aravind eye

hospital, Madurai from

visitors to the hospital,

with their consent.

Dimension 2896×1944

pixels

DRIONSDB50 110 images 2 experts manual or

semiautomatic tracing of the

papillary contour and other

ONH structures

Ophthalmology Service at

Miguel Servet Hospital,

Saragossa (Spain)

The images were acquired with

a color analogical fundus camera

(not specified)

Identification of the

optic nerve head with

genetic algorithms for

optic nerve head

segmentation

benchmarking

ORIGA

65051,52
650 images;168

images from

glaucomatous eyes,

and 482 normal

eyes

1st set: 3–6 well trained graders

2nd set: marked by a single well

trained independent senior

glaucoma specialist. Two sets of

manually segmented disc and

cup boundaries obtained

A grading software is designed

to mark a free number of points

along the boundaries of the

optic disc and optic cup.

However, CDR is computed

manually

Singapore Malay Eye Study

(SiMES)

Using Canon CR-DGi To assess the risk

factors of visual

impairment in

Singapore Malay

community. Each set

has 325 randomly

selected image

RIGA53 750 color fundus

images

The optic disc and cup

boundaries of each image were

manually annotated by

independent six experienced

ophthalmologists

450 MESSIDOR; 195 Bin

Rushed Ophthalmic

Center; 95 Magrabi Eye

center

MESSIDOR; Topcon TRC NW6

non-mydriatic retinograph,

(FoV) 45 degrees Bin Rushed:

CanonCR2 non-mydriatic digital

retinal camera; (FoV) 45

degrees Magrabi: Topcon TRC

50D Xmydriatic retinal camera;

(FoV) available in 20, 30, and 35

Image Sizes:

MESSIDOR;

2240×1488 Bin

Rushed; 2376×1584

Magrabi; 2743X1936

(Continued)
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Precision and Recall
Two of the most popular evaluation metrics for both classification and segmentation are precision and recall.57 Precision,
also known as specificity, evaluates how accurate the model is predicting in positive pixels; whereas recall, also known as
sensitivity, measures the percentage of correctly identified true positives TP. Precision and recall can be expressed
mathematically from the pixel-wise perspective as follows:

Precision ¼
TP
pm
¼
Pm \ Pgt
pm

¼
TP

TPþ FP
(2)

Recall ¼
TP
pgt
¼
Pm \Pgt
pgt

¼
TP

TPþ FN
(3)

When the cost of an FP is very high and the cost of an FN is low, precision is the recommended evaluation metric.
However, when the cost of an FN is high, recall is the more important metric. Generally, precision and recall are reported
together in evaluating optic cup and disc segmentation.

Dice (F-Measure)
The trade-off between precision and recall can be estimated using the F-measure, commonly known as DICE, which can
effectively combine precision and recall into one formula58 and has since become a popular evaluation technique for
many segmentation problems. In fact, DICE has been used as the official evaluation metric for the widely known Retinal
Fundus Glaucoma Challenge Edition (REFUGE) challenge.48 F-measure can be expressed as

F ¼ 2�
precision� recall
precisionþ recall

¼
2TP

2TPþ FN þ FP
(4)

Jaccard Index
The Jaccard index,59 also known as the intersection of union (IoU), is one of the most common evaluation metrics in
image segmentation. This coefficient is defined as the size of the intersection divided by the size of the union of the
sample sets:

F ¼ 2�
precision� recall
precisionþ recall

¼
2TP

2TPþ FN þ FP
(5)

Both the Jaccard index and DICE provide similar results; in other words, if one metric says that Model A offers better
segmentation than Model B, the other metric will produce the same result. However, there are some minor differences
between the metrics, such as the penalisation of single instances of misclassifications. Because this study focuses on the
general concepts of these metrics, we refer the reader to the following studies for more details.60,61

Table 2 (Continued).

