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Abstract: Dexmedetomidine, a specific α2 adrenergic receptor agonist, is highly frequently used in the perioperatively for its
favorable pharmacology, such as mitigating postoperative cognitive dysfunction. Increasing attention has been recently focused on
the effect of whether dexmedetomidine influences cancer recurrence, which urges the discussion of the role of dexmedetomidine in
tumor-progressive factors. The pharmacologic characteristics of dexmedetomidine, the tumor-progressive factors in the perioperative
period, and the relationships between dexmedetomidine and tumor-progressive factors were described in this review. Available
evidence suggests that dexmedetomidine could reduce the degree of immune function suppression, such as keeping the number of
CD3+ cells, NK cells, CD4+/CD8+ ratio, and Th1/Th2 ratio stable and decreasing the level of proinflammatory cytokine (interleukin 6
and tumor necrosis factor-alpha) during cancer operations. However, dexmedetomidine exhibits different roles in cell biological
behavior depending on cancer cell types. The conclusions on whether dexmedetomidine would influence cancer recurrence could not
be currently drawn for the lack of strong clinical evidence. Therefore, this is still a new area that needs further exploration.
Keywords: dexmedetomidine, cancer recurrence, surgery, immune, inflammation

Introduction
The leading cause of mortality currently in patients <85 years is cancer, which adds a tremendous economic and medical
burden worldwide.1 Surgery under anesthesia remains the first choice for cancer patients and plays a crucial role in
cancer diagnosis, stage confirmation, and reconstruction. Metastatic recurrence is still reasonably frequent although
surgical resection should be curative in local tumor lesions. An increasing number of studies have recently indicated that
anesthetic drugs, as one of the essential perioperative components, may be involved in cancer recurrence by influencing
the factors of tumor progression,2 such as propofol and locoregional anesthesia leading less immunosuppression,3 opioids
stimulating cytological behavior of several tumor cells.4 Dexmedetomidine is a frequently increasingly used anaesthetic
in the department of anesthesiology and intensive care unit (ICU) for its favorable pharmacology of suitable sedation,
pain alleviation, and reduced odds of postoperative cognitive dysfunction.5 However, there still lacks of reviews on the
theme of whether it plays a role in cancer recurrence as the amount of related researches grows sharply. Some studies
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showed that dexmedetomidine could protect immunity function, reduce inflammation reaction in patients who underwent
cancer surgeries, and inhibit tumor cell growth, which may be favorable for outcomes of cancer patients.6–8 However,
some studies claimed dexmedetomidine decreased overall survival after lung cancer surgery9 and stimulated the growth
of some kinds of cancer cells.10,11 Hence, this review makes a comprehensive description, exploring the role of
dexmedetomidine in tumor-progressive factors in the perioperative period that may affect cancer recurrence.

Methods
Two authors (QC and MLG) comprehensively searched PUBMED, EMBASE, and SCOPUS using the terms
((Dexmedetomidine or DEX or Dexmedetomide) and (Tumor or Tumour or Oncology or Cancer or Neoplasm))
from inception to July 2021 to gather fundamental and clinical studies exploring the relationship between dexmede-
tomidine and cancer. Moreover, references related to this topic were also searched. Clinical Registration Websites
(https://clinicaltrials.gov/ and http://www.chictr.org.cn) were searched for ongoing clinical trials observing whether
dexmedetomidine is associated with cancer recurrence.

Chemistry and Clinical Pharmacology of Dexmedetomidine
Dexmedetomidine is a usual anesthetic agent approved in the United States by the Food andDrug Administration in 1999 for the
sedation of critical patients in the ICU. Furthermore, the applied range of dexmedetomidine in the clinical setting expanded to
patients being operated on in 2008.12 The chemical structure of dexmedetomidine is 5-[(1S)-1-(2,3-dimethyl phenyl) ethyl]-1H-
imidazole with molecular formula C13H16N2 (Figure 1).12 As a particular agonist to α2 adrenergic receptor, the selectivity ratio
of α2 adrenoceptor to α1 adrenoceptor is 1600:1, which was more potent than clonidine with a selectivity ratio of 200:1.5 The
protein binding of dexmedetomidinewas 94%, and the half-life distributionwas approximately 6minwith a clearance half-life of
approximately 2–3 h. Dexmedetomidine could be metabolized by direct glycosylation and cytochrome P450 enzymes.
Moreover, 95% and 4% of its metabolites are excreted in the urine and feces, respectively, and are not affected by fat mass.13

