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Abstract: Exploration in the field of epigenetics has revealed that protein arginine methyltransferases (PRMTs) contribute to disease, and
this has given way to the development of specific small molecule compounds that inhibit arginine methylation. Protein arginine
methylation is known to regulate fundamental cellular processes, such as transcription; pre-mRNA splicing and other RNA processing
mechanisms; signal transduction, including the anti-viral response; and cellular metabolism. PRMTs are also implicated in the regulation of
physiological processes, including embryonic development, myogenesis, and the immune system. Finally, the dysregulation of PRMTs is
apparent in cancer, neurodegeneration, muscular disorders, and during inflammation. Herein, we review the functions of PRMTs in
immunity and inflammation. We also discuss recent progress with PRMTs regarding the modulation of gene expression related to T and
B lymphocyte differentiation, germinal center dynamics, and anti-viral signaling responses, as well as the clinical relevance of using
PRMT inhibitors alone or in combination with other drugs to treat cancer, immune, and inflammatory-related diseases.
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Arginine Methylation and Inflammation
Arginine methylation is a common post-translational modification in mammalian cells.1 Protein arginine methyltrans-
ferases (PRMTs) are the primary enzymes responsible for catalyzing the formation of methylarginines in proteins.
PRMTs catalyze the transfer of methyl groups from S-adenosylmethionine (SAM) to the ω-guanidino nitrogen atoms of
arginines in proteins.2 There are nine PRMTs with three separate types of activity.3 Type I PRMTs (PRMT1, PRMT2,
PRMT3, PRMT4 (herein referred to as CARM1 for co-activator-associated methyltransferase 1), PRMT6, and PRMT8)
catalyze the formation of monomethylarginine (MMA) and asymmetric dimethylarginine (aDMA). Type II PRMTs
(PRMT5 and PRMT9) catalyze the formation of MMA and symmetric dimethylarginine (sDMA). PRMT7 is the only
known type III PRMT, and it catalyzes only the formation of MMA (Figure 1A). There are currently no known dedicated
arginine demethylases,3 in contrast to the known family of Jumonji (Jmj) C (JmjC) lysine demethylases (KDMs).4

Therefore, arginine methylation is largely considered to be a long-lasting, as opposed to transient and reversible, post-
translational modification. JmjD6 was wrongfully reported as an arginine demethylase as it is a hydroxylase for lysines.5

KDM3A, KDM4E, and KDM5C, known histone methyl lysine demethylases, also possess the ability to demethylate
methylarginines in vitro,6 but whether this weak activity is of physiological relevance remains to be shown. The protein
arginine deiminase (PAD) family may offer the possibility to reverse methylarginine by converting it to neutral
citrulline,7 however, monomethylarginine is a poorer substrate than unmodified arginine.7 Thus, we still await identifica-
tion of enzymes capable of reversing methylarginine to arginine. Without affecting charge, the addition of methyl groups
sterically disrupts hydrogen bonding at affected guanidino nitrogen atoms influencing “reader” association such as Tudor,
plant homeodomain (PHD), and WD40 domain-containing proteins.8

PRMTs play a significant role in gene regulation by methylating histone marks.9 PRMT1-catalyzed H4R3me2a and
CARM1-catalyzed H3R17me2a, H3R26me2a and H3R42me2a and PRMT5 mediated H3R2me2s are activating histone
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Figure 1 Type I, II, and III PRMTs mediate the methylation of arginine using S-adenosyl-methionine. (A) Type I protein arginine (Arg, R) methyltransferases (PRMTs) (PRMT1, PRMT2, PRMT3, CARM1, PRMT6, and PRMT8) catalyze the
formation of monomethylarginine (Rme1, MMA) and asymmetric dimethylarginine (Rme2a, aDMA) by transferring methyl groups from S-adenosylmethionine (SAM) to the ω-guanidino nitrogen atoms of arginines in proteins.
S-adenosylhomocysteine (SAH) is produced in each methyltransferase reaction. Type II PRMTs (PRMT5 and PRMT9) catalyze the formation of MMA and symmetric dimethylarginine (Rme2s, sDMA). PRMT7 is the only known type III
PRMT, and it catalyzes the formation of only MMA. There are currently no known dedicated arginine demethylases. (B) PRMT1-catalyzed H4R3me2a and CARM1-catalyzed H3R17me2a, H3R26me2a, and H3R42me2a, and PRMT5
H3R2me2s are activating histone marks, while PRMT5-catalyzed H2AR3me2s, H4R3me2s, and H3R8me2s; PRMT6-catalyzed H3R2me2a; and CARM1-catalyzed H2AR29me2a are repressive histone marks.
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marks, while PRMT5-catalyzed H2AR3me2s, H4R3me2s, and H3R8me2s; PRMT6-catalyzed H3R2me2a; and CARM1-
catalyzed H2AR29me2a are repressive histone marks (Figure 1B). PRMTs also methylate many other substrates to
modulate processes and pathways including pre-mRNA splicing, mRNA translation, cell signaling, and DNA damage
pathways.3 Many PRMTs favor the methylation of arginine/glycine-rich repeats (RGG/RG motifs) in proteins with the
exceptions of CARM1 and PRMT7 that favor arginine/proline-rich repeats (PGM motifs) and RXR motifs, where X is
any amino acid, respectively.3