Data Name No of Images Collection/Annotation
Method

Data Source Acquisition Device Comments/Data
Collection Purpose

LAG

dataset54
11,760 images

positive glaucoma

(4878) or negative

glaucoma (6882)

Obtained from ophthalmologists

through a simulated eye-tracking

experiment

Beijing Tongren hospital

ACRIMA

dataset55
705 images positive

glaucoma (396) and

normal are (309)

All data collected through

ACRIMA project and were

annotated by two glaucoma

experts with 8 years of

experience

Topcon TRC retinal camera
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Boundary Distance Localisation
One way to evaluate segmentation methods is to consider a boundary approach instead of a pixel-based approach.
A pixel-based approach measures how well the pixels of the ground truth are detected while a boundary-based approach
focuses on how accurately the boundaries are represented.60 The boundary approach can better reflect the quality of
object detection than the pixel-based approach in some object detection problems, such as optic disc segmentation.
A common boundary-based evaluation metric is the mean boundary distance in pixels between the predicted segmenta-
tion results and the ground truth. This measure is known as boundary distance localisation (BDL). BDL can be defined
mathematically as

BDL ¼
1
N
� ∑

N � 1

ϕ¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d;g
� �2

� d;o
� �2

r

(6)

where d;g and d;o are the distance from the center of the cup or disc to the predicted and ground truth boundaries,
respectively. This evaluation method was used by Jiang et al62 and produced high marginal variability for disc
segmentation when compared to the traditional pixel-based metric, such as F-measure.

An objective assessment of different proposed methods for OC and OD segmentation is presented in Table 3 using
mean dice, sensitivity, specificity, and Jaccard on the REFUGE test set. In the table, the comparison shows that the state-
of-the-art graph convolutional network based (GCN)63 achieved a mean dice coefficient of 95.58% and 97.76% for OD
and OC, respectively.

Machine Learning and Deep Learning Architectures
The abundance of newly generated datasets coupled with growing computing power has led to diverse deep learning
approaches to image analysis. Image segmentation has benefited from this advancement, revolutionizing traditional
image processing techniques.65 More deep learning approaches have begun to appear specifically for segmentation
because the nature of segmentation tasks have expanded to applications for autonomous vehicles,66 augmented reality,
video surveillance, and medical imaging. This has improved the advancement of deep learning.

As an important task in medical image analysis, fundus image segmentation has become a significant contributor to
the evolution of deep learning methods. In this section, we will review different deep learning architectures that have
been employed for optic cup and disc segmentation (Table 4). We divide these methodologies into four major categories:
convolutional neural network-related approaches, U-Net-related methods, generative adversarial network (GAN)
approaches, and other deep learning-related approaches.

Table 3 Comparison of Optic Cup (OC) and Optic Disc (OD) Segmentation Methods on REFUGE Test Set Using Different Metrics

Method Optic Cup Optic Disc

Sensitivity
(%)

Specificity
(%)

Jaccard
(%)

Dice
(%)

Sensitivity
(%)

Specificity
(%)

Jaccard
(%)

Dice
(%)

DDSC-Net based64 0.9209 – 0.8065 0.8903 0.9814 – 0.9239 0.9601

GCN63 94.93 99.99 91.60 95.58 98.73 99.95 95.64 97.76

Team CUHKMED48 – – – 88.26 – – – 96.02

Team Masker48 – – – 88.37 – – – 94.64

Team BUCT48 – – – 87.28 – – – 95.25

Team NKSG48 – – – 86.43 – – – 94.88

Team VRT48 – – – 86.00 – – – 95.32

MULTI-MODEL-PRE-
TRAINING64

– – 79.02 – – – 92.25 –
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A Convolutional Neural Network (CNN)
CNN is a type of feed-forward artificial neural network (ANN). CNN’s comprise stacked layers of convolution and
pooling operations, followed by batch normalization layers to speed up learning and stabilize the input of subsequent
layers as the network grows deeper. In the final layers, weight vectors are concatenated and passed into one or more fully
connected layers for classification output. The convolution layers slide over the input with a fixed step and window size
to control the moving dot product of the data. The flattened output is then passed into a differentiable nonlinear activation
function, typically a rectified linear unit (ReLU). As a result of its success in computer vision tasks over state-of-the-art
conventional machine learning algorithms, such as support vector machines, many researchers have investigated the
ability of CNNs to segment the optic cup and disc regions,93–95 and retinal blood vessels96 in fundus images. Unlike
image-level classification or bounding box-level prediction tasks, the feature maps in semantic segmentation are resized
to the original image space. Each pixel is given a probability of being assigned to a given semantic label.

