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Abstract: Diabetes is a metabolic disease characterized by chronic hyperglycemia. Polygenic diabetes, which encompasses type-1
and type-2 diabetes, is the most prevalent kind of diabetes and is caused by a combination of different genetic and environmental
factors, whereas rare phenotype monogenic diabetes is caused by a single gene mutation. Monogenic diabetes includes Neonatal
diabetes mellitus and Maturity-onset diabetes of the young. The majority of our current knowledge about the pathogenesis of diabetes
stems from studies done on animal models. However, the genetic difference between these creatures and humans makes it difficult to
mimic human clinical pathophysiology, limiting their value in modeling key aspects of human disease. Human pluripotent stem cell
technologies combined with genome editing techniques have been shown to be better alternatives for creating in vitro models that can
provide crucial knowledge about disease etiology. This review paper addresses genome editing and human pluripotent stem cell
technologies for in vitro monogenic diabetes modeling.
Keywords: monogenic diabetes, MODY, NDM, genome editing, pluripotent stem cell

Introduction
Diabetes mellitus (DM) is a metabolic disorder characterized by pancreatic β cell loss and hyperglycemia due to altered
insulin production and/or action. Type 1 diabetes mellitus (T1DM) is an autoimmune disorder characterized by
destruction of pancreatic β cells,1 whereas the pathogenesis that defines Type 2 diabetes mellitus (T2DM) is insulin
resistance in the insulin-target tissues and β cell dysfunction.2 Polygenic diabetes, which encompasses T1DM and T2DM,
is the most prevalent kind of diabetes and involves alteration in different genes, whereas rare phenotype monogenic
diabetes (MD) is caused by a single gene mutation linked to pancreatic development and β cell activity.3

Increased glucose across the GLUT 2 transporter is processed by the enzyme glucokinase in the normal pancreatic beta-
cell, resulting in increased ATP generation. This results in the closing of the KATP channel, which depolarizes the cell
membrane and activates calcium influx through voltage-gated calcium channels, allowing insulin granule exocytosis.4 The
inner subunit (Kir6.2) of the KATP channel is encoded by KCNJ11, while the outer subunit (ABCC8) is encoded by ABCC8
(SUR1).5 Even in the presence of hyperglycemia, mutations in either gene cause the KATP channels to remain abnormally
“stuck open”. The cell membrane cannot properly depolarize without channel closure, and hence insulin cannot be released
from the beta-cell.5,6

For many years, animal studies have been employed extensively in biomedical research to acquire insights into the
normal and aberrant biological processes that occur in humans. However, the variation in disease conditions between
animal models and humans limits their utility in mimicking crucial aspects of human disease.7,8 Human pluripotent stem
cells (hPSCs), which include human embryonic stem cells (ESCs) and human induced pluripotent stem cells (iPSCs), can
be used as an alternative for disease modeling because of their ability to differentiate into all cell types.9,10
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ESCs and iPSCs have provided a critical opportunity for biological research, allowing us to address problems that
were previously unanswerable due to a lack of a human model and replicating the development process with differentia-
tion techniques to generate cell populations of therapeutic significance.11,12 Furthermore, the recent discovery of
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) gene manipulation enables the correction or
introduction of specific pathogenic mutations, the generation of isogenic cell lines, and the investigation of the same
genetic variant in multiple genetic backgrounds.13,14 The purpose of this review paper is to describe recent achievements
in modeling monogenic diabetes with genome editing and pluripotent stem cell technology.

Monogenic Diabetes
MD is linked to mutations in a variety of genes involved in pancreatic development and ß cell activity.15 MD can be
divided into two categories: Neonatal diabetes mellitus (NDM) and Maturity-onset diabetes of the young (MODY).16

Depending on the time of diagnosis NDM is diagnosed within the first six months of life, whereas MODY is diagnosed
before the age of 25.17

MODY
MODY is the most frequent kind of monogenic diabetes, accounting for 1–5% of all diabetes mellitus cases.18 It is
a clinically and genetically heterogeneous collection of endocrine diseases caused by mutations in a single gene implicated
in pancreatic beta cell function.19 These abnormalities are mostly caused by reduced glucose phosphorylation, decreased
activity of pancreatic beta cell expressed transcription factors or altered insulin biosynthesis.20 MODY is non-insulin-
dependent diabetes that is often diagnosed before the age of 25 and is autosomal dominant. Multiple kinds of monogenic
diabetes, each with a different clinical presentation, have been linked to mutations in more than ten different genes.20,21

