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Abstract: Current Therapeutic modalities provide no survival advantage to gastric cancer (GC) patients. Targeting the human 
epidermal growth factor receptor-2 (HER-2) is a viable therapeutic strategy against advanced HER-2 positive GC. Antibody-drug 
conjugates, small-molecule tyrosine kinase inhibitors (TKIs), and bispecific antibodies are emerging as novel drug forms that may 
abrogate the resistance to HER-2-specific drugs and monoclonal antibodies. Chimeric antigen receptor-modified T cells (CAR-T) 
targeting HER-2 have shown considerable therapeutic potential in GC and other solid tumors. However, due to the high heterogeneity 
along with the complex tumor microenvironment (TME) of GC that often leads to immune escape, the immunological treatment of GC 
still faces many challenges. Here, we reviewed and discussed the current progress in the research of anti-HER-2-CAR-T cell 
immunotherapy against GC. 
Keywords: CAR-T, HER-2, gastric cancer, immunotherapy, target

Introduction
Gastric cancer (GC) ranks fifth in incidence and fourth in mortality among all malignancies worldwide, which was equal 
to more than 1 million new cases and 769 thousand deaths in 2020.1 Given the considerable tumor heterogeneity, the 
five-year survival rate of advanced GC is reported to be less than 30%.2,3 At present, the treatment of GC mainly includes 
surgical resection,4,5 chemotherapy,6,7 traditional Chinese medicine (TCM) therapy,8 targeted therapy9,10 and 
immunotherapy11,12 (Figure 1).

Based on the results of CLASS0113 and CLASS0214 clinical trials, laparoscopic total gastrectomy is a potentially safe 
alternative to open total gastrectomy for both advanced and early stage (I) GC patients. Recent studies have also reported 
high efficacy and low toxicity of TCM-based treatment of GC,8 although the molecular mechanisms are still unclear. 
Furthermore, perioperative chemotherapy for GC has reached a consensus based on the results of CLASSIC, MAGIC, 
RESOLVE and other randomized controlled trials conducted over the past decade.15 Despite advances in the molecular 
typing of GC and the development of targeted and immunogenic drugs, their clinical applications remain limited,16 

especially for the human epidermal growth factor receptor type 2 (HER-2) positive,17 microsatellite instability-high18 and 
Epstein–Barr virus-associated19 subtypes. Moreover, studies have increasingly shown that conventional chemotherapy is 
not the optimum choice for perioperative treatment, and the outcomes of the patients depend significantly on the specific 
tumor stage and mutation status.

HER-2 is a member of the epidermal growth factor receptor (EGFR) family,20 and is overexpressed in many solid 
tumors including breast cancer (BC), stomach cancer, colon cancer and ovarian cancer.21,22 The Phase 3 ToGA trial 
established trastuzumab as a first-line treatment for advanced HER-2 positive GC.23 However, lapatinib, trastuzumab 
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emtansine (T-DM1) and pertuzumab have not shown encouraging results after first-line treatment progression.24 

Immunotherapy and targeted therapy are now indispensable for GC treatment. The development of immune inhibitors 
against advanced GC cells has been one of the most significant improvements in recent years.25 Chimeric antigen 
receptor T cell therapy (CAR-T) is a promising treatment strategy against cancers.26 Two CAR-T cell-based therapies 
have been approved by the Food and Drug Administration (FDA) to treat refractory leukemia and lymphoma.27 

However, the efficacy of CAR-T cells against sarcomas and other solid tumors is limited due to the immunosuppressive 
tumor microenvironment (TME).28,29 Compared to conventional therapies, CAR-T cells can directly recognize antigens 
on the surface of tumor cells and kill tumor cells, thereby reducing the rejection response.30 New-generation cellular 
immunotherapies, such as combined immune checkpoint inhibitors, cytokine-induced lymphocyte and T-cell targeted 
killing, are promising strategies against solid tumors31 but are still at the stage of clinical trials for GC.

Nevertheless, EGFR or CAR-T targeting alone cannot achieve ideal efficacy against GC due to the heterogeneity of 
tumor cells, immunosuppressive TME and antigen migration. Here, we reviewed and discussed the various immunother-
apeutic strategies that have been developed so far to target HER-2 in GC.