Tan et al94 used a CNN with two convolutions followed by a max-pooling layer that connects to a fully connected
layer with 100 neurons and a final layer of 4 neurons as an output to classify each pixel of a fundus image as either
background, optic cup, fovea, or blood vessel. Figure 2 shows the authors’ proposed CNN architecture (Figure 2). Sreng
et al93 employed DeepLab-v3+,97 which comprises an encoder and decoder module, for optic disc segmentation. The
network design uses spatial pyramid pooling (Figure 1), accounting for different optic disc sizes across fundus images
with varying scales. The authors built and evaluated their optic disc semantic segmentation models with 2787 retinal
images from five different publicly available datasets.

Sun et al82 reframed optic disc segmentation as an object detection problem because the shape of the optic disc is
a non-rotated ellipse. They used Faster R-CNN,99 with VGG-16 as a backbone for the R-CNN.

Lu et al100 explored weakly supervised learning. This approach aimed to stochastically cluster every pixel through
pairwise pixel information into the background and foreground for optic disc segmentation using two fully connected
layers. The network was simultaneously trained on three different tasks: 1) optic disc segmentation, 2) glaucoma
classification, and 3) evidence map (heatmap for affected regions) prediction.

Shankaranarayana et al101 proposed a pipeline for an end-to-end, fully connected convolutional encoder-decoder
network with two paths for the encoder component of the network. This pipeline took two modalities as input: an RGB
fundus image and a depth map. The authors used a pre-trained network to predict the depth map for monocular retinal
depth estimation. Subsequently, the original image and the predicted depth map were fed into another encoder-decoder
network for optic cup and disc segmentation.

U-Net Based Approaches
Unlike other machine learning and deep learning methodologies, U-Net, a fully convolutional network (FCN) sub-type,
was explicitly developed for biomedical imaging segmentation.102 The architecture and training strategy of a U-Net-
based approach promotes the efficient use of annotated data for more reliable prediction. The architectural design is
a compression path that consists of consecutive convolutional layers and a max-pooling layer to extract features while
limiting the feature map size (Figure 3: U-Net Architecture). Skip connections, an alternative path for backpropagation,
were used to share localization information and expand layers.

This unique architecture captured attention after winning multiple segmentation challenges in 2015 and has since
been widely used, especially for medical applications. Most neural network-based fundus segmentation methods for
glaucoma have relied on U-Net or U-Net alternatives. Sevastopolsky81 modified U-Net and used the Jaccard Index and
DICE score to compare their methods with two different CNN-based approaches.76,103

Chakravarty and Sivaswamy70 proposed a glaucoma assessment framework that jointly segmented and classified
fundus images. They proposed a multi-task CNN architecture wherein U-Net is used for segmentation, and the output and
latent layers are used together to predict glaucoma. Al-Bander et al72 proposed DenseNet, which simultaneously
segments the optic cup and disc. DenseNet resembles the traditional U-Net architecture with some differences, such as
a Dense Block, transition Down Block, and transition Up Block. They presented a comprehensive comparison using
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Table 4 Deep Learning and Machine Learning Methods for Optic Cup and Disc Segmentation

Architecture Method Evaluation Technique Dataset

CDED-Net67 Other Dice, Jaccard, Sensitivity, Specificity DRISHTI-GS, RIM-ONE and REFUGE

Coarse-to-Fine68 U-Net IOU, DSC, Accuracy, Sensitivity, DLA and

MDCP

DIARETDB0, DIARETDB1,69 and MESSIDOR

Multi-task CNN70 U-Net Mean, std REFUGE

CE-NET71 U-Net Mean, std (overlapping error) ORIGA, MESSIDOR and RIM-ONE

FC-DenseNet72 U-Net Dice, Jaccard, Sensitivity, Specificity, Accuracy ORIGA, DRIONS-DB, Drishti-GS, ONHSD,

RIMONE

Disc-aware Ensemble

Network73
U-Net AUC, B-Accuracy, Sensitivity, Specificity ORIGA, SCES, SINDI.