MODY is thought to be caused by a variety of genetic mutations, including missense, frameshift, splice site, nonsense,
indel, deletion, and insertion.22–24 According to their underlyingmolecular etiology,MODY subtypes may be divided into five
groups: transcriptional regulatory disorders, enzyme disorders, protein misfolding disorders, ion channel disorders, and signal
transduction disorders.25 Table 1 shows the several types of mutations linked to MODY, as well as the affected chromosomes,
subtypes, and molecular etiology.

NDM
NDM is a rare type of monogenic diabetes compared to MODY and it is diagnosed within the first six months of life,
includes a variety of clinically and genetically diverse disorders.26,27 NDM can be permanent (PNDM) and require
lifetime therapy, or transient (TNDM), with insulin reliance for the first few months and spontaneous remission of
diabetes by the age of 18 months.26,28–30

NDM is genetically diverse, with over 25 identified genetic causes that are linked to a variety of pancreatic and non-
pancreatic characteristics.31,32 Mutations in KCNJ11/Kir6.2 and ABCC8/SUR1, which encode the two subunits that
make up the hetero-octameric ATP-dependent K+ (KATP) channel, in INS and ZFP57 genes, or chromosomal 6q24
abnormalities are the most common NDM genetic subtypes.31,33

One of the main causes of TNDM is the overexpression of genes on chromosome 6q24. On chromosome 6q24,
TNDM is associated with the overexpression of at least two imprinted genes, Pleomorphic adenoma gene-like 1
(PLAGL1) and Hydatidiform Mole Associated and Imprinted (HYMAI).34,35 Paternal uniparental chromosome 6
(UPD6), paternal allele 6q24 duplication, or a loss of methylation mutation (LOM) within the differentially methylated
region (DMR) could all be genetic mechanisms causing 6q24-related neonatal diabetes.35

Another key gene linked to NDM is the INS gene. It is the second most prevalent cause of newborn diabetes that is
permanent.36 In most cases, mutations in the insulin gene appear to result in insulin protein misfolding.36 These proteins
appear to aggregate in numerous subcellular compartments, causing endoplasmic reticulum (ER) stress and beta-cell death.37

Table 2 shows monogenic causes of neonatal diabetes with associated clinical features.
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Table 1 Molecular Pathogenesis of Different Types of MODY

MODY
Subtype

Gene Chromosomal
Locus

Types of Mutations Category of
Disorder

Pathophysiology Treatment Reference

MODY1 HNF4A 20q13.12 Missense, frameshift, splice site,
nonsense, indel, deletion,
insertion

Transcriptional
regulation
disorder

Beta cell dysfunction SU [99–102]

MODY 2 GCK 7p13 Missense, frameshift, splice site,
nonsense, indel, deletion,
insertion

Enzyme
disorder

Glucose sensing
defect

No
medication
required

[103,104]

MODY 3 HNF1A 12q24.31 Missense, frameshift, splice site,
nonsense, indel, deletion,
insertion

Transcriptional
regulation
disorder

Beta cell dysfunction SU [57,97,105]

MODY 4 PDX1/IPF1 13q12.2 Missense, nonsense, deletion,
insertion

Transcriptional
regulation
disorder

Beta cell dysfunction Diet or
OAD or
Insulin

[94]

MODY 5 HNF1B 17q12 Missense, frameshift, splice site,
nonsense, indel, deletion,
insertion

Transcriptional
regulation
disorder

Beta cell dysfunction Insulin [106,107]

MODY 6 NEUROD1 2q32 Missense, frameshift, nonsense,
indel, deletion, insertion

Transcriptional
regulation
disorder

Beta cell dysfunction OAD or
Insulin

[108]

MODY 7 KLF11 2p25 Missense Transcriptional
regulation
disorder

Beta cell dysfunction OAD or
Insulin

[18,109]

MODY 8 CEL 9q34 Missense, frameshift, indel,
deletion, insertion

Protein
misfolding
disorder

Pancreatic exocrine
and endocrine
dysfunction

OAD or
Insulin

[110]