Targeted HER-2 Therapy
Structure and Function of HER-2
The first EGFR was discovered in the 1970s, and since then four members of the family, namely EGFR/HER-1/ErbB1, HER- 
2/ErbB2, HER-3/ErbB3 and HER-4/ErbB4,32,33 have been characterized. The HER-2 and ErbB2 oncogenes were initially 
identified in rodents and humans, respectively, but were later found to be homologous to each other.34–36 All the members of 

Figure 1 Treatment strategies for gastric cancer. Surgical resection, chemotherapy, traditional Chinese medicine, targeted therapy and immunotherapy.
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HER family have the same extracellular domains, lipophilic transmembrane regions, intracellular domains containing tyrosine 
kinases, and carboxy-terminal regions.35,37 Binding of ligands to the extracellular domains of HER proteins leads to 
dimerization and transphosphorylation of their intracellular domains.38 However, ErbB2 has no direct ligand,39 and the 
crystal structure of its extracellular region indicates an extended configuration with four domains arranged in a manner similar 
to that seen in the EGFR dimer. Thus, ErbB2 has a ligand-independent active conformation.40,41 This is consistent with the fact 
that ErB2 homodimers are spontaneously formed in cells overexpressing ErbB2, which is the preferred dimer partner of other 
ErbB receptors.42 Activation of HER-2 and EGFR leads to the phosphorylation of the ErbB dimer, which stimulates the 
downstream RAS/MEK, PI3K/AKT, Src kinases and STAT pathways.43 HER-2 initiates GC development in the form of 
EGFR, HER-2 dimers, and HER-2/HER-3 dimers.

EGFR in GC
The EGFR family is highly expressed in 40–60% of GC tumors.44 Anti-EGFR drugs block the downstream signal 
transduction pathway in cancer cells45 by targeting the extracellular, transmembrane and intracellular regions of EGFR.46 

EGFR-specific ligands, such as EGF, bind to their extracellular region and mediate homo/heterodimerization, resulting in 
autophosphoacylation of the receptor47 and activation of a series of downstream signal transduction pathways in GC 
cells48,49 including VAV2-RhoA,50 STAT5,51 PI3K/AKT/mTOR,52 etc. (Figure 2). The pathways culminate in the 
activation of transcription factors, leading to tumor cells’ proliferation, infiltration, and metastasis, inhibiting tumor 
cells’ apoptosis, and enhancing tumor angiogenesis.

Figure 2 Related molecular mechanisms of targeting HER-2 in gastric cancer. HER-2 is mainly involved in the occurrence and development of gastric cancer through EGFR, 
HER-2 dimer and HER-2/HER-3 dimer. The three receptors signal via the PI3K-AKT, RAS-MEK-MAPK, VAV2-RhoA and SRC-FAK pathways, thus affecting cell adhesion, 
migration, growth, proliferation and metastasis of gastric cancer cells.
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HER-2/HER-2 Dimer in GC
The HER receptor exists as a monomer or as a homo/heterodimer,53 and HER-2 preferentially binds to the dimeric 
form.53,54 The HER-2 pathway is altered during GC development, either due to aberrant changes in HER-2 structure, 
dysregulation of downstream effectors of HER-2, or interaction of HER-2 with other membrane receptors.48 As shown in 
Figure 2, dimerization of HER-2/HER-2 activates the SRC-FAK,55 GRB2/SOS/JAK256 and RAS-MEK-MAPK signaling 
pathways in GC cells,57 and promotes cell adhesion, migration, growth, proliferation, and metastasis.

HER-2/HER-3 Dimer in GC
The HER-2/HER-3 heterodimer is the most mitogenic of all ErbB receptors,58,59 and is constitutively active in GC cells 
overexpressing the HER-2 gene.60,61 Recent studies have showed that the HER-2-HER-3 dimer is related to the 
occurrence, growth, metastasis and drug resistance of tumors. The HER-2/HER-3 dimer signals through the RAS- 
MEK-MAPK and PI3K-AKT pathways (Figure 2) upon EGF binding.62 Activation of the PI3K/AKT pathway can lead 
to tumor drug resistance, and preclinical trials of PI3K inhibitors have indicated that this pathway is a suitable target for 
tumor therapy.63 In addition, some studies have shown that inhibition of PI3K or MEK alone, or in combination with 
anti-HER-2 therapy, might be a reformative treatment scheme for some patients with HER-2 positive GC.64 

Approximately 34–59% of the patients with HER-2 positive GC also overexpress HER-3 and are resistant to 
trastuzumab,65 which can be attributed to the negative feedback regulation of HER-3 mediated by the HER-2-dependent 
P13K-AKT pathway, making trastuzumab unresponsive to ligand-dependent dimerization of HER-2/HER-3.66

Drugs Targeting HER-2 in the Treatment of GC
Currently, drugs targeting HER-2 in the treatment of GC can be divided into four categories: first-generation HER-2 
monoclonal antibody, second-generation HER-2 monoclonal antibody, small-molecule tyrosine kinase inhibitors (TKIs), 
antibody-drug conjugates (ADCs) and bispecific antibodies. The latest research progress on these drugs is detailed in Table 1.