ET-Net74 Other Dice, mIoU REFUGE, Drishti-GS

GAN and texture analysis75 GAN Dice DRISHTI-GS, RIM-ONE

Ensamble-based CNN76 CNN F-score, precision, recall, BDL DRISHTI-GS

Hierarchical Attention

Network77
Other Dice REFUGE

M-Net with polar

transformation78
U-Net Overlapping error (E) and Balanced accuracy

(A)

ORIGA, SCES.

Semi-supervised cGAN79 GAN IoU, mIoU ORIGA, REFUGE.

Medinoid80 CNN Accuracy, Sensitivity, Specificity, F1, Precision Private data set

GL-Net65 GAN Precision, Recall, F1, BDL Drishti-GS1

Modified U-NET81 U-Net IoU and Dice DRIONS-DB, RIM-ONE v.3, DRISHTI-GS

R-CNN82 CNN Overlapping ratio ORIGA

Patched-based GAN83 GAN Dice Drishti-GS, RIM-ONE-r3, REFUGE

cGAN84 GAN Accuracy, Dice, Jaccard, Sensitivity, Specificity DRISHTI-GS1, RIM-ONE

Modified U-Net85 U-Net Dice, Jaccard RIGA, DRISHTI-GS1, RIM-ONE

Modified U-Net86 U-Net IoU, Dice DRISHTI-GS, RIM-ONE v.3

Stacked U-Net87 U-Net IoU, Dice DRIONS-DB, RIM-ONE v.3, DRISHTI-GS

Shape Regression88 Other F-score Drishti-GS

cGAN89 GAN AU-ROC and AU-PR DRIONS-DB, RIM-ONE and Drishti-GS

Two Sage CNN90 CNN N/A ORIGA, HRF,91 DRIONS-DB, Messidor

Multi-Task Learning92 CNN Dice ORIGA

FCNN48 CNN Accuracy, Sensitivity, Specificity ORIGA, RIMONEr3 and DRISHTI-GS

GAN-DA93 GAN DICE Drishti-GS, REFUGE

DeepLab-v394 Encoder

Decoder

CNN

Accuracy, Dice, IoU REFUGE, ACRIMA, ORIGA, RIM-ONE and

DRISTI-GS1

Custom CNN93 CNN Sensitivity, Specificity DRIVE
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multiple datasets and evaluation metrics to compare their method with deep learning-based and traditional image
processing techniques.

Fu et al73 presented the Disc Aware Ensemble Network (DENet) for glaucoma screening that incorporates a global
fundus image and an image that focuses on the optic disc region. However, as the DENet was used for glaucoma
screening, the U-Net network was used for segmenting the disc to influence the screening decision. As such, their method
was evaluated only for glaucoma screening rather than segmentation performance. Fu et al78 also introduced a novel joint
optic cup and disc segmentation approach based on a polar transformation of the fundus image. To this end, they
proposed M-Net, which is a multi-scale U-Net with a side-output layer that produces a probability map.

Sevastopolsky et al87 proposed a U-Net-based, special cascade network that incorporated the concept of iterative
refinement. The model was designed as stacked multiple blocks to achieve better recognition where each block was
a basic U-Net. They compared their model with one U-Net-based model81 and two CNN-based approaches.76,103

Wang et al68 introduced a coarse-to-fine deep learning model based on U-Net designed specifically to segment the
optic disc region. The coarse-to-fine strategy splits the segmentation task into multiple stages: one for extracted vessels
(vessel density map) and the other for local disc patches to obtain segmentation results. The authors compared the
performance of their disc segmentation method against several deep learning and image processing methods on various
datasets. Although this method is novel from a prepossessing perspective, it did not consistently improve across all
datasets and did not include optic cup segmentation.

Figure 1 Tan et al proposed CNN architecture.
Notes: Reprinted from: Tan JH, Acharya UR, Bhandary SV, Chua KC, Sivaprasad S. Segmentation of optic disc, fovea and retinal vasculature using a single convolutional
neural network. J Comput Sci. 2017;20:70–79.94 Copyright 2017, with permission from Elsevier.