MODY 9 PAX4 7q32 Missense, splice site, deletion Transcriptional
regulation
disorder

Beta cell dysfunction Diet or
OAD or
Insulin

[111,112]

MODY10 INS 11p15.5 Missense, splice site, nonsense,
indel, insertion

Protein
misfolding
disorder

Insulin biosynthesis
defect

OAD or
Insulin

[59]

MODY11 BLK 8p23 Missense Transcriptional
regulation
disorder

Insulin secretion
defect

Diet or
OAD or
Insulin

[113]

MODY12 ABCC8 11p15 Missense Ion channel
disorder

Insulin secretion
defect

Insulin
SU

[114,115]

MODY13 KCNJ11 11p15 Missense Ion channel
disorder

Insulin secretion
defect

Insulin
SU

[87,94,116]

MODY14 APPL1 3p14.3 Missense, nonsense Signal
transduction
disorder

Insulin secretion
defect

Diet or
OAD or
Insulin

[117]

Abbreviations: ABCC8, ATP-binding cassette transporter subfamily C member 8; Akt2, Akt serine/threonine kinase 2; APPL1, Adaptor protein, phosphotyrosine
interaction, PH domain, and leucine zipper-containing protein 1; BLK, B-lymphocyte specific tyrosine kinase; CEL, Carboxyl-ester lipase; GCK, Glucokinase; HNFs,
Hepatocyte nuclear factors; HNF1A, Hepatocyte nuclear factor 1 alpha; HNF4A, Hepatocyte Nuclear Factor 4 alpha; HNF1B, Hepatocyte Nuclear Factor 1 beta;
INS, Insulin; IPF1, Insulin promoter factor 1; IRS, Insulin receptor substrate; KCNJ11, Potassium channel inwardly rectifying subfamily J member 11; KLF11,
Krueppel-like factor 11; NEUROD1, Neurogenic differentiation 1; MODY, Maturity-onset diabetes of the young; PAX4, Paired box gene 4; PDX1, Pancreas/
duodenum homebox1.
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Table 2 Monogenic Causes of Neonatal Diabetes Mellitus

Gene Chromosomal
Locus

Transient
Vs
Permanent

Clinical Features Inheritance
Pattern

Treatment References

KCNJ11 11p15.1 Either Low birth weight, developmental delay,

seizures (DEND syndrome), may have
other neurologic Features

Spontaneous

(80%), AD (20%)

Insulin

SU

[116]

ABCC8 11p15.1 Either Low birth weight Spontaneous, AD Insulin
SU

[6]

PLAGL1 6q24.2 Transient Low birth weight, possible IUGR,

diagnosed earlier than channel mutations

(closer to birth), relapsed cases may
respond to SU

Spontaneous, AD

for paternal

duplications

Insulin [34]

INS 11p15.5 Either Low birth weight Spontaneous
(80%), AD (20%)

AR (rare: T or P)

Insulin [118]

GATA6 18q11 Permanent Pancreatic hypoplasia or agenesis, exocrine

insufficiency, cardiac defect

Spontaneous, AD Insulin [119,120]

EIF2AK3 2p12 Permanent Wolcott-Rallison syndrome, skeletal

dysplasia (1–2 y old) Episodic acute liver

failure, exocrine Pancreatic insufficiency

Spontaneous, AR Insulin [121,122]

GCK 7p13 Permanent Low birth weight Spontaneous, AR

(neonatal
diabetes), AD

(GCK-MODY)

Insulin [123]

PTF1A 10p12 Permanent Neurologic abnormalities, exocrine

insufficiency, kidney involvement

Insulin [124,125]

FOXP3 Xp11.23 Permanent Autoimmune thyroid disease, exfoliative

dermatitis, enteropathy (IPEX syndrome)

X-linked Insulin [126]

ZFP57 6p22.1 Transient Variable phenotype Low birth weight,

macroglossia, developmental delay

Spontaneous,

maternal

Hypomethylation
Imprinting

Insulin [30]

GLIS3 9p24.2 Permanent Hypothyroidism, kidney cysts, glaucoma,
hepatic fibrosis

Spontaneous, AR Insulin [127]