First-Generation HER-2 Monoclonal Antibody
Trastuzumab was the first monoclonal antibody approved by FDA to treat HER-2 positive GC.81 The TOGA trial 
demonstrated for the first time that the combination of trastuzumab and fluorouracil was superior to chemotherapy for the 
treatment of HER-2 positive advanced GC,82 and significantly prolonged overall survival (OS) of patients.82 Since then, 
several studies have confirmed the efficacy and safety of trastuzumab against advanced HER-2 positive GC.83,84 

However, acquired resistance to trastuzumab has been a major challenge and has a genetic basis in some patients, 
which eventually limits its therapeutic efficacy.85 Early clinical studies had also reported cardiac side effects of 
trastuzumab, such as left-heart insufficiency and congestive heart failure.86

Second-Generation HER-2 Monoclonal Antibody
The second generation of HER-2 targeted drugs has been developed to counteract the emergence of trastuzumab 
resistance. Pertuzumab binds to the extracellular domain II of the HER-2, blocking ligand-induced heterodimerization 
of HER-2 and downstream signaling.87 It has been proved to significantly improve the outcomes in patients with 
advanced HER-2 positive BC compared to the combination of chemotherapy and trastuzumab.88 Another study found 
that pertuzumab extended the median progression-free survival (PFS) of patients with BC by 7.7 months compared to 
that of the placebo arm.89 However, the JACOB trial showed that the combination of pertuzumab, trastuzumab and 
chemotherapy did not significantly improve the survival of HER-2 positive patients with GC or gastroesophageal 
junction cancer (GEJC) compared to the placebo.68 Therefore, more studies are needed to further determine the efficacy 
of pertuzumab in stomach and other cancers.

Small-Molecule TKIs
Small-molecule TKIs can also be used to target HER-2. For instance, lapatinib is an oral TKI specific for both EGFR and 
HER-2.90 It blocks HER-1 and HER-2 by reversibly binding to the cytoplasmic ATP binding sites in the tyrosine kinase 
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Table 1 Drugs Targeting HER-2 in the Treatment of Gastric Cancer

Category Compound Mechanism of 
Action

Clinical Trial 
Phase/ NCT No.

Category Study Arms Period Median OS (m/ 95% CI) References

HER-2 
monoclonal 
antibody

Trastuzumab HER2 (domain IV): 

prevents ligand- 

independent 
dimerization, 

induces HER-2 

endocytotic 
destruction, 

ADCC and inhibits 

HER-2 cleavage

III/ 01041404 Advanced 

GC and 

AEG

Trastuzumab plus 

chemotherapy vs 

chemotherapy

2005.09–2008.12 13.8 (12–16) vs 11.1 (10–13) [23]

II/ 01396707 Advanced 

GC

Trastuzumab plus 

capecitabine and oxaliplatin vs 
capecitabine plus oxaliplatin

2011.08–2013.02 21.0 (6.4–35.7) vs 9.8 (7.0–12.6) [67]

Pertuzumab HER-2 (domain II): 

inhibits 
dimerization

III/01774786 Metastatic 

GC and 
AEG

Pertuzumab plus trastuzumab 

and chemotherapy vs placebo 
plus trastuzumab and 

chemotherapy

2013.06–2016.01 17.5 (16.2–19.3) vs 14.2 (12.9–15.5) [68]

Small 
molecule 
tyrosine 
kinase 
inhibitor

Lapatinib HER-1, HER-2, 

TKI

II/ 00103324 Metastatic 

GC

Lapatinib 2005.02–2006.05 4.8 (3.2–7.4) [69]

II/ 00486954 Advanced 

GC

Lapatinib plus paclitaxel vs 

paclitaxel

2007.06–2009.01 11.0 (9.5–14.5) vs 8.9 (7.4–11.1) [70]

III/ 00680901 Advanced 

AEG

Lapatinib plus capecitabine 

and oxaliplatin vs placebo plus 

capecitabine and oxaliplatin

2008.06–2012.01 12.2 (10.6–14.2) vs 10.5 (9.0–11.3) [71]

Afatinib NF NF NF NF NF [72]

Neratinib NF NF NF NF NF [73]

(Continued)
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Table 1 (Continued). 

Category Compound Mechanism of 
Action

Clinical Trial 
Phase/ NCT No.