Inflammation is a component of innate immunity, the body’s primary protective response to infection. Pathogenic
molecules such as lipopolysaccharides (LPS), double-stranded DNA (dsDNA), and single-stranded RNA (ssRNA) are
recognized by pattern recognition receptors (PRRs) such as toll-like receptors (TLRs), retinoic acid-inducible gene
I (RIG-I)/melanoma differentiation-associated protein 5 (MDA5), and cyclic guanosine monophosphate (GMP)-
adenosine monophosphate (AMP) synthase (cGAS).10 Stimulation of PRRs results in the activation of several signaling
pathways, including nuclear factor kappa B (NF-κB), interferon (IFN) regulatory factor (IRF) 3 (IRF3), IRF7, and
mitogen-activated protein kinase (MAPK), and subsequently the transcription of genes that encode proinflammatory
IFNs and cytokines.10 The NF-κB family consists of five structurally similar proteins (NF-κB1/p50, NF-κB2/p52, RelA/
p65, RelB, and c-Rel) that assemble into functional hetero- and homodimers.11 Briefly, canonical activation of the NF-κB
pathway involves phosphorylation and activation of the inhibitor of kappa B (IκB) kinase (IKK) complex, followed by
phosphorylation, ubiquitination, and degradation of IκB alpha (IκBα) to liberate and allow NF-κB dimers (typically,
RelA/p65-NF-κB1/p50 and NF-κB1/p50-c-Rel) to translocate to the nucleus where they can bind to specific κB response
elements and stimulate the expression of target genes.11 B and T lymphocytes can also mediate inflammation as part of
the body’s adaptive immune system.12 Acute inflammation requires constant stimulation to be maintained, while chronic
inflammation arises during sustained inflammation and may lead to autoimmune diseases, such as asthma, systemic lupus
erythematosus (SLE), acute graft-versus-host disease (aGVHD), ulcerative colitis, rheumatoid arthritis (RA), and multi-
ple sclerosis (MS) (see below).13–15 It is known that PRMTs are involved in mediating inflammation and, thus, their
inhibition may be a promising strategy for the treatment of inflammatory and autoimmune diseases. This review will
summarize the currently understood roles of PRMTs in modulating inflammation and the immune response.

PRMT1 in Inflammation
In mammalian cells, PRMT1 is the most active and prevalent type I PRMT.16 It is known to function as a transcriptional
co-activator, and it is responsible for the generation of the activation mark, H4R3me2a.17 PRMT1 has also been shown to
play roles in the DNA damage response pathway by methylating DNA damage proteins and in RNA metabolism by
methylating RNA binding proteins (RBPs) (for review see3). PRMT1 has been recognized as a mediator of inflammation
through its interaction with transcription factors and co-activators, including signal transducer and activator of transcrip-
tion (STAT) proteins, NF-κB, and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB)-
binding protein (CBP)/p300-interacting trans-activator 2 (CITED2) (reviewed in18). PRMT1 has also been directly linked
to the expression of cytokines and major histocompatibility complex (MHC)-related genes.19 This next section will detail
how PRMT1 regulates inflammation.

PRMT1 largely functions as a negative regulator of inflammation. Reintjes et al. 2016 showed that PRMT1 directly
interacts and methylates the NF-κB subunit, RelA/p65, at R30 to suppress tumor necrosis factor (TNF)-alpha (TNF-α)-
induced activation of NF-κB.20 Asymmetric dimethylation of RelA/p65 at R30 interferes with the ability of NF-κB to
function as a transcription factor (Figure 2A). Interestingly, depletion of PRMT1 using short hairpin RNA (shRNA)
prevented the attenuation of NF-κB target gene expression, normally observed to occur within 4 hours of TNF-α
stimulation.20 Further, in response to cytokine interleukin (IL) 4 (IL-4) stimulation, PRMT1 and CARM1 were shown
to function as co-activators of STAT5 for the upregulation of CITED2.21 CITED2 negatively regulates NF-κB activation
by binding the co-activator CBP/p300 in the nucleus and preventing its association with RelA/p65. This prevents RelA/
p65 acetylation, required for its binding and stimulation of target A20 and IL-8 promoters.22 Finally, arginine methylation
was shown to play a role in post-transcriptional regulation of MHC-related genes. The use of MTA (5’-methyl-
thioadenosine), now known to be a specific inhibitor of PRMT5,23–25 was shown to suppress IFN-γ-induced expression
of human leukocyte antigen (HLA) A (HLA-A).26 Moreover, PRMT1 has been linked to the transcriptional repression of
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hypoxia-inducible factor-1 alpha (HIF-1α) by regulating the activity of transcription factors, specificity protein (Sp) 1
(Sp1) and Sp3.27 Depletion of PRMT1 using small interfering RNA (siRNA) was shown to increase HIF-1α levels and
allow CREB to bind to the HLA-B promoter via chromatin remodeling.28 These findings suggest a repressive epigenetic
role for PRMT1 in the context of hypoxia, relevant especially to tumor-infiltrating monocytes. Additionally, PRMT1 was
shown to methylate class II transactivator (CIITA) to promote its degradation and suppress IFN-γ-induced MHC-II
transactivation in macrophages (Figure 2B).19 PRMT1 silencing increased activity at the MHC-II promoter in the
presence of IFN-γ and increased expression of HLA-DRA in both primary and transformed mouse peritoneal
macrophages.19 These findings provide a function for PRMT1 in vascular inflammation.

Conversely, arginine methylation of the N-terminal domain of nuclear factor of activated T cells (NFAT)-interacting
protein (NIP45) by PRMT1, was found to be required for its interaction with NFAT and, thus, the activation of IL-4 and
IFN-γ transcription in T helper (Th) 2 (Th2) and Th1 cells, respectively (Figure 2C).29 NIP45 depletion prevents H4R3
methylation and H4 acetylation at relevant promoters, suggesting that PRMT1 can activate inflammation through histone
methylation, but still primarily depends on non-histone methylation to initiate the response.30 Significantly, it was shown
that NIP45 deletion could ameliorate airway inflammation in asthma by decreasing type 2 innate lymphoid cells (ILC2)
differentiation.31 These data suggest that a PRMT1 inhibitor may only be useful to treat inflammation in selected
contexts.

PRMT5 in Inflammation
PRMT5 generates the majority of cellular sDMA in mammalian cells. PRMT5 has many substrates (signaling molecules,
RNA binding proteins, splicing factors, transcription factors, and histones) to regulate cellular processes (for review see32).
Regulation by PRMT5 is critical for transcription; pre-mRNA and alternative splicing; signal transduction; and the DNA

A

B

C

Figure 2 The molecular and cellular function of PRMT1 during inflammation. (A) Protein arginine methyltransferase 1 (PRMT1) negatively regulates the nuclear factor kappa
B (NF-κB) pathway. Asymmetric dimethylation (Rme2a) of the NF-κB subunit, RelA/p65, at R30, reduces its ability to bind to kappa B (κB) sites with the consensus sequence
5’-GGGRNYYYCC-3’, where R is an unspecified purine, Y is an unspecified pyrimidine, and N is any nucleotide. This prevents activation of promoters of NF-κB target
genes. Asymmetric dimethylation of NF-κB is postulated to function as a late response in NF-κB activation. (B) PRMT1 suppresses class II trans-activator (CIITA)-mediated
major histocompatibility complex II (MHC-II) transactivation. Pattern recognition receptor (PRR) stimulation by interferon-gamma (IFN-γ) results in asymmetric dimethyla-
tion of CIITA. This targets CIITA for degradation and prevents its translocation to the nucleus where it can stimulate the expression of MHC-II genes. (C) Asymmetric
dimethylation of nuclear factor of activated T cells (NFAT)-interacting protein 45 kDa (NIP45) by PRMT1 positively regulates expression of NFAT target genes in T helper
(Th) cells. T cell receptor (TCR) and antigen presenting cell (APC) ligation activates calcineurin (CaN). CaN dephosphorylates NFAT, allowing it to translocate to the
nucleus. The interaction between NFAT and asymmetrically dimethylated NIP45 enhances the transcription of target genes.
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damage response (for review see3). In this section, we will discuss how PRMT5 regulates the inflammatory response,
particularly through the NF-κB pathway (Figure 3).