Figure 2 Spatial pyramid pooling layer: pooling features extracted using different window sizes on the feature maps.
Notes: © 2015 IEEE. Reprinted, with permission, from: He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE
Trans Pattern Anal Mach Intell. 2015;37(9):1904–1916.98.
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Gu et al71 proposed a context encoder network (CE-NET) for medical image segmentation. CE-NET modified the
U-Net architecture to account for the consecutive pooling and striated convolution operation, leading to spatial
information loss. They replaced the U-Net encoder block with a ResNet-34 pre-trained block and added a context
extractor that consists of a dense atrous convolution block and a residual multi-kernel pooling block. This method was
proposed for general medical image segmentation and was evaluated for optic disc segmentation. The model was
evaluated using the standard pixel-based mean and standard deviation.

Finally, Yu et al85 proposed a robust optic cup and disc segmentation method by modifying the U-Net architecture. To
this end, they adopted the ResNet-34 pre-trained block for encoding and kept the original U-Net block for decoding.
Krishna Adithya et al114 developed “EffUnet”, a two-phase network to detect glaucoma by first segmenting cup and disc
using efficient Unet and then predicting glaucoma using a generative adversarial network.

Generative Adversarial Network Approaches
Deep learning architecture focused on decision-making features such as classification, regression, or segmentation in the past.
However, generative networks such as variational autoencoders104 and adversarial networks introduced a creative component
to neural networks. A generative adversarial network (GAN) framework was introduced by Goodfellow et al105 in 2014.
GAN attracted attention owing to the simplicity of the network structure (Figure 4) and its robust generative performance.
GAN essentially consisted of two main components: a generator that captured data distribution and a discriminator that
estimated the probability of a certain feature. One primary application of GAN was an image-to-image translation, which is
defined as translating one possible representation of a scene to another. This concept allowed GAN to be used for
segmentation by decoding the input image into the required label. Many researchers have used this concept to solve major
segmentation problems, such as semantic segmentation106 or specific medical image segmentation problems.107 Accordingly,
many researchers have used this approach to segment optic cups and discs to improve the performance of current methods.

Figure 3 U-net architecture (example for 32×32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is
denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different
operation.
Notes: Reprinted by permission from Springer Nature from: Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In:
Navab N, Hornegger J, Wells W, Frangi A (eds). Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science,
vol 9351. Springer, Cham; 2015:234–241.102 Copyright © Springer International Publishing Switzerland 2015. Available from: https://link.springer.com/book/10.1007/978-
3-319-24574-4.
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Singh et al84 adopted a conditional GAN109 with a generative deep learning network that learned invariant features to
segment the optic disc. A major component of the network, according to the authors, improved the segmentation
performance in the skip connection to the encoder-decoder within the generator network.

Liu et al79 introduced a semi-supervised segmentation model based on a conditional GAN. Their model consisted of
a segmentation net and a generator that increased the training set while the discriminator identified fake images to ensure
compatible training. This method demonstrated the advantages of semi-supervised methods by utilizing unlabelled data,
which could help mitigate the lack of labeled data. The segmentation performance model was compared to traditional
U-Net, M-Net,78 and other architectures. Wang et al83 used a patch-based output space adversarial learning framework
that jointly segmented the optic cup and disc. Their model exploited unsupervised domain adaptation to address the
domain shift across datasets that usually reduced the performance of the segmentation model when it was trained on
a specific dataset and tested on a different dataset. They also introduced a morphology-aware segmentation tool that
produced better segmentation loss.

Son et al89 introduced another GAN-based framework for retinal vessel and optic disc segmentation alternative to
CNN-based methods. Their model showed significant performance improvement for retinal vessel segmentation and no
improvement for optic disc segmentation. Jing et al62 proposed GL-NET, a hybrid deep-CNN and GAN model for
segmenting the optic cup and disc. The generator was a full CNN that included an encoder-decoder to extract features
using the VGG16 network.110 They added skip connections within the generator to promote low- and high-level feature
information. To better address the variability between models, they adopted the boundary approach BDL and pixel-based
evaluation metrics to compare the model’s performance.

Building a unified model that generalizes across image types was challenging due to the large variety of fundus cameras.
Wang et al111 addressed this issue by creating a domain-invariant model based on a GAN. Their model adopted domain
adaptation methods built on source domain data and utilized a small target dataset to improve the performance in the target
domain. The model used the DICE coefficient to compare the performance with other significant studies. Bisneto et al75

proposed a full glaucoma detection system that utilized GAN for image segmentation. They built an entire system to detect
glaucoma, their segmentation method focused on the optic disc only, and performance was evaluated accordingly.