The α2 adrenergic receptors were distributed in the brain and other peripheral organs (eg, the spine, spleen, kidney, aorta, lung,
skeletal muscle, heart, and liver; Table 1). Dexmedetomidine exerts diverse pharmacologic actions by specific binding to α2
adrenergic receptors in different tissues and cells. Themost remarkable feature of dexmedetomidine is that patients remain easily
rousable under dexmedetomidine-based sedation,14 which is primarily mediated by the activation of pre- and postsynaptic α2
adrenergic receptors in locus coeruleus15 where the brain is responsible for mediating wakefulness and sleep. Furthermore,
multiple studies showed that dexmedetomidine-based sedation could reduce the risk of postoperative delirium in surgery
patients, especially in the elderly.16–19 The analgesic effect of dexmedetomidine is mediated by activating α2 adrenergic
receptors in locus coeruleus and the spine20 through interneuron hyperpolarization and reduction of neurotransmitter release
(eg, substance P and glutamate).12 In addition, dexmedetomidine exerts a protective role in ischemia–reperfusion injury in
cerebral,21 spinal cord,22 kidney,23 lung,24 heart,25 liver,26 and intestine,27 which has promising application and benefit for
patients.

Direct and Indirect Tumor-Progressive Factors in the Perioperative Period
The perioperative period is a critical time because the physiological status of patients dramatically changes. The
equilibrium between the immune system and neoplasm growth was considered steady before surgery trauma.28

Figure 1 The chemical structure of dexmedetomidine.
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Surgery alters the interplay of neuroendocrine, inflammatory, immune, and metabolic pathways of patients,29 which
initiates a cascade of stress responses by activating the sympathetic nervous system (SNS) and hypothalamic–pituitary–
adrenal (HPA) axis.30 SNS and HPA axis activation is closely related to immune dysfunction.31 Adrenoreceptors are also
distributed on lymphoid organs and immune cells32 that could be activated by catecholamines and glucocorticoids
secreted from adrenal glands, leading to an imbalance between Th1 and Th2 cells, shifting in favor of the Th2 cells,
decreasing NK cell cytotoxicity, resulting in immune function suppression.33,34

Circulating tumor cells (CTCs), which are the cause of distant metastases,35 are shed from the solid tumor into the
blood in many cancer patients, which are also significantly increased intraoperatively during tumor resection, especially
in open approach than minimally invasive surgery, in the central vein than peripheral venous blood.36,37 Moreover, the
detection rate of CTCs is much higher during surgical manipulation, particularly in cancer with lymphatic invasion.38

Moreover, tissue injury, stress, and infection caused by surgery trauma could lead to the inflammatory response
involved in the coordinated delivery of blood components to the site of infection and injury.39 Tissue-resident macro-
phages and mast cells will recognize the initial signal subsequently, leading to the production of various inflammatory
mediators, including chemokines, cytokines, vasoactive amines, eicosanoids, and products of proteolytic cascades and
inducing neutrophils to move to the position of the inflammation.40 However, the inflammatory process persists and
acquires new characteristics if the acute inflammatory response fails to eliminate the pathogen. Thus, it would transform
into the persistent inflammation state involving the formation of granulomas and tertiary lymphoid tissues,41 providing
favorite sites by disrupting endothelial surfaces and liberating growth factors for the seedings from CTCs released by
surgery manipulation,42,43 which was called inflammatory oncotaxis.44 Moreover, neutrophil extracellular traps (NETs),
relative to the inflammatory reaction induced by surgical trauma,45 could attract cancer cells to form distant metastases.46

Hence, the depressed immunologic function, the inflammation state, may be indirect tumor-progressive factors aroused by
surgery stress or injury, which acted as helpers in cancer recurrence. Moreover, the CTCs and distant microscopic metastases
could be the direct tumor-progressive factors, whose vitality is essential to cancer recurrence. The form of distant metastases
facilitated by tumor-progressive factors by surgery stress or injury in the perioperative period is presented below (Figure 2).