PRMT5 was originally cloned as a Janus kinase 2 (JAK2)-binding protein.33 PRMT5 exists in a complex with methylo-
some protein 50 (MEP50) and a substrate adaptor protein (SAP), including pICln, RIO kinase 1 (RIOK1), and COPR5, to
attract and methylate its substrates.34 PRMT5 overwhelmingly serves as a positive regulator of inflammation. In a proteomic
screen, PRMT5 was identified as a new TNF-related apoptosis-inducing ligand (TRAIL) receptor-binding protein.35

Interestingly, PRMT5 contributes to TRAIL-induced activation of IKK and NF-κB, thus, leading to the induction of several
NF-κB target genes.36 Moreover, it was shown that PRMT5 gene silencing increased TRAIL-mediated cytotoxicity alone
without affecting TNF-α-mediated NF-κB signaling. Another study reported that PRMT5-mediated methylation of homeobox
A9 (HOXA9), a transcription factor for endothelial cell inflammatory responses, at R140 increased the level of endothelial-
leukocyte adhesion molecule (ELAM).37 Depletion of PRMT5 using siRNA led to a loss of E-selectin and vascular cell
adhesion protein 1 (VCAM-1) induction, indicating that PRMT5 is an essential component for endothelial cell expression of
leukocyte adhesion molecules during the inflammatory response. PRMT5 methylates the RelA/p65 subunit of NF-κB,
promoting the expression of the proinflammatory chemokine, C-X-C motif chemokine ligand 10 (CXCL10), in response to
TNF-α.38 In addition, PRMT5-mediated methylation of RelA/p65 is required for CXCL11 induction during co-stimulation of

Figure 3 The role of PRMT5 during inflammation. Protein arginine methyltransferase 5 (PRMT5) positively regulates the nuclear factor kappa B (NF-κB) pathway. Pattern
recognition receptor (PRR) stimulation by tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) results in the activation of inhibitor of kappa B (IκB) kinase
(IKK). IKK activation leads to proteasomal degradation of IκB alpha (IκBα). This liberates NF-κB and allows PRMT5 to symmetrically dimethylate (Rme2s) the NF-κB subunit,
RelA/p65, at R30. Symmetric dimethylation of NF-κB increases its affinity for kappa B (κB) sites with the consensus sequence 5’-GGGRNYYYCC-3’, where R is an
unspecified purine, Y is an unspecified pyrimidine, and N is any nucleotide, and this supports the activation of promoters regulating NF-κB target genes. Symmetric
dimethylation of NF-κB is postulated to function as an early response in NF-κB activation.
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endothelial cells with TNF-α and IFN-γ.39 Interestingly, the methylation of RelA/p65 by PRMT5 at R30 increased its DNA
binding activity and stimulated the expression of genes encoding cytokines, chemokines, and growth factors, including IL-1α,
IL-8 and TNF receptor-associated factor 1 (TRAF-1).40 Similar findings also indicate that PRMT5 regulates the NF-κB
signaling through several cell membrane-bound receptors leading to the activation of the IKK complex.41 It was shown that
inhibition of PRMT5 methylation diminishes IKKβ and IKKα activation and RelA/p65 nuclear translocation.41 Deletion of
PRMT5 using siRNA and its pharmacological inhibition using EPZ015666were shown to decrease the production of IL-6 and
IL-8 and prevent cell proliferation, migration, and invasion by attenuating the activation of NF-κB.41 Recently, PRMT5 was
shown to increase VCAM-1 expression via symmetric dimethylation of RelA/p65 on R30.42 PRMT5 knockdown in vascular
smooth muscle cells (VSMCs) inhibited vascular inflammation and decreased VCAM-1 expression in mice. Together, these
findings define a role for PRMT5 in the inflammatory response and suggest that the inhibition of PRMT5 might be an
attractive therapeutic approach to attenuate pathological progression of inflammatory-related diseases.

Many different types of PRMT5 inhibitors have been generated. DS-437 was designed to occupy the SAM binding
site and part of the substrate binding pocket of PRMT5 by adding a urea moiety that mimics the guanidinium group of
substrate arginines to S-adenosylhomocysteine (SAH). Indeed, DS-437 prevented the methylation of histone H4 by
PRMT5 but also was able to inhibit PRMT7; therefore, it is not specific for PRMT5.43 EPZ015666 and GSK3203591
were designed as substrate competitive inhibitors of PRMT5.44,45 These compounds are high-affinity inhibitors of SAM-
bound PRMT5 complexes. As MTA was shown to be elevated in MTA phosphorylase (MTAP) negative cancers and to
have preference for binding PRMT5,23–25 a new specific inhibitor (MRTX1719) was generated that specifically inhibits
the MTA-bound PRMT5-MEP50 complex.46 Other strategies to inhibit PRMT5 include the development of a proteolysis-
targeting chimeric (PROTAC) probe (MS4322) to degrade PRMT5.47 Finally, another strategy has been to target the
PRMT5 substrate adaptor interaction; BRD0639 disrupts the PRMT5-RIOK1 interactions required for the methylation of
a variety of RIOK1-mediated, PRMT5-specific substrates.48 The inhibitors referenced herein are listed in Table 1 (see
below).