PDX1 13q12.1 Permanent Pancreatic hypoplasia or agenesis, exocrine
Insufficiency

Spontaneous, AR
(neonatal

diabetes), AD

(PDX1-MODY)

Insulin [128]

SLC2A2 3q26.2 Either Fanconi-Bickel syndrome (hepatomegaly,

RTA)

Spontaneous, AR Insulin [129]

SLC19A2 1q24.2 Permanent Neurologic deficit (stroke, seizure) Visual

disturbance; cardiac abnormality

Spontaneous, AR Insulin

Thiamine
(rarely)

[130]

(Continued)
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In-Vitro Modeling of MD Using hPSCs
Overview of hPSCs
Stem cells are distinguished by their key property to self-renew and differentiate into various cell types based on their
potency. Based on their ability to differentiate into a wide range of cell lineages they are classified as pluripotent,
multipotent, or unipotent.38 Human ESCs and iPSCs are examples of hPSCs. They can, in principle, grow into any
somatic cell present in the human body and might be used as a disease model to examine various molecular mechanisms
involved in disease causation.39,40

Despite the fact that ESCs have a high potential for use in biological research to better understand fundamental
biological processes, they have certain limitations in future therapeutic settings because of the same rejection issues that
current organ transplants encounter. Individual members of society are also concerned about using human embryos for
research objectives.41,42 On the other hand iPSC technology enables the generation of pluripotent cells from nearly any
individual, and protocols are being designed to differentiate those cell lines into a wide range of cell types present in the
body. IPSCs are being utilized to investigate the impact of genetic variations in disease pathogenesis in a variety of
derived cell types, such as pancreatic beta like cells and various kinds of neurons.43,44

hPSCs Models of MD
Because pancreatic beta cells are the primary cells affected in all kinds of diabetes, a robust strategy for generating functional
cells in vitro is required for a better understanding of the pathophysiology associated with different types of diabetes. Small
molecules and growth factors are used in in-vitro differentiation techniques to enhance or inhibit certain pathways at each
stage of the differentiation process.10,45 Pancreatic beta cells are known to be derived from pancreatic progenitors that
express PDX1 and NKX6.1.46,47 In-vitro, hPSCs are differentiated into several stages of pancreatic β cells. The expression of
essential transcription factors (TFs) that regulate β cell development and functionality distinguishes each stage.15

Table 2 (Continued).

Gene Chromosomal
Locus

Transient
Vs
Permanent

Clinical Features Inheritance
Pattern

Treatment References

GATA4 8p23 Permanent Pancreatic hypoplasia or agenesis, exocrine
insufficiency, cardiac defect

Spontaneous, AR Insulin [131,132]

NEUROD1 2q31.3 Permanent Neurologic abnormalities (later), learning
difficulties, sensor neural deafness

Spontaneous, AR Insulin [133,134]

NEUROG3 10q22.1 Permanent Diarrhea (due to lack of entero-endocrine
cells)

Spontaneous, AR Insulin [131,135]

NKX2-2 20p11.22 Permanent Neurologic abnormalities (later), very low
birth weight

Spontaneous, AR Insulin [136]

RFX6 6q22.2 Permanent Low birth weight, intestinal atresia, gall
bladder hypoplasia, diarrhea

Spontaneous, AR Insulin [137]

IER3IP1 18q21.1 Permanent Microcephaly, infantile epileptic
encephalopathy

Spontaneous, AR Insulin [138]

MNX1 7q36 Permanent Neurologic abnormalities (later) Spontaneous, AR Insulin [139]

HNF1B 17q21 Transient Pancreatic atrophy, abnormal kidney, and

Genitalia development

Spontaneous, AD Insulin [140]

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; DEND, developmental delay, epilepsy, and neonatal diabetes; DM, diabetes mellitus; IUGR, intrauterine
growth restriction; MODY, maturity onset diabetes of the young; RTA, renal tubular acidosis; SGA, small for gestational age.
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While ESCs are derived from cells isolated from the blastocyst’s inner cell mass,48 iPSCs allow for the production of
pluripotent cells by transcriptional reprogramming of terminal cells from adult patients.49 The capacity to produce patient-
specific human tissue in vitro has enabled genetic disease models which can mimic the disease phenotype in humans.