The Role of Dexmedetomidine in Indirect Tumor-Progressive Factors
(Immunologic Function and Inflammation State) During Cancer
Operations
Dexmedetomidine is widely used to maintain anesthesia in operations,17 including cancer surgeries.7,47 Moreover, dexme-
detomidine infusion may influence the immunologic function and inflammation state of cancer patients. Sixty-two patients

Table 1 Classification of α2 Adrenergic Receptors

Receptor
Type

The Primary Signal
Transduction Mechanism

The distribution in
Human Tissue

Physiological Functions Therapeutic Drugs (Indications)

α2A Gi/Go (adenylate cyclase

inhibition, potassium channel,

calcium channel, and
phospholipase A2

stimulation)

Brain > spleen > kidney

> aorta = lung = skeletal

muscle > heart = liver

Presynaptic inhibition of

noradrenaline release,

hypotension, sedation,
analgesia, and hypothermia

Agonists: Dexmedetomidine,

medetomidine, romifidine, clonidine,

brimonidine, detomidine, lofexidine,
xylazine, tizanidine, guanfacine, and

amitraz (antihypertensives, sedatives and

treatment of opiate dependence, and
alcohol withdrawal symptoms)

Antagonists: phentolamine, yohimbine,

idazoxan, atipamezole, trazodone,
mianserin, and mirtazapine (aphrodisiac

and antidepressants, and reversal of

α2-AR agonist-induced sedation)

α2B Gi/Go (adenylate cyclase

inhibition, potassium channel,
calcium channel)

Kidney ≫ liver > brain =

lung = heart = skeletal
muscle (also reported in

aorta and spleen)

Vasoconstriction

α2C Gi/Go (adenylate cyclase

inhibition, potassium channel,

calcium channel)

Brain = kidney (also

reported in spleen,

aorta, heart, liver, lung,
skeletal muscle)

Presynaptic inhibition of

noradrenaline release

Abbreviation: α2-AR, α2 adrenergic receptor.

Drug Design, Development and Therapy 2022:16 https://doi.org/10.2147/DDDT.S358042

DovePress
2163

Dovepress Cai et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


undergoing radical mastectomy were pumped with 1 μg/kg dexmedetomidine for 10 min before anesthesia induction showed
increased CD4+ and NK cell levels compared with the control.7 This high level was maintained for 48 h and only returned to
normal in about 72 h. Patients pumped with 1 μg/kg dexmedetomidine intravenously at 0.2 μg/kg·h during radical gastric
cancer resection showed elevated CD3+ and CD4+ levels and CD4+/CD8+ ratio and reduced interleukin (IL-6) and tumor
necrosis factor-alpha (TNF-α) levels compared with the control.47 Dexmedetomidine could also maintain Th1/Th2 balance
and decrease IL-6 and TNF-α levels in patients undergoing radical gastrectomy.48,49 Patients pumped intravenously with 1
μg/kg dexmedetomidine for 10 min as a loading dose and maintained at 0.3 μg/(kg·h) until the end of hepatectomy had
reduced IL-6 and TNF-α levels compared with the control.27 Patients pumped with 1 μg/kg dexmedetomidine intravenously
for 10–15 min as a loading dose and maintained at 1 μg/(kg·h) before colon cancer operation showed increased CD3+ and
CD4+ levels, CD4+/CD8+ ratio, and Th1/Th2 ratio compared with the control.50 Furthermore, Guo et al found that 1 μg/kg
dexmedetomidine pumped intravenously for 10 min as a loading dose and maintained at 0.4 μg/(kg·h) until 30 min before the
end of lung cancer operation reduced the TNF-α level of patients,51 which was also reported by other studies with different
dexmedetomidine infusion rates.52 Moreover, dexmedetomidine infusion could also promote CD3+ and CD4+ levels and
CD4+/CD8+ ratio and decrease IL-6 levels in lung cancer operation6,53–56 compared with the control. Patients pumped with
0.5 μg/kg dexmedetomidine intravenously for 15 min as a loading dose and maintained at 0.4 μg/(kg·h) until the end of oral
cancer operation had elevated CD3+ and CD4+ levels and CD4+/CD8+ ratio.57 In addition, patients pumped with 1 μg/kg
dexmedetomidine intravenously for 15 min and maintained at 0.5 μg/(kg·h) until brain cancer operation ended had elevated
CD3+ and CD4+ levels, CD4+/CD8+ ratio, and NK cell numbers.58 In patients pumped with 0.3 μg/(kg·h) dexmedetomidine
intravenously until the end of esophagus cancer operation had significantly decreased IL-6 levels compared with the
control.59 Other studies also demonstrated that intravenous infusion of dexmedetomidine could decrease IL-6 and TNF-α
levels in esophagus cancer operation.60 Moreover, dexmedetomidine infusion could decrease IL-6 and TNF-α levels in
colorectum operation61,62 (the studies involved are listed in Table 2, and the details of the changes are shown in
Supplementary Table 1).