Type I PRMTs, PRMT6 and CARM1, also positively regulate inflammation. PRMT6 activates NF-κB by directly
binding to RelA/p65 and promoting its nuclear translocation.49 Using a gain-of-function PRMT6 allele in mice, it was
shown that PRMT6 binds NF-κB-regulated promoters, such as IL-6, and stimulates gene expression upon TNF-α
stimulation. CARM1 was also shown to interact directly with RelA/p65 and function as a co-activator at NF-κB target
genes in response to TNF-α and LPS stimulation.50 Further, CARM1 was found to participate in NF-κB-mediated
transcription by remodeling chromatin via H3R17 methylation at inflammatory gene promoters such as TNF-α, IL-8, and
CXCL10 in monocytes.51 Thus, given the prominent role of PRMTs in inflammation, it will be worthwhile to investigate
whether certain PRMT inhibitors might enhance the effects of anti-inflammatory drugs.

Physiological Role of PRMTs in the Immune System
Arginine methylation is a major contributor to immune development and function. Several PRMTs were shown to play
a critical role in the establishment and maintenance of lymphoid and myeloid cell lines.1,52 In the following section, the
main functions of PRMTs in regulating the immune system will be discussed.

PRMT1 is known to affect T lymphocyte function. With the huge success of cancer immunotherapies and the
generation of chimeric antigen receptor (CAR)-T cells, it becomes important to further understand the function of
PRMT1 in T cells. Interestingly, PRMT1 was found to regulate the Th17 differentiation process.53 PRMT1 interacts with
growth factor independent 1 (GFI1), a transcriptional regulator required for development and maintenance of T lymphoid
leukemia, to regulate the DNA damage response.54 Moreover, PRMT1 is required for cytokine production by Th cells.55

PRMT1 is also implicated in B lymphocyte regulation. In B cells, PRMT1 methylates cyclin-dependent kinase 4
(CDK4) and thereby prevents the formation of the CDK4-Cyclin-D3 complex and cell cycle progression. This methyla-
tion event blocks pre-B-cell proliferation and activates light chain immunoglobulin (IgL) gene assembly and pre-B-cell
differentiation.56 Furthermore, PRMT1 is necessary for lymphocyte development, proliferation, and differentiation in
vivo.57 PRMT1-deficient mice exhibit defects in B-cell development with diminished levels of serum antibodies by
impairing T cell-independent antibody production. Arginine methylation of the Igα subunit of the B cell receptor (BCR)
negatively regulates the calcium (Ca2+) and the phosphatidylinositol 3-kinase (PI3K) signaling pathways of the BCR
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Table 1 Defining Immune Function with PRMT Inhibitors

Compound Mechanism
of Action

PRMT
Selectivity

In Vivo Activity Reference

MTA SAM

competitive

PRMT5 Suppresses IFN-γ-induced expression of HLA-A but not HLA-E in

cancer cell lines

[23–26]

EPZ015666 Substrate

competitive

PRMT5 Attenuates NF-κB activation; suppresses activation of FLSs from RA

patients; attenuates cartilage degeneration in OA mouse models;

antitumor effect in MCL, AML, and TNBC mouse models

[41,44,45,140,141]

DS-437 SAM and

substrate

competitive

PRMT5,

PRMT7

Antitumoral effect when combined with p185erbB2/neu

immunotherapy

[43,115]

GSK3203591 Substrate

competitive

PRMT5 Antitumoral effect in a MCL mouse model [45]

MRTX1719 PRMT5-MTA

selective

PRMT5 Inhibits PRMT5 in MTAP negative cancer cells [46]

MS4322 PRMT5

PROTAC

PRMT5 Degrades PRMT5; antitumoral effect in multiple cancer cell lines [47]

BRD0639 PRMT5-
binding motif

competitive

PRMT5 Disrupts PRMT5- RIOK1 complexes; antitumoral effect in MTAP
negative cancer cells

[48]

TP-064 Substrate

competitive

CARM1 Attenuates lymphocyte cell death in mice with sepsis [67]

(Continued)

Journal of Inflammation Research 2022:15 https://doi.org/10.2147/JIR.S364190

DovePress
2945

Dovepress Srour et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 1 (Continued).

Compound Mechanism
of Action

PRMT
Selectivity

In Vivo Activity Reference

HLCL65 SAM

competitive

PRMT5 Suppresses inflammation in a EAE mouse model [96]

C220 SAM

competitive

PRMT5 Suppresses inflammation in an aGVHD mouse model [98]

PT1001B Substrate

competitive

Type I Antitumoral effect when combined with an anti-PD-L1 checkpoint

inhibitor in a PDAC mouse model

[108]

MS023 Substrate

competitive

Type I Antitumoral effect when combined with an anti-PD-L1 checkpoint

inhibitor in a colon cancer mouse model; anti-viral effect in SARS-

CoV-2-infected cells

[109,133,137]

Compound 43 Substrate

competitive

CARM1 Antitumoral effect in TNBC and melanoma mouse models [112]

EZM2303 Substrate
competitive

CARM1 Antitumoral effect in multiple myeloma and melanoma mouse
models

[111,112]

SGC3027 SAM

competitive

PRMT7 Antitumoral effect when combined with anti-PD-1 and anti-CTLA-4

checkpoint inhibitors in a melanoma mouse model

[116]

(Continued)
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while promoting B cell differentiation.58 PRMT1 deletion in mature B cells also results in reduced B cell activation and
differentiation, thereby impairing humoral immunity in vivo.59 Additionally, PRMT1 plays a critical role in IL-6
production in macrophages.60

CARM1 methylates the thymocyte cyclic AMP-regulated phosphoprotein (TARPP), a T cell-specific factor, at R650
and, thus, regulates the differentiation of early thymocyte progenitors.61 Knockout of CARM1 reduces the cluster of
differentiation (CD) 4 negative (CD4−) CD8− T cell population in mice and blocks thymocyte developmental at the
CD44+ CD25− stage.61,62 Moreover, inhibition of CARM1 in T cells greatly increases CD8+ T cell accumulation in
tumors and enhances antitumorgenicity.63 Further, transcriptomic data shows that CARM1 deletion upregulates the
expression of TCF7 and MYB, key genes required for the maintenance and self-renewal of memory T cell
populations.64,65 CARM1 is also required for Th17 differentiation by opening chromatin at critical gene loci.66

Precisely, CARM1 was shown to generate the activating mark, H3R17me2a, and prevent the deposition of the repressive
mark, H3K9me3, at the IL-17 locus, thus, leading to amplified IL-17A transcription and activation of the Th17
differentiation program.66

Little is known about the role of CARM1 during B cell development. However, a recent study has shown that
CARM1 is implicated in lineage differentiation for both B and T cells.67 LPS stimulation was found to increase CARM1
expression in B and T lymphocytes as well as monocytes that mediate caspase-3-dependent lymphocyte cell death.67

Inhibition of CARM1 activity using TP-064 attenuated lymphocyte cell death and protected mice following LPS lung
injury and polymicrobial sepsis.67 Moreover, CARM1 was shown to downregulate microRNA (miRNA) 223 (miR-223)
expression via the methylation of runt-related transcription factor 1 (RUNX1) at residue R223 and lead to the recruitment
of double PHD finger 2 (DPF2) to repress myeloid differentiation.68 Strikingly, CARM1 overexpression inhibited the
differentiation of adult hematopoietic stem cells (HSCs) in culture, while CARM1 knockdown promoted their

Table 1 (Continued).