Various methodologies might be used to generate relevant cell types from hPSCs for modeling MD. The most popular
strategy is to develop iPSCs from affected patients’ somatic cells containing a specific mutation/variant (patient-derived
iPSCs) and compare them to iPSCs generated from healthy controls (Ctr-iPSCs). Another option is to employ genome-
editing methods to induce MD-relevant mutations into existing hPSC lines (ESCs and iPSCs) in order to explore the
function of the genes linked with MD.50

Patient-Derived iPSCs for Modeling MD
Takahashi K. and Yamanaka S. reported the generation of the first induced pluripotent stem cells (iPSCs) in mouse fetal
fibroblasts by transduction of four transcription factors (Oct3/4, Sox2, c-Myc, and Klf4), revealing that somatic cells can be
converted to a pluripotent stage iPSCs. The iPSCs formed have the characteristics of ESCs and may be utilized to develop
into different cell types.49 The generation of iPSCs from patients and their differentiation into disease-relevant cell types has
enormous potential for in vitro disease modeling.51 Keratinocytes, dermal fibroblasts, adipocytes, and peripheral blood cells
are among the human somatic cells that may be reprogrammed. Retroviruses, lentiviruses, plasmids, adenoviruses, Sendai
viruses, transposons, protein, modified RNA, and miRNA are being used in reprogramming.52

Rezania et al developed a seven-stage protocol for generating reprogrammed hiPSC lines into insulin-producing cells.
During static in vitro incubations, stage (S) 7 cells exhibited critical markers of mature pancreatic beta cells and secreted
glucose-stimulated insulin identical to human islets. This can be generalized to in-vitro models of monogenic diabetes.53

Diabetes stem cell models should allow for the investigation of specific processes leading to human β-cell failure as
well as the testing of techniques to retain or restore β-cell function. Teo et al were the first to report the successful
generation of hiPSCs from patients with five different MODY conditions (MODY1, MODY2, MODY3, MODY5, and
MODY8) as a valuable resource for studying the role of these MODY genes/transcription factors in the development of
human pancreas and beta cells, as well as the regulation of beta-cell secretory function.54

Shang et al used induced pluripotent stem cells derived from skin fibroblasts of Wolfram syndrome patients and
discovered that these WFS1 mutant cells have insulin processing and secretion in response to various secretagogues
comparable to healthy controls, but with a lower insulin content and increased activity of UPR pathways.55 Mutations in
the WFS1 gene (wolframin), which is abundantly expressed in human islets as well as the heart, brain, placenta, and
lung, can cause childhood-onset insulin-dependent diabetes.56

Other researchers investigated the influence of MODY1/HNF4A mutation on the development of the foregut lineage in
humans using a hiPSCs-based disease modeling method. Their findings indicate that in MODY1, liver and pancreas
development is disrupted early on, contributing to patients’ altered hepatic proteins and β-cell abnormalities.57 Conditional
ablation of Hnf4a in mouse pancreatic β-cells, on the other hand, did not result in a diabetic phenotype, despite reduced
glucose-stimulated insulin secretion (GSIS),58 showing that rodent models do not adequately reproduce the MODY1
phenotype in humans.

Balboa et al developed an in-vitro model using hiPSCs from patients with INS mutations and showed that the INS
mutations cause proinsulin misfolding, higher symptoms of ER stress, and decreased proliferation in INS mutant beta-
like cells compared to corrected controls.59 Other researchers generated hiPSCs from fibroblasts of a patient with PNDM
and undetectable insulin at birth owing to a homozygous mutation in the insulin gene’s translation start site in another
recent study. Their findings reveal that INS mutant cells differentiated into hormone-negative hiPSCs.60

Application of Genome Editing Technologies for Monogenic Diabetes Modeling Using hPSCs

Methods in Genome Editing
Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly inter-
spaced short palindromic repeats-associated Cas protein system (CRISPR/Cas) are three cutting-edge gene technologies that
use enzyme “scissors” to cut DNA at specified gene loci.61 The mode of action is common for the three methods, in which
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these enzymes bind to a sequence of interest in the genomic DNA and induce targeted double-strand break (DSB) followed by
DNA repair mechanisms, either homologous recombination (HR) or non-homologous end-joining (NHEJ).62