Figure 2 The distant metastases form facilitated by tumor-progressive factors by surgery stress. On the one hand, surgery can promote the shedding of cells from solid
tumors to form circulating cancer cells. On the other hand, it could activate the HPA axis and SNS to suppress the immune system, which helps tumor cells escape immune
surveillance, and localize to target organs (eg, with the help of the NETs and clusters of neutrophils). Moreover, the released inflammatory mediator by immune and mast
cells incited by damage signals or activated HPA axis and SNS will lead to vascular barrier injury and inflammation, which tends to form the tumor microenvironment if the
status exists persistently.
Abbreviations: SNS, sympathetic nervous system; HPA axis, hypothalamic–pituitary–adrenal axis; HMGB1, high-mobility group box 1 protein; S100A8, S100A9, and
S100A12, members of the S100 calcium-binding protein family; ECM, components of the extracellular matrix; ROS, reactive oxygen species; CTCs, circulating tumor cells;
NETs, neutrophil extracellular traps; AGER and RAGE, for advanced glycation end-product-specific receptor; TLRS, Toll-like receptors.
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Table 2 Studies Investigating the Effect of Dexmedetomidine on Immune Cells and Inflammatory Cytokines in Patients Undergoing Cancer Surgery

Author Year Number of
Patients
(Group D/C)

Physical
Status of
Patients

Cancer
Surgery

Treatment in Group D Treatment in Group C CD3+ CD4+ CD4
+/CD8+

Th1/Th2 NK IL-6 TNF-α

Wang et al27 2014 44 (22/22) ASA II–III Liver 1 μg/kg DEX pumped

intravenously for 10 min as

a loading dose and maintained at

0.3 μg/(kg·h) until the end of the
surgery

0.9% sodium chloride pumped

similarly

↓ ↓

Yang et al7 2017 124 (62/62) ASA II Breast 1 μg/kg DEX pumped

intravenously for 10 min

0.9% sodium chloride pumped

similarly

↑ ↑ ↑ ↑ ↓

Wang et al50 2017 141 (72/69) ASA I–II Colon 1 μg/kg DEX pumped

intravenously for 10–15 min as

a loading dose and maintained at

1 μg/(kg·h) before operation

0.9% sodium chloride pumped

similarly

↑ ↑ ↑ ↑ ↓

Wang et al48 2014 40 (20/20) ASA I–II Stomach 0.5 μg/kg DEX pumped

intravenously for 10 min as

a loading dose and maintained at

1 μg/(kg·h) until 30 min before
closing the peritoneum

0.9% sodium chloride pumped

similarly

↑ ↓ ↓

Gao et al52 2015 50 (25/25) ASA I–II Lung 1 μg/kg DEX pumped

intravenously before induction of

general anesthesia for 20 min

None ↓

Dong et al47 2017 74 (37/37) ASA I–III Stomach 1 μg/kg DEX pumped

intravenously at a velocity of 0.2

μg/kg·h during operation

0.9% sodium chloride pumped

similarly

↑ ↑ ↑ ↓ ↓

Guo et al51 2017 124 (62/62) ASA I–II Lung 1 μg/kg DEX pumped

intravenously for 10 min as

a loading dose and maintained at

0.4 μg/(kg·h) until 30 min before
the end of the operation

None ↓

Guo et al71 2015 149 (76/73) ASA I–III Oral DEX pumped intravenously at 0.2

μg/kg/h for 12 h after the
operation

0.9% sodium chloride pumped

similarly

↓
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Table 2 (Continued).

Author Year Number of
Patients
(Group D/C)