Compound Mechanism
of Action

PRMT
Selectivity

In Vivo Activity Reference

GSK3368715 Substrate

competitive

Type I Antitumoral effect in pancreatic, breast, and renal cancer mouse

models

[99]

MS049 Substrate
competitive

CARM1,
PRMT6

Reduces aDMA in cells [138]

EPZ020411 Substrate

competitive

PRMT6,

PRMT1,
PRMT8

Antitumoral effect in a GBM mouse model [139,142]

Abbreviations: PRMT, protein arginine methyltransferase; SAM, S-adenosylmethionine; HLA, human leukocyte antigen; FLSs, fibroblast-like synoviocytes; RA, rheumatoid
arthritis; OA, osteoarthritis; MCL, myeloid cell leukemia; AML, acute myeloid leukemia; TNBC, triple-negative breast cancer; MTA, 5’-methyl-thioadenosine; MTAP, MTA
phosphorylase; PROTAC, proteolysis-targeting chimeric; EAE, experimental autoimmune encephalomyelitis; aGVHD, acute graft-versus-host disease; PD-L1, anti-
programmed death ligand 1; PDAC, pancreatic ductal adenocarcinoma; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; PD-1, programmed cell death
protein 1; CTLA-4, cytotoxic T lymphocyte-associated protein 4; aDMA, asymmetric dimethylarginine; GBM, glioblastoma.
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differentiation.68 In 2018, Nimer et al. also showed that CARM1 plays a critical role in myeloid leukemogenesis.69

CARM1 depletion minimally impacted normal hematopoiesis but strongly impaired leukemogenesis by disrupting cell
cycle progression, promoting myeloid differentiation, and inducing apoptosis.69 Thus, CARM1 could be a potential
therapeutic target for certain hematopoietic cancers.

PRMT5-mediated arginine methylation in activated T cells has been shown to be essential for the recruitment of
transcription factors during cytokine gene expression. Depletion of PRMT5 in T lymphocytes impairs IL-2 gene
expression.70 Moreover, PRMT5 modulates T cell activation processes via the regulation of the transcription of IFN-
induced cytokine genes,71 and when deleted, PRMT5 decreases signaling via the γc-family of cytokines and reduces
peripheral CD4+ and CD8+ T cell populations.72 PRMT5 depletion in the CD4+ Th cell compartment suppressed
Th17 differentiation and protected mice from Th17-mediated diseases such as experimental autoimmune encephalo-
myelitis (EAE), a mouse model of autoimmune inflammatory diseases of the central nervous system (CNS) (see
below).73

PRMT5 was shown to be essential for T cell survival and proliferation by maintaining cytokine signaling.36 PRMT5
expression was also shown to be upregulated during human T cell leukemia virus type-1 (HTLV-1)-mediated T cell
transformation, and its inhibition resulted in increased viral gene expression and decreased cellular proliferation.74 Little
is known about the role of PRMT5 in the physiological function of B lymphocytes, but it has been shown that PRMT5
mRNA levels, together with protein sDMA levels, are elevated in activated B cells.75 Additionally, PRMT5 is markedly
overexpressed in primary Epstein-Barr virus (EBV) lymphomas and lymphoblastoid cell lines.76 Together, these data
suggest that PRMT5 overexpression could be a marker of B cellular transformation.76 It was shown that PRMT5 acts in
a chromatin-wide repressive manner during B cell transformation via H4R3me2s and H3R8me2s.77,78 Thus, it is likely
that inhibiting PRMT5 would block the initiation and maintenance of EBV-driven B lymphocyte transformation and
survival without affecting resting and activated B cells. Furthermore, deleting PRMT5 in all hematopoietic cells reduces
pro- and pre-B cell differentiation and impairs T cell development, followed by defects in cytokine signaling,79

suggesting that PRMT5 is required for B cell development in the bone marrow. PRMT5 was shown to play an important
role in the regulation of antibody responses and germinal center (GC) dynamics during the development of B cells.80

Further understanding of PRMT5 substrates following B and T cell activation is required to define the function of
arginine methylation in regulating signaling during lymphopoiesis.

PRMT7 is an essential contributor to B cell lymphomagenesis. While PRMT7 B cell knockout mice survive into
adulthood, the loss of PRMT7 reduces mature marginal zone B cell populations and increases native follicular B cell
populations, thus, promoting GC formation and plasma cell differentiation.81 Mechanistically, PRMT7 was shown to
influence H4R3me2s at the Bcl6 promoter and negatively regulate Bcl6 expression.81 Furthermore, PRMT7-deficient
B cell mice secrete low levels of immunoglobulins, IgG1 and IgA.81 Although H4R3me2s is not a histone mark catalyzed
by PRMT7, it was shown that PRMT7 monomethylates neighboring H4R17 to allosterically influence PRMT5-mediated
H4R3me2s.82 These findings suggest that PRMT7 mediated histone methylation may play a role in the onset and
progression of B cell lymphomas. Further studies are required to fully understand the intersection of the activities of
different PRMTs in the regulation of B cell development.

Collectively, these findings provide insight into the essential contribution of arginine methylation to B cell and T cell
development and provide rationale for targeting PRMTs in different immune cell-related diseases, for example, B cell
non-Hodgkin lymphomas. Although PRMTs were linked to malignant B cell survival and proliferation, the overall
relevance of PRMT overexpression during the transformation process also remains unclear and requires further
investigation.