ZFNs
ZFNs are artificial structures created by combining restriction endonucleases with zinc-finger-binding domain proteins designed
to target user-specified sequences within the genome.62 ZFNs are made up of N-terminal DNA binding domain that has been
custom-engineered linked together via a linker peptide to a C-terminal endonuclease.63 The endonuclease is a non-specific
cleavage domain from the bacterial FokI endonuclease that dimerizes to cleave DNA, whereas the DNA binding domain is an
array of several zinc-finger domains, each of which recognizes a distinct three base pair sequence of DNA.64

When there are DSBs in the genome, an intracellular signaling cascade known as the DNA damage response is
activated to repair the double-strand breaks caused by ZFNs.65 The mechanisms include the following:1 ZFNs containing
FokI endonucleases and protein-binding domains are introduced into the cell,2 FokI and protein-binding domains are
released to enter the nucleus,3 protein-binding domains attach with DNA fragment to be removed,4 FokI cuts out the
identified DNA segment by creating double-stranded DNA break, and5 the desirable DNA segment is inserted and
integrated into the DNA sequence.61

TALENs
TALENs, like ZFNs, have a modular structure with N-terminal transcription activator-like effector (TALE) DNA-binding
domain fused to a C-terminal FokI endonuclease domain.66,67 TALENs are somewhat more site-specific than ZFNs, with
fewer off-target effects because TALE repeats can target single base pair (bp), but Zinc fingers recognize DNA triplets.68

TALE DNA binding domain is composed of 34-residue repeat domains.69 At positions 12 and 13, the repeat variable
residues (RVDs) make contact with DNA.69 For constructing synthetic TALE arrays, the most often employed RVDs are
NI for adenine, HD for cytosine, NG for thymine, and NN or HN for guanine or adenine.70,71 TALEs are commonly built
to recognize 12- to 20-bps of DNA, with more bases resulting in greater genome-editing specificity.72 TALE DNA-
binding domains may be built in a variety of ways, the easiest being Golden Gate assembly.66

Recent TALENassembly improvements have focused on the development of strategies to improve their performance, such as
specificity profiling to uncover nonconventional RVDs that increase TALEN activity.73,74 The FokI cleavage domain, which cuts
on the inside of a 12- to 19-bp spacer region that separates each TALE binding site, mediates dimerization of TALEN proteins.67

Targeted nucleases cause DSBs, which are repaired by NHEJ or, in the presence of a donor template, HDR.75

CRISPR/Cas9
Bacteria have a distinct adaptive immune system that destroys foreign DNA using an RNA-guided DNA endonuclease.76

The three processes of CRISPR immunity are spacer acquisition, CRISPR RNA (crRNA) synthesis, and interference.77

CRISPR/Cas evolved from prokaryotes’ adaptive resistance to bacteriophages, invading plasmids, and viruses. A–T-rich
leader sequences are found right adjacent to 27–42 bp palindromic repeats in the bacterial genome. The palindromes are
divided by “interspaced” DNA known as protospacers, which is a template of previously identified bacteriophage DNA
and acts as a marker of earlier infection.78,79

Past foreign DNA fragments are used as spacers in the CRISPR genomic locus. CRISPR RNAs (crRNAs) are
transcribed from CRISPR loci and contain a unique sequence complementary to target DNA (called protospacer) as well
as a repeat region that hybridizes to a short RNA termed transactivated crRNA (tracrRNA). The crRNA then assembles
with Cas proteins to form the effector complex; Cas proteins are guided to break target DNA by the crRNA and
tracrRNA combination.79 Furthermore, crRNA and tracrRNA may be combined into a single-guide RNA (sgRNA) that
can target and activate Cas9 endonuclease activity.80

The CRISPR/Cas9 genome editing system may be broken down into three steps: recognition, cleavage, and repair.81

Through its 5’ crRNA complementary base pair component, the designed sgRNA drives Cas9 and detects the target
sequence in the gene of interest. In the absence of sgRNA, the Cas9 protein stays inactive. Cas9 nuclease causes DSBs
three base pairs upstream of Protospacer Adjacent Motif (PAM).82 The PAM sequence is a short (2–5 bp) conserved
DNA sequence downstream of the cut site that changes in length depending on the bacterial species. Cas9 protein, the
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most extensively used nuclease in genome editing tools, detects the PAM sequence at 5-NGG-3 (N can be any nucleotide
base). The Cas9 protein is then activated for DNA cleavage.83,84 The HNH domain cleaves the complementary strand of
target DNA, whereas the RuvC domain cleaves the non-complementary strand, resulting in primarily blunt-ended DSBs.
Finally, the host cellular machinery repairs the DSB.85