Physical
Status of
Patients

Cancer
Surgery

Treatment in Group D Treatment in Group C CD3+ CD4+ CD4
+/CD8+

Th1/Th2 NK IL-6 TNF-α

Wen et al53 2020 54 (26/28) ASA I–II Lung 1 μg/kg DEX pumped

intravenously for over 10 min as

a loading dose and maintained at

0.4 μg/(kg·h) until 30 min before
the end of the operation

0.9% sodium chloride pumped

similarly

↑ ↑ ↑ ↓ ↓

Wu et al58 2015 40 (20/20) ASA I–II Brain 1 μg/kg DEX pumped

intravenously for 15 min and

maintained at 0.5 μg/(kg·h) until
the end of the operation

0.9% sodium chloride pumped

similarly

↑ ↑ ↑ ↑

Liu et al54 2020 120 (60/60) ASA II–III Lung 0.5 μg/kg DEX pumped

intravenously for 10 min and

maintained at 0.5 μg/(kg·h) until
30 min before the end of the

operation

0.9% sodium chloride pumped

similarly

↓ ↓

Kong et al6 2018 120 (60/60) ASA I–II Lung 1 μg/kg DEX pumped

intravenously for 15 min and

maintained at 0.5 μg/(kg·h) until
20 min before the end of the

operation

0.9% sodium chloride pumped

similarly

↑ ↑ ↑ ↑ ↓ ↓

Gong et al59 2020 40 (20/20) ASA II–III Esophagus DEX pumped intravenously for

0.3 μg/(kg·h) until the end of
operation

0.9% sodium chloride pumped

similarly

↓

Tang et al60 2020 60 (27/26) ASA I–III Esophagus 0.6 μg/kg DEX pumped

intravenously for 15 min as

a loading dose and maintained at

0.4 μg/(kg·h) until the end of the
operation. After the operation,

the patients were administered

with PCA containing 1 μg/mL of
sufentanil plus 2.5 μg/mL DEX

0.6 μg/kg DEX pumped

intravenously for 15 min as

a loading dose and maintained at

0.4 μg/(kg·h) until the end of the
operation. After the operation,

the patients were administered

with PCA containing 1 μg/mL of
sufentanil without DEX

↓ ↓
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Huang et al57 2021 64 (32/32) ASA I–II Oral 0.5 μg/kg DEX pumped

intravenously in 15 min as

a loading dose and maintained in

0.4 μg/(kg·h) until the end of the
operation

0.9% sodium chloride pumped

similarly

↑ ↑ ↑

Zhang et al61 2019 140 (80/60) ASA II–III Colorectum 1 μg/kg DEX pumped

intravenously for 15 min and

maintained at 0.2–0.7 μg/(kg·h)
until 30 min before the end of the

operation

0.9% sodium chloride pumped

similarly

↓

Xie et al55 2020 116 (58/58) ASA II–III Lung 1 μg/kg DEX pumped

intravenously for 10 min and

maintained at 0.3 μg/(kg·h) until
20 min before the end of the

operation

0.9% sodium chloride pumped

similarly

↓ ↓

Yi et al62 2018 246 (126/120) ASA II–III Colorectum 0.5 μg/kg DEX pumped

intravenously for 15 min and

maintained at 0.5 μg/(kg·h) until
the end of the operation

0.9% sodium chloride drip at

a rate of 0.5 µg/kg/h.

↓

Yin et al56 2021 90 (48/42) Not

mentioned

Lung 0.5 μg/kg DEX pumped

intravenously for 10 min and

maintained at 0.5 μg/(kg·h) until
the end of the operation

None ↓

Notes: ↑ indicates patients treated with dexmedetomidine compared with the patients treated with saline where the levels of immune cells or inflammatory cytokines in the blood of patients significantly increased postoperatively; ↓
indicates patients treated with dexmedetomidine compared with patients treated with saline where the levels of immune cells or inflammatory cytokines in the blood of patients decreased significantly postoperatively.
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These studies suggested that dexmedetomidine could regulate immunologic function and decrease the proinflamma-
tory cytokine release in the perioperative period of cancer operations. The leading mechanism is that SNS and HPA
activity stimulated by surgery stress could induce a redistribution of immune cells (eg, neutrophils, monocytes, and
T cells) by secretion of catecholamines and cortisol.63 Catecholamines induce the T and NK cells to move from the
marginated pool (eg, bone marrow and lymph nodes) to the bloodstream temporarily.64 Consequently, the T cells and
monocytes were induced out of the bloodstream to the surgical site or the marginated pool. Thus, the number of NK and
T cells decreased postoperatively.65 However, α2 adrenergic receptors are highly expressed in the pineal gland;66

dexmedetomidine could reduce the adrenocorticotropin (ACTH) secretion and cortisol levels by binding to it.63

IL-6 and TNF-α are mainly secreted from monocytes and macrophages. The inhibiting effect of dexmedetomidine on
TNF-a and IL-6 secretions depend on two possible mechanisms. First, the attenuation of surgery stress by ACTH and
cortisol reduction via dexmedetomidine could indirectly reduce the inflammation reaction given the close relationship
between stress and inflammation.67 Second, dexmedetomidine could directly influence monocytes and macrophages. Li
et al reported that dexmedetomidine could attenuate NFκB-p65 phosphorylation to decrease TNF-α production from
LPS-stimulated murine BV-2 microglial cells and RAW264.7 macrophage cells.68 A similar study also proved that
dexmedetomidine could reduce TNF-a and IL-6 levels and enhanced IL-10 secretion from bone marrow-derived
macrophages.26