PRMTs in Immune Diseases
Asthma
Several studies link PRMT1 to allergic asthma. PRMT1 is overexpressed in the lung tissue of antigen-induced pulmonary
inflammation (AIPI) E3 rat models and mediates eosinophil recruitment into the lungs in response to IL-4
expression.83,84 Raf kinase inhibitor protein (RKIP) and protein inhibitor of activated STAT1 (PIAS1) are reciprocally
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expressed in epithelial and fibroblast cells and inhibit IL-1β/NF-κB and IL-4/STAT6-mediated PRMT1 expression,
respectively.85 More recently, it was shown that PRMT1 regulates processing of asthma-related miRNAs in lung
epithelial cells.86 PRMT1 is recruited, in complex with either STAT1 or RUNX1, to promote processing of miRNAs
upregulated alongside PRMT1 in patients with asthma in response to transforming growth factor beta 1 (TGF-β1).86

These findings suggest a role for PRMT1 in acute and chronic asthma in epithelial cells and fibroblasts. Furthermore,
these findings have implications for the treatment of acute and chronic asthma as PRMT1 could serve as a specific
therapeutic target.

Systemic Lupus Erythematosus
Elevated free aDMA levels are observed in the blood of patients with SLE.87 Further, elevated aDMA levels correlates
with higher incidence of cardiovascular disease in these patients.86 Autoantibodies targeting the spliceosomal, RNA-
binding Sm proteins are present in the serum of SLE patients.88 These autoantibodies recognize the symmetrically
dimethylated RGG/RG epitopes of Sm proteins and p80-coilin,89 suggesting that inhibition of PRMTs may suppress
some of their ability to induce autoimmune reactions.

Multiple Sclerosis
Citrullination of myelin basic protein (MBP) is a well-characterized post-translational modification required for myelin
membrane stability. Increased citrullinated MBP is observed in patients with MS.90 The monomethylation and symmetric
dimethylation of MBP at R107 was shown to be catalyzed by PRMT5.91,92 Early studies found that PRMT activity
increases during the myelination phase of development and is a requirement for the formation of compact myelin in the
CNS.93,94 Further, the importance of MBP methylation was demonstrated when myelinolysis was found to be associated
with disturbances in methionine biosynthesis.95 Numerous animal and patient studies confirmed this observation and
demonstrated that supplementation, particularly of vitamin B12, could reverse the degeneration. The PRMT5 inhibitor,
HLCL65, was shown to effectively suppress adaptive memory Th cell responses and reduce inflammation in an EAE
mouse model.96 PRMT5 depletion in CD4+ T cells was shown to protect mice from Th17-mediated diseases.73 These
findings define a function for PRMT5 in Th cell expansion and its inhibition in inflammatory diseases caused by aberrant
Th cell activity. A new study showed a correlation between EAE severity and PRMT5-mediated promotion of G₁/S cell
cycle progression in CD4+ cells.97 These results corroborate the findings of Webb et al. 202073 and emphasize the
importance PRMT5 inhibitors could have in suppressing Th cell expansion. The mechanism by which PRMT5
specifically promotes Th cell activity is not yet fully understood.

Acute Graft-Versus-Host Disease
The PRMT5 inhibitor, C220, can suppress T cell proliferation and cytokine production to alleviate the severity of
aGVHD in mouse models having received hematopoietic cell transplants.98 PRMT5 inhibition deregulated the phos-
phorylation of extracellular signal-regulated kinase (ERK) 1 (ERK1), ERK2, and STAT1.98 Patients with lymphoma and
acute myeloid leukemia (AML) who receive hematopoietic cell transplants may also benefit from the anti-tumoral
activity of PRMT5 inhibitors.99,100

Ulcerative Colitis
The importance of arginine methylation in T lymphocytes is shown in ulcerative colitis.101 Mechanistically, PRMT5
depletion was found to indirectly lead to a decrease in H3K27 lysine methylation and DNMT1 binding at the Foxp3
promoter to support T regulatory (Treg) cell differentiation in ulcerative colitis patients as well as in clinical mouse
models.101 PRMT5 mediates crosstalk with histone lysine methylation as H3R2me2s/H3R8me2s is needed for optimal
deposition of methyl groups at H3K27 by enhancer of zeste homolog 2 (EZH2)/polycomb repressive complex 2
(PRC2).102 Thus, selective PRMT5 inhibition may be an effective therapeutic strategy to reduce intestinal inflammation.
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Rheumatoid Arthritis
The PRMT5 inhibitor, EPZ015666, inhibits proliferation, migration, and invasion of fibroblast-like synoviocytes (FLSs)
from patients with RA by effectively reducing interleukin expression via the NF-κB and Ak strain transforming (AKT)
pathways.41 These results demonstrate a unique role for PRMT5 in the context of RA and suggest that its specific
inhibition may have therapeutic benefits for this autoimmune disease. Moreover, EPZ015666 attenuated cartilage
degeneration in mouse models of osteoarthritis (OA).103 Furthermore, they show that PRMT5 overexpression in
chondrocytes leads to elevated expression of matrix degrading enzymes via activation of MAPK and NF-κB signaling
pathways. These data support the notion that PRMT5 inhibitors could have therapeutic value in the treatment of RA.
Finally, post-translational modifications are known to play an important role in altering the immunogenicity of synovial
tissue proteins. Namely, citrullination of type II collagen, α-enolase, and fibrinogen have been identified in patients with
RA.104 Moreover, autoantibodies recognizing these citrullinated proteins have been found in the serum of patients with
RA.105 Autoantibodies against methylated arginine epitopes have not yet been identified in patients with RA, however, it
was reported that these patients have elevated levels of circulating sDMA metabolite in their circulation.106 These
findings suggest that post-translational modifications may be a source of neoepitope production during inflammation.

PRMTs in Cancer Immunotherapy
PRMTs have recently been identified as regulators of cancer immunity. Here, we discuss the most recent advances
involving arginine methylation in immune checkpoint pathways.