CRISPR/Cas-9 Based Genetic Manipulation of hPSCs for Modeling MD
The use of hPSCs and in vitro differentiation protocols that mimic in vivo pancreatic development is well suited to
investigate pancreatic monogenic diseases,86,87 as are genome editing tools such as CRISPR/Cas9 to modify hPSCs for
human in vitro disease modeling to understand the role of MD relevant mutations in pancreatic development and beta-
cell function.88,89

Several pancreatic differentiation protocols have been employed for modeling MD using hPSCs.47,90,91 hPSCs can be
successfully differentiated into definitive endoderm, which can then be shaped into a posterior-foregut-like population
capable of upregulating PDX1 expression in response to retinoic acid and fibroblast growth factor 10 (FGF10), as well as
inhibitors of the bone morphogenetic protein (BMP) and hedgehog signaling pathways.47

The genome editing of a particular cell line that differentiates rapidly to beta-cells may be utilized to develop knock-
out models of pancreatic development genes and used to understand their function.92 The CRISPR-Cas9 nuclease system
may be used to introduce various genomic changes. The following steps are taken to alter hPSCs for modeling MD using
the CRISPR-Cas9 nuclease system: (a) sgRNA design, (b) sgRNA synthesis, (c) single or multiplex sgRNA transfection
in hPSCs, (d) assessment of Indel frequency, and (e) clonal propagation of knockout lines.93

Huangfu et al use TALEN and CRISPR-Cas-mediated gene editing in combination with hPSC-directed differentiation
to model MD in vitro. This study examines the involvement of PDX1 and seven other pancreatic transcription factors
(RFX6, PTF1A, GLIS3, MNX1, NGN3, HES1, and ARX) in pancreatic cell commitment.94 This phenotype correlates
with the observation that patients with heterozygous PDX1 mutations develop diabetes at a young age, and it also
validates that low levels of PDX1 can cause beta-cell dysfunction, a decrease in beta-cell mass during fetal development,
and/or the maintenance of beta-cell mass in adults.95,96

Cardenas-Diaz et al employed the CRISPR-Cas9 technology to genetically alter ESCs to ablate one or two alleles of
HNF1A and differentiate these stem cell lines into pancreatic beta-like cells in MODY3, one of the most frequent forms of
MDs caused by mutations in the transcription factor HNF1A. Their findings imply that HNF1A plays an important role in
endocrine cell development since deletion of HNF1A results in increased production of alpha cell markers such as glucagon
and reduced expression of PAX4, a transcription factor that regulates beta cell development.97

Shi et al employed CRISPR/Cas9 to generate hPSCs with frameshift mutations in GATA6, either alone or in
conjunction with mutations in GATA4. GATA6± haploinsufficiency changes pancreatic progenitor cell development,
resulting in a lower proportion of glucose-responsive beta-like cells, according to their findings.88 Chia et al studied the
role of GATA6 using both gene-edited and patient-derived hPSCs and discovered that GATA6 heterozygous hPSCs had
a slight decrease in endoderm development, but GATA6-null hPSCs can only form mesoderm-like cells. According to
their findings, GATA6 appears to be upstream of the endoderm program in humans.98

Conclusion
Monogenic diabetes is an interesting disease category to model in vitro using hPSCs since it is caused by a single
mutation. Over the last decade, great progress in the field of hPSCs has been made in terms of developing hPSC-based
models and differentiation processes for studying diabetes pathogenesis. By modifying the genotype of the initial hPSCs
or producing hiPSCs from patients with monogenic diabetes, researchers are seeking to understand the mechanisms
behind the development of various types of monogenic diabetes. Detailed understanding of the molecular underpinnings
behind pancreatic beta-cell development and function, as well as using reliable models that can precisely mimic the
effects in humans, can considerably improve the chances of developing effective diabetes treatments.
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