The current study shows that dexmedetomidine infusion could mediate the immunologic function and inflammation
state of cancer patients. Similarly, a meta-analysis including 4842 patients suffering from different diseases showed that
dexmedetomidine infusion significantly inhibited the release of epinephrine, norepinephrine, and cortisol,30 leading to (1)
increased number of NK cells; (2) increased ratio of CD4+/CD8+ and Th1/Th2 cells; and (3) decreased TNF-a and IL-6
levels. Moreover, a study from Shin et al69 demonstrated that BALB/c nude mice with tumor pumped with
Dexmedetomidine exhibited faster NK cell activity recovery and lower cortisol levels and TNF-α levels at 4 weeks
after surgery when compared with the control that BALB/c nude mice with tumor pumped with the saline. The
underlying mechanisms accounting for the phenomenon might be dexmedetomidine relieves the stress responses by
regulating the sympathetic nervous system (SNS) and hypothalamic–pituitary–adrenal (HPA) axis reaction, which were
highly correlated to the equilibrium of immunity function and the inflammatory state, as presented in the introduction. As
an evidence, Li et al70 established a unique (lipopolysaccharide) LPS-induced acute lung injury (ALI) rate model with the
bilateral cervical vagus nerve cut off (vagotomy), they found that dexmedetomidine could reduce LPS-induced IL-1β,
TNF-α, and catecholamine but increased acetylcholine in blood serum in the rate without vagotomy, but partially
abolished by vagotomy, which suggested dexmedetomidine could play the role by high vagal nerve tone and
α2-adrenoceptor activation.

Although Clinical trials have shown the effects of dexmedetomidine on immunomodulatory and anti-inflammatory.
There are still several limitations. Firstly, the number of studies is relatively small, which requires multicenter studies
with large samples to confirm the conclusion further. Secondly, long-term role of dexmedetomidine regulating immune
function and inflammation in cancer patients, such as 5 year survival period, has not been investigated. Therefore, this is
still a new area worthy of further research.

The Role of Dexmedetomidine in Direct Tumor-Progressive Factors
(Proliferation, Migration, and Invasion of Cancer Cells)
Dexmedetomidine and Lung Cancer Cell
The latest fundamental study11 from Wang et al found that dexmedetomidine could promote human lung cancer cell
A549 proliferation and migration at the <0.001 nM level, which was far less than the blood concentration used in clinical
settings. A549 cell quantity could be increased 1.2- and 1.7-folds at the 0.001- and 10-nM levels, respectively, and
enhance cell migration by 2.2-fold vs vehicle at the 1-nM level. Moreover, Ki67 is one kind of nucleoprotein engaged in
ribosomal RNA transcription.72 As one of the cell proliferation markers, it is expressed in the G1, S, G2, and M phases of
the cell cycle, but not in the silent G0 stage. Ki67 expression was 2.9-fold over the control when the A549 cell was
treated with 1 nM dexmedetomidine, meaning the A549 cell was in the active growth period.
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Dexmedetomidine and Breast Cancer Cell
Some articles73,74 recently indicated that dexmedetomidine could promote the growth of human breast cancer cells. Xia
et al found that dexmedetomidine could promote proliferation, migration, and invasion of human MDA-MB-231 breast
cancer cells via the activation of α2-adrenoceptor/ERK1/2 signaling.73 The ERK1/2 signaling pathway is one of the
classical pathways involved in many essential cell functions and regulates tumor cell progression.75 The protein level of
the phosphorylated ERK, α2 adrenoceptor increased when the MDA-MB-231 cell was treated with different dexmede-
tomidine levels (>0.1 µM) for 48 h.73 This promotion role confirmed in vivo that the volumes and weight of the tumor in
dexmedetomidine-treated mice were more massive than in the control group. Similarly, the migration capacity of cells
was significantly improved when human MCF-7 and MDA-MB-231 cancer cells were treated with dexmedetomidine (1
µM) for 16 h.76

Prolactin and relevant receptors (PrlR) had been found in several breast cancer cells,77 and the role of PrlR
stimulating breast cell proliferation78 and the association of cancer risk and PrlR level before diagnosis <10 years had
been confirmed.79 Moreover, PrlR levels were an independent prognostic marker for breast cancer.80 An interesting study
by Castillo74 revealed that the prolactin secretions of human T47D and MCF-7 breast cancer cells were promoted by
dexmedetomidine at the 1-nM level and could be reversed by rauwolscine, an α2 adrenergic antagonist. The increasing
PrlR could cause rapid STAT5 and ERK1/2 phosphorylation in MCF-7 and T47D cells and activate relevant cancer
pathways.