PRMT1
Deletion of PRMT1 using CRISPR-Cas9 sensitizes the colon adenocarcinoma cell line, MC38, to anti-programmed cell
death protein-1 (PD-1) immunotherapy.107 Inhibiting PRMT1 was shown to sensitize tumors to T cell-mediated killing by
enhancing the apoptosis of cancer cells. Furthermore, transcriptomic analysis showed that PRMT1 knockout alters the
expression of genes involved in T cell-mediated tumor apoptosis and in the production of cytokines and chemokines such
as CCL7 and CCL9.107 In the same context, the combination of a type I PRMT inhibitor, PT1001B, with anti-
programmed death-ligand (PD-L) 1 (PD-L1) inhibition was shown to reduce pancreatic cancer progression by upregulat-
ing CD8+ T cell infiltration into tumors.108 PT1001B inhibits PD-L1 expression in cancer cells and enhances the
induction of tumor cell apoptosis (Figure 4A).108 C57BL/6J mice injected with MC38 tumor cells and treated with
type I PRMT inhibitor, MS023, also exhibit anti-tumor immunity. MS023 significantly inhibits tumor growth and
enhances the checkpoint blockade.109 In human hepatocellular carcinoma (HCC), PRMT1 overexpression is associated
with poor prognosis. Moreover, PRMT1 expression correlates with PD-L1 and PD-L2, suggesting that PRMT1 is an
important regulator of immune checkpoint pathways in HCC.110

CARM1
A CRISPR-Cas9 screen identified that CARM1 deletion in the tumor enhances antitumoral immunity associated with an
increase in CD8+ T cell and dendritic cell infiltration.63 CARM1 was identified as a negative regulator of tumor-specific
T cells in the B16.F10 melanoma model. Another recent study has shown that inhibiting CARM1 with a chemical probe,
compound 43 (a modified version of EZM2302),111 inhibited solid tumor growth of triple negative breast cancer cell line,
BT549, and the melanoma cell line, A375, as xenografts in BALB/c nude mice. Compound 43 and EZM2302 displayed
similar pharmacokinetic parameters, but compound 43 has a longer half-life and a higher plasma concentration. Zhang
et al. 2021 showed that compound 43 exhibits excellent metabolic stability and elicits antitumor efficacy by increasing
the number of activated CD8+ T cells, thereby regulating the immunosuppressive tumor microenvironment.112 These
observations suggest that the inhibition of CARM1 may be used to treat solid tumors and be beneficial for the
enhancement of cancer immunotherapy.

Recently, Fedoriw et al. 2022 showed that inhibiting type I PRMTs in cancer cells promotes antitumor immune
responses by increasing T cell infiltration into the tumor microenvironment and enhancing the cytotoxic activity of
T cells.113 Moreover, they showed that type I PRMT inhibitors increased the expression of interferon stimulated genes

https://doi.org/10.2147/JIR.S364190

DovePress

Journal of Inflammation Research 2022:152950

Srour et al Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


(ISGs) via the cGAS/stimulator of interferon genes (STING) cytosolic DNA sensing pathway (Figure 4A and B). They
also showed reduced expression of the immunosuppressive factor, vascular endothelial growth factor (VEGF)
(Figure 4A).113 Furthermore, combining type I PRMT inhibitors with immune checkpoint blockade enhanced the efficacy
of cancer immunotherapy.113

PRMT5
PRMT5 has a pro-tumor intrinsic function as it promotes immunosuppression in melanoma mouse models. Notably,
PRMT5 inhibition can potentiate immunotherapy by increasing IFN and chemokine production. It regulates the
transcription of NOD-like receptor (NLR)-family caspase activation and recruitment domain (CARD)-containing 5
(NLRC5), a known regulator of the MHC-I antigen presentation pathway (Figure 4C).114 PRMT5 methylates forkhead
box P3 (FOXP3), a transcription factor known to regulate Treg development and function.115 In this capacity, PRMT5
inhibition promotes tumor immunity by inhibiting Treg function and limiting Treg migration into tumors, thus, leading to
enhancement of cancer immunotherapy and tumor-targeted therapies.

A B C D

Figure 4 The roles of PRMT1, CARM1, PRMT5, and PRMT7 in cancer immunotherapy. (A) Protein arginine methyltransferase 1 (PRMT1) regulates programmed death-
ligand 1 (PD-L1) expression in cancer cells and decreases tumor cell apoptosis. Also, PRMT1 induces the expression of the immunosuppressive factor, vascular endothelial
growth factor (VEGF), and inhibits the expression of interferon (IFN) stimulates genes (ISGs). This, in turn, decreases the expression of several cytokines and chemokines
and leads to immune checkpoint blockade resistance. (B) In tumor cells, co-activator-associated methyltransferase 1 (CARM1) inhibits ISG expression. This leads to
inhibition of the type I IFN response and decreases the number of CD8+ T cells in the tumor microenvironment. This increases the resistance of tumors cells to cancer
immunotherapy. (C) Protein arginine methyltransferase 5 (PRMT5) promotes immunosuppression in cancer cells by inhibiting the transcription of NOD-like receptor (NLR)-
family caspase activation and recruitment domain (CARD)-containing 5, which, in turn, modulates the expression of major histocompatibility complex I (MHC-I). This
decreases antigen presentation and tumor recognition. Also, PRMT5 interacts directly with the transcription factor forkhead box P3 (FOXP3); dimethylates it at positions
R27, R51, and R146; and suppresses T cells function. (D) Protein arginine methyltransferase 7 (PRMT7) maintains low expression of double-stranded RNA (dsRNA)
repetitive elements that mimic viral induction of the retinoic acid-inducible gene I (RIG-I) pathway. This inhibits type I IFN and pro-inflammatory cytokine gene expression
and decreases the sensitivity of tumors to the immune checkpoint blockade.
Abbreviations: Rme2s, symmetric dimethylarginine; ERVs, endogenous retroviral elements; PD-1, programmed cell death protein 1; TCR, T cell receptor.
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PRMT7
Recently, PRMT7 was identified as a new target to sensitize melanoma cells to cancer immunotherapy.116 It was shown
that combining anti-PD-1 and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) therapy with PRMT7 deletion
or PRMT7 inhibition using SGC3027, a cell permeable prodrug,117 enhances anti-tumor responsiveness to the immune
checkpoint blockade in a melanoma mouse model.116 PRMT7-deficient B16.F10 melanoma cells exhibit increased
dsRNA repetitive element expression, mimicking viral induction of the RIG-I pathway (Figure 4D). This induces type
I IFNs and pro-inflammatory cytokines to enhance anti-tumoral immunity.116

In sum, the significance of PRMTs in the regulation of cancer immunity is gaining momentum and paving the way for
future studies on the modulation and inhibition of arginine methylation for the treatment of solid tumors and to enhance
the effectiveness of immune checkpoint blockade therapies.

PRMTs in Anti-Viral Responses
PRMTs are largely understood to negatively regulate the antiviral immune response.3 In this section, we will discuss
recent advances involving PRMTs in this response.