Other Deep Learning-Related Architectures
The three approaches described above are the most common in machine learning and deep learning for glaucoma-related
image segmentation. However, some researchers have investigated different strategies and architectures and have

Figure 4 GAN general architecture consists of Generator (G) which output a synthetic sample given a noise variable input and a Discriminator (D) which estimate the
probability of a given sample coming from real dataset. Both components are built based on neural network.
Notes: © 2018 IEEE. Reprinted, with permission, from: Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA. Generative adversarial networks: An
overview. IEEE Signal Process Mag. 2018;35(1):53–65.108.
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achieved exciting results. Sedai et al88 proposed a cascaded shape regression network that learned the final shape for
segmentation. They employed a boosted regression tree and proposed a data augmentation approach to improve
segmentation performance. Their evaluation used the DRISHTI dataset. Zhang et al74 presented embedded edge-
attention representations to guide a segmentation network called ET-Net. Their model followed an encoder-decoder
with two additional components for guidance and aggregation. The model was tested on multiple segmentation tasks,
including optic disc and cup segmentation.

Ding et al77 introduced hierarchical attention networks for medical image segmentation. The approach combined
encoder-decoder networks with CNNs to extract feature maps. Three blocks were added, specifically a dense similarity
block, an attention propagation block, and an information aggregation block. The model was tested on the REFUGE
dataset. Tabassum et al67 introduced an encoder-decoder network (CDED-Net) for optic cup and disc segmentation. This
architecture was slightly different from the typical U-Net because there was no bottleneck layer, and fewer convolutional
layers were employed.

Discussion
This review outlines the abundant deep-learning-based optic cup and disc segmentation models from fundus images. This
technique has enormous potential for clinical application because it is a robust method that overcomes many of the
challenges associated with traditional image processing techniques.32 Researchers widely use three main network
architectures for accomplishing the optic cup and disc segmentation task; importantly, each network architecture has
its advantages and disadvantages. The traditional CNN offers excellent optic cup and disc segmentation; however, it
typically requires many accurately labeled images to reach its full potential. The U-Net architecture is the current state-of
-the-art architecture owing to its training simplicity and data efficiency. However, its multi-scale skip connection tends to
use unnecessary information, and low-level encoder features are insufficient, leading to poorer performance. The GAN
method uses a creative image-image translation component to achieve accurate optic cup and disc segmentation;
however, current GAN methods are deterministic, making them difficult to generalize. Finally, further investigation of
generative stochastic models is needed to study the randomness effect because the natural world is stochastic.

There are some common challenges with methods for optic disc and cup segmentation from fundus images that need
to be addressed to translate these tools to clinical settings:

● Reliable and broadly applicable deep learning models in computer vision commonly rely on a large set of training
and testing data. However, as observed in the reviewed models, these publicly available datasets are often relatively
small. Accordingly, accumulating a large set of data labeled by specialists is the most critical challenge in building
a reliable and generalizable model. Although researchers have attempted to account for this issue using strategies such as
transfer learning, the need for a large volume of high-quality data for large-scale evaluation of segmentation methods
remains.

● Current fundus image annotation of the optic cup and disc is subjectively performed by ophthalmologists, inducing
the inter– and intra-observer variability. Almazroa et al112 studied this phenomenon in-depth. They concluded that the
variability in annotation results from the unclear optic disc and cup boundaries are human-related factors such as
examiner fatigue or lack of concentration, or image-related factors such as low quality, hazy, unfocused images, or
display devices that are too dim or too bright. This variability poses a challenge for scientists building a segmentation
model using a non-standardized labeling mechanism. To account for this problem, an effective segmentation model must
address these differences while training and learning unambiguous weights to perform better than human identification
ultimately.