Another study81 found that dexmedetomidine could alter the collagen structure of 4T1 mice breast cancer cells to
promote growth. Second-harmonic generation (SHG) is a particular optical signal generated when laser contacts with
nonlinear materials are more sensitive to microstructure change than the best fluorescence signal.82 Fibrillar collagen
with detectable SHG signal was confirmed to promote tumor cell locomotion in breast tumor models83,84 and was
associated with tumor cell proliferation, invasion, and metastasis.85 The researchers treated the tumor mice with
dexmedetomidine at a concentration of 10 or 25 mg/kg for 19 days and showed the increased tumor growth rate and
the notable change in the number of SHG image pixels in the tumor removed from mice treated with dexmedetomidine.81

Moreover, [3H]thymidine is a raw material of compounding DNA, which has a radioactive character that could be
detected to assess the reactivity of cells to drugs to promote proliferation. However, dexmedetomidine could enhance the
incorporation rate of [3H]thymidine into the cell and enhance mouse breast tumor volume of C4-HD at a follow-up of 25
days of the experimental period without losing sensitivity to the α2 adrenoceptor after continuous treatment.86 Also,
another study from the same team showed that the stromal fibroblasts from breast tumors could also express α2
adrenergic receptors, and dexmedetomidine could promote fibroblast proliferation. Furthermore, the effect of prolifera-
tion could be reversed by α2 adrenergic antagonist, rauwolscine.87

Dexmedetomidine and Colon Cancer Cell
Lavon et al explored the role of dexmedetomidine in the progression of mouse CT26 colon adenocarcinoma cells. They
found that dexmedetomidine administered at the hypnotic dose of 3 or 12.5 µg·kg−1 h−1 could promote CT26 tumor
metastasis numbers in the livers of female mice with CT26 tumor cells injected into the spleen 3 weeks previously.10

Dexmedetomidine and Ovarian Cancer Cell
Cai et al8 [6] found that dexmedetomidine could inhibit the growth rate of the NUTU-19 rat ovarian cancer cell by
inhibiting the p38MAPK/NF-κB signaling pathway. The researchers injected NUTU-19 ovarian carcinoma cells into the
right armpit of rats to form a solid tumor, then distributed the rats into different groups treated by different doses of
dexmedetomidine or saline. Moreover, they set the rat group without tumors planted as the healthy group. However, the
rats with the tumors in the dexmedetomidine group displayed more energy and better appetite than the saline group but
not the healthy group. The same situation was presented when measuring the weight of the tumor. When comparing the
pathological changes of ovarian cancer tissues from the saline group, the ovarian cancer tissues from the dexmedetomi-
dine groups exhibited shrinkage of tumor cell and chromatin migration and patchy necrosis at different degrees. The p38
MAPK-dependent NF-κB signaling pathway is seen as playing the primary role in chemoresistance and cell damage and
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having a crucial influence on the proliferation of malignant tumor cells, including ovarian cancer cells.88 Moreover, Cai
et al8 [6] discovered that the dexmedetomidine group presented significantly fewer expression signals of that pathway
than the saline group.

Dexmedetomidine and Osteosarcoma Cell
A study by Wang et al89 cultivated the human osteosarcoma cell MG63 combined with dexmedetomidine at different
doses and found that 100 ng/mL of dexmedetomidine could significantly suppress cell viability after 12 h of treatment.
Furthermore, 100 ng/mL of dexmedetomidine could significantly decrease the number of migrated MG63 cells and
elevate the percentage of apoptotic MG63 cells after 24 h of treatment. MiR-520-3p is one of the noncoding RNAs that
could suppress various human cancers.90–92 Moreover, AKT/mTOR pathway is essential in the disease process,
especially in tumor progression,93,94 and could regulate human osteosarcoma cell proliferation and apoptosis.95 They89

found that miR-520-3p induced by dexmedetomidine could specifically bind to the 3′-UTR of AKT1 to inhibit MG63
osteosarcoma cell.

In summary, dexmedetomidine could directly promote proliferation, migration, and metastasis in some cancer cells
(eg, lung, breast, and colon cancer cells) and restrain some ovarian cancer cells and osteosarcoma cancer cells by
different mechanisms (Table 3).