PRMT1 was shown to directly interact with TANK-binding kinase-1 (TBK1) and catalyze its methylation to promote
TBK1 phosphorylation and activation for IFN production.118 In contrast, type I PRMT inhibition in cancer cells
stimulates IFN production,113 suggesting that PRMT1 regulation of the anti-viral response maybe context-dependent
and cell-type-specific. Thus, myeloid-specific PRMT1 knockout mice are more susceptible to viral infections due to their
inability to activate TBK1 signaling.118 Zebrafish PRMT3 and PRMT7 negatively regulate the antiviral response via IRF-
3-mediated IFN production.119,120 Mammalian PRMT7 was shown to negatively regulate the antiviral response through
the monomethylation of mitochondrial antiviral signaling protein (MAVS) and, thus, the RIG-I-like receptor (RLR)
signaling pathway.121 PRMT5-mediated methylation of cGAS was also shown to abolish its DNA binding ability and
attenuate the antiviral response via the cGAS/STING cytosolic DNA sensing pathway.114,122 PRMT5 additionally
regulates the cGAS/STING pathway by methylating one of its components, the IFN-γ-inducible protein 16 (IFI16).114

Finally, it was shown that nuclear cGAS recruits PRMT5 and facilitates H3R2 methylation at the promoters of type I IFN
genes, in turn enhancing antiviral immunity upon infection.123 Another study showed that PRMT5 activates the
transcription of type I and type III IFNs, IFNβ1 and IFNλ1, via the induction of the activating transcription factor 2
(ATF2), c-Jun, and TBK1.71 Finally, PRMT6 was identified as a negative regulator of the TBK1-IRF3 signaling cascade
attenuating the antiviral immune response.124,125

Arginine Methylation During Viral Infections
During viral infection both host and viral proteins are targets of PRMTs and their methylation has a profound influence on viral
replication. PRMT6 was found to restrict human immunodeficiency virus (HIV) replication via the methylation of the HIV
trans-activator (Tat) protein.126 Subsequent studies suggest that arginine methylation suppresses Tat-mediated transactivation
by preventing its nucleolar retention and proteasomal degradation.127,128 Further, PRMT6 was found to methylate the HIV
nucleocapsid protein and inhibit viral transcription.129 PRMT5 and PRMT7 were discovered to similarly support HIV
replication via maintenance of viral protein R (Vpr) stability.130 Recently, inhibition of PRMT5 using EPZ015666 was
shown to increase HIV internal ribosome entry site (IRES) activity via the loss of methylation of heterogeneous nuclear
ribonucleoprotein A1 (hnRNPA1).131 PRMT5 has been shown to methylate the C-terminal domain of hepatitis B virus (HBV)
core (HBc) protein and repress viral replication and transcription.132 Certain viruses such as severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) and EBV may benefit from PRMT inhibition. Briefly, the SARS-CoV-2 nucleocapsid (N)
protein was recently shown to be methylated by PRMT1.133 Interestingly, PRMT1 depletion or inhibition using MS023 was
found to interfere with the ability of the N protein to localize to stress granules and bind to the 5’-UTR of SARS-CoV-2
RNA.133 Furthermore, MS023 was shown to reduce SARS-CoV-2 replication in VeroE6 cells.133 Finally, PRMT5 activity is
understood to play a crucial role in Epstein-Barr nuclear antigen (EBNA) 1 (EBNA1)-mediated viral replication, EBNA2-
mediated transcription, and EBV-dependent B cell immortalization.134 Thus, PRMT5 inhibition might prove to be an effective
therapeutic strategy in the treatment of EBV.
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Although accumulating evidence implicates PRMTs in the modulation of anti-viral immunity, the underlying mechanisms
by which arginine methylation regulates the antiviral immune response is not fully understood. Continued investigation will
reveal these mechanisms and aid in developing more effective anti-viral treatments and diagnostic tools.

PRMT Inhibitors in the Treatment of Immune and Inflammatory-Related
Diseases
There are several small molecule PRMT inhibitors currently in clinical trials for the treatment of cancer (for review see3).
This is not surprising considering the numerous roles that PRMTs play in the regulation of cancer, the immune system,
and anti-viral and inflammatory responses. PRMT inhibitors are therefore attractive therapeutic targets, particularly in
lymphomas and leukemias where their expression is elevated.

A first-in-class PRMT5 degrader, MS4322, using PROTAC, has been developed.47 MS4322 effectively degrades PRMT5
in an E3 ligase- and proteasome-dependent manner in mammalian cells.47 Another approach has been to block the PRMT5-
substrate adaptor interaction with first-in-class PRMT5 binding motif (PBM)-competitive small molecule, BRD0639. This
inhibitor was shown to effectively outcompete binding between PRMT5 and RIOK1, inhibiting the methylation of certain
PRMT5 substrates dependent on RIOK1 interaction.135 A new potent and selective PRMT5 inhibitor that binds to the MTA-
bound PRMT5 complex has also been developed. MRTX1719 has been shown to inhibit PRMT5 activity exclusively in
MTAP negative cells.46 This compound allows for selective targeting of only MTA-bound PRMT5 in MTAP negative cancer
cells.

Several PRMT inhibitors target more than one PRMT.136 For example, MS023 and GSK3368715 are both general
type I PRMT inhibitors.99,137 While MS049 targets both CARM1 and PRMT6, and DS-437 is a dual PRMT5 and
PRMT7 inhibitor.43,138 Finally, EPZ020411 has a higher affinity for PRMT6, but can also inhibit PRMT1 and PRMT8.139

We summarize the main features of small-molecule PRMT inhibitors discussed herein as well as those that have been
investigated in the context of immune and inflammatory-related diseases in Table 1.

Conclusions and Future Perspectives
As discussed in this review, arginine methylation plays an essential role in regulating inflammation, immunity, and
antiviral responses, in particular, by modulating the activity of NF-κB. Although more detailed analyses are required,
multiple studies propose that PRMTs can be targeted to improve inflammatory-related diseases, as well as leukemias and
lymphomas. The development of drugs targeting the activity of PRMTs has gained significant momentum in the last
several years, and the inclusion of PRMT inhibitors in current clinical trials warrants continued research on arginine
methylation. The prospect of using PRMT inhibitors as anti-inflammatory and/or anti-viral, besides their use as potential
cancer therapeutics, is promising.
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