● There are a variety of fundus imaging modalities that acquire the images of the eye’s posterior pole with different
resolutions, angles, and degrees of the posterior segment. Furthermore, some imaging modalities require dilated pupils,
whereas others require non-dilated pupils. This creates a domain shift problem, a well-known and well-defined problem
in machine learning. Most of the segmentation models reviewed in this study utilize training and test data with the same
image features, ignoring the significant real-life challenge posed by inter-model variability. Wang and Deng113 discussed
various techniques to address this problem, essential for building a reliable automated diagnostic tool.
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● Evaluating a segmentation model is not as straightforward as evaluating classification. It is difficult to compare and
identify the best architecture for optic cup and disc segmentation. This challenge created variabilities among researchers
who used different metrics (reviewed in section Evaluation Metrics) to assess their work. A unified evaluation criterion
for segmentation models is critical to compare different studies effectively. Such standardized evaluation criteria should
include an evaluation metric that considers optic cups, disc vulnerabilities, and difficulties and uses a common evaluation
methodology. To this end, we suggest that boundary approaches may be more valuable in assessing the quality of
detected objects than pixel-based methods.

Devising an efficient but low-performing degradation model for OC and OD segmentation (by reducing the model
complexity) is of high importance114,115 for the enhancement of both training and inference times. Additionally,
developing an explainable model is another topic that many believe is crucial for Glaucoma AI-based detection tools
to be approved and accepted in the clinic.28,116

The future direction for better optic cup and disc segmentation should account for the above cases. A large set of
annotated data should be published to create and evaluate better models. Because the annotation is not a straightforward
task, public data must consider inter and intra-observer variability by providing multi annotations per image. More
advanced machine learning methodologies must be experimented with to overcome image discrepancies to achieve
a fully robust model. Lastly, a unified evaluation metric must be adopted for upcoming models. One pixel-based approach
such as F-score and a boundary approach such as boundary distance localization are recommended.

Clinical Value of Automated Optic Disc and Optic Cup Segmentation
The current advancement in artificial intelligence within healthcare focuses on enhancing various aspects such as
improving accessibility, increasing speed, reducing cost, early diagnosis, and enhancing human abilities. The
Singapore Integrated Diabetic Retinopathy program (SiDRP) is a telemedicine-based screening program for diabetic
retinopathy.117 The SiDRP started to integrate AI algorithms into their workflow with the ultimate goal of fully
automating the screening process, increasing efficiency, and reducing the cost for the whole program.118

One proven application for AI within healthcare is clinical decision support. Many clinical diagnoses and screening,
especially medical imaging, are time-consuming and labour-intensive. Thus, AI offers an appealing solution to expedite
decision-making and improve efficiency. Various companies began to offer an AI-based clinical support system for chest
x-ray screening, brain MRI, breast mammography, and diabetic retinopathy.

Glaucoma diagnosis is a complex problem requiring well-trained ophthalmologists or optometrists. Unfortunately,
there is a limited number of trained specialists worldwide to examine all suspected cases. A glaucoma decision support
system could offer an alternative route to this problem. Such a system could expedite the specialist’s decision-making and
may eventually evolve as an automated screening system. The Cup and disc segmentation system is a major milestone
and fundamental to reaching the ultimate destination. Once a system is mature enough, it will revolutionize the clinical
practice to screen and diagnose glaucoma.

As been mentioned previously, cup and disc segmentation undergo an inter-observer variability. Such disagreements
are related to various factors; some are human-related factors. As with the nature of humans, examiners might experience
fatigue (marking at the last hour) and lack of concentration (marking in a rush or during busy hours). It has been
recommended that a second opinion could improve the overall segmentation.112 However, a second opinion might not be
available all the time due to various reasons. Therefore, an AI-based segmentation system could be that second opinion
once mature.

Conclusion
Effective optic cup and disc segmentation on fundus images are critical for accurate automated diagnosis and prediction
of glaucoma. Machine learning and deep learning models have shown promising results for various segmentation tasks,
both for fundus image analysis and other applications. This study presents a comprehensive review of the current deep
learning and machine learning models explicitly designed for optic cup and disc segmentation on fundus images. We also
reviewed the available retinal image datasets and common evaluation metrics to provide a broad understanding of how
automated image segmentation tools are designed, tested, and evaluated. While three network architectures have been
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commonly used for optic cup and disc segmentation, the U-net architecture and the GAN model have demonstrated
robust results. They may have the potential to be tested in clinical settings shortly. However, many challenges still need
to be addressed to create robust image segmentation models that can be applied in clinical settings or large-scale
diagnosis campaigns.
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