Future Perspectives
Accumulating clinical studies have shown that dexmedetomidine is inclined to protect immunologic function and reduce
inflammatory cytokine in the perioperative period of cancer surgeries, which may inhibit cancer recurrence factors.
However, a few fundamental studies indicate that dexmedetomidine could facilitate the vitality of some human cancer
cell lines (eg, MDA-MB-231, MCF-7, T47D, 4T1, and A549), which originate from breast or lung tissue. Thus, this
arouses the interesting question: could the clinical application of dexmedetomidine be deleterious to the survival of
cancer patients or accelerative to cancer recurrence? However, a lack of robust clinical evidence (ie, RCTs or meta-
analysis of high-quality) exists on this theme. A study from MD Anderson Cancer Center9 investigating the relationship

Table 3 The Mechanism of the Role of Dexmedetomidine in Cell Biological Behaviors

Author Year Sources of
Tumor

The Strain of
Tumor Cell

Species Mechanism of the Role of Dexmedetomidine on Cell
Biological Behavior

Wang et al11 2018 Lung A549 Human High expression of cyclin A, D, E, and Ki67

Xia et al73 2016 Breast MDA-MB-231 Human High expression of phosphorylated ERK

Gargiulo et al76 2014 Breast MCF-7 Human Not mentioned

Castillo et al74 2017 Breast T47Dand MCF-7 Human High expression of prolactin, STAT5, and phosphorylated ERK

Szpunar et al81 2013 Breast 4T1 Human Fibrillar collagen with upregulated detectable SHG signal

Bruzzone

et al86
2008 Breast MC4-L5 Mouse Absorption of upregulated [3H]thymidine

Chi et al96 2020 Breast MDA-MB-231

and MCF-7

Human Activation of α2-adrenergic receptor/STAT3 signaling and promotion
of TMPRSS2 secretion in exosomes through Rab11

Lavon et al10 2018 Colon CT26 Mouse Not mentioned

Zheng et al97 2019 Ovarian SKOV3 Human Downregulation of HIF-1alpha via miR-155

Cai et al8 2017 Ovarian NUTU-19 Rat Downregulation of p38MAPK/NF-κB signaling

Wang et al89 2018 Osteosarcoma MG63 Human Downregulation of AKT/mTOR pathway via miR-520-3p
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between the intraoperative use of dexmedetomidine and lung cancer recurrence presented a decreased overall survival in
patients using dexmedetomidine. However, the author reminded us of the significant limitation that dexmedetomidine
may be used in patients with more severe comorbidities that were not captured in the database. Dexmedetomidine could
improve the outcomes of critical patients (eg, heart disease patients). Perioperative dexmedetomidine used decreases the
postoperative mortality of patients who underwent heart surgeries and decreased the delirium rate.98,99

Moreover, some essential variables (eg, consumption of opioids or intraoperative volatile anesthetics) were not
included in the final analysis, which was considered as potential factors influencing cancer recurrence.100,101 In addition,
no difference in recurrence-free survival time with or without dexmedetomidine was noted. Another retrospective study
from the same research group indicated that dexmedetomidine administration could not influence the survival of children
and adolescents who had undergone major oncologic surgery.102

Hence, it is still common to apply dexmedetomidine to cancer patients for its excellent pharmacological effect at this
stage, especially in reducing postoperative delirium. Nevertheless, exploring the effect of the administration of dexme-
detomidine on outcomes of cancer patients is still meaningful. A certain number of prospective randomized controlled
trials are currently ongoing (NCT03109990: Impact of Dexmedetomidine on Breast Cancer Recurrence After Surgery;
NCT03012971: Dexmedetomidine Supplemented Analgesia and Long-term Survival After Cancer Surgery.
NCT04111926: Intraoperative Dexmedetomidine and long-term outcomes in the elderly after major surgery), aiming
to assess whether dexmedetomidine would influence cancer recurrence and long-term survival in different cancer
operations. Thus, this will bring more specific information to clinicians.

Conclusion
Dexmedetomidine could protect immunologic function, reduce inflammatory cytokine in the perioperative period of
cancer surgeries, and have diverse roles in cancer cell biology. That means the roles of dexmedetomidine on the
tumor-progressive factors were still complex and non-uniform. It is still cautious to make a conclusion concerning
whether dexmedetomidine is harmful for some kinds of cancer patients. More future clinical trials should be held to
provide more specific information. This may lead to optimization in the strategy of anesthesia in cancer patients in the
future.
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