Category Study Arms Period Median OS (m/ 95% CI) References

Antibody- 
drug 
conjugate

Trastuzumab 
emtansine 

(T-DM1)

HER-2 (domain 
IV): all the referred 

for trastuzumab 

plus targeted 
delivery of an anti- 

microtubule agent

II and III/ 
01641939

Metastatic 
GC and 

AEG

Trastuzumab emtansine vs 
taxane

2012.09–2013.10 7.9 (6.7–9.5) vs 8.6 (7.1–11.2) [74]

Trastuzumab 

deruxtecan 

(DS-8201a)

I/ 02564900 GC and 

AEG

DS-8201a 2015.08–2018.08 12.8 (1.4–25.4) [75]

Trastuzumab 

duocarmazin 
(SYD985)

I/ 02277717 Metastatic 

GC

SYD985 2014.10–2018.04 NF [76]

ARX788 NF NF NF NF NF [77]

Bispecific 
antibodies

ZW25 
(Azymetric)

Bispecific antibody 
that 

simultaneously 

binds to two HER- 
2 epitopes

NF NF NF NF NF [78]

MCLA-128 ADCC and inhibits 
HER-2

NF NF NF NF NF [79]

Mm-111 HER-2/ HER-3 NF NF NF NF NF [80]

Abbreviations: ADCC, antibody-dependent cell-mediated cytotoxicity; AEG, adenocarcinoma of esophagogastric junction; CI, confidence interval; GC, gastric cancer; HER, human epidermal growth factor receptor; TKI, tyrosine 
kinase inhibitor; OS, overall survival; m, month; NCT, national clinical trial; NF, not found.
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domain.90,91 A Phase II trial using lapatinib as a first-line monotherapy for patients with HER2-positive GC failed to 
achieve the desired results, showing an overall response rate (ORR) of 11% and a median OS of 4.8 months.69 Besides, 
one study showed that lapatinib is not superior to trastuzumab as the first- and second-line treatment for advanced GC.70 

However, evidence showed that the combination of lapatinib and capecitabine could effectively treat HER2-positive GC 
with bone and meningeal metastasis in patients who were unresponsive to trastuzumab and chemotherapy.92 This can be 
attributed to the fact that lapatinib can cross the blood–brain barrier unlike larger antibodies.93 Furthermore, lapatinib is 
also a more suitable option than trastuzumab for patients at risk of cardiac events.93 Nevertheless, it is still at the stage of 
clinical trials. Afatinib and neratinib are other potential TKIs,72,73 although there are no clinical studies related to GC.

Antibody-Drug Conjugates
The combination of anti-HER-2 antibodies with effective drugs or cellular immunotherapy can effectively ablate HER- 
2-overexpressing tumors. T-DM1 or T-DM1 is a HER-2-targeting ADC that consists of a stable thioether linker between 
trastuzumab and the cytotoxic agent maytansine, and is currently in phase III development for HER-2 positive cancer.94 

The efficacy and toxicity of T-DM1 were established in patients with HER-2 mutant lung adenocarcinoma,95 and 
a subsequent study in patients with GC indicated stronger anti-cancer activity compared to trastuzumab.96 However, 
the randomized, open-label, adaptive Phase 2/3 GATSBY trial reported a similar efficacy of T-DM1 and taxane in 
previously treated patients with HER-2 positive advanced GC.74 Furthermore, most patients with HER2-positive BC or 
GC exhibited primary or acquired resistance to T-DM1.20,97 XMT-1522 is another HER-2 ADC that was found to be 
effective against T-DM1 resistant HER-2 positive BC and GC cell lines, as well as xenograft models.98

DS-8201a is an ADC specific to HER-2 that consists of a human monoclonal antibody connected to a topoisomerase 
I inhibitor through a cleavable peptide-based linker.98 The most recently developed HER-2-targeting ADCs include SUYD985 
and ARX788. SYD985 couples a duocarmycin payload with trastuzumab,99 and ARX788 is a proprietary version of the 
monomethyl auristatin F payload connected via a non-cleavable linker.77 SYD985 has not been studied in GC, while ARX788 
has shown antitumor effects in preclinical models of T-DM1 resistant HER-2 positive GC.77,100 Currently, more anti-HER-2 
ADCs have been developed that can potentially overcome drug resistance and improve therapeutic outcomes in patients with GC.

Bispecific Antibodies
The fusion of two recombinant antibodies into bispecific antibodies (BsAbs) can achieve dual-targeting function.101 ZW25 
(azymetric) is a BsAb specific for two HER-2 epitopes, the trastuzumab-binding ECD4 and pertuzumab-binding ECD2, and 
is effective and well tolerated in patients with various HER-2 positive cancers.78 However, its role in GC needs to be further 
explored. MCLA-128 is a full-length humanized IgG1 BsAb with enhanced antibody-dependent cell-mediated cytotoxicity 
(ADCC), targeting HER-2 and HER-3.102 It has been shown to be effective against HER-2 positive GC and GEJC.79,103 The 
BsAb Mm-111 targets HER-2 and HER-3, and its binding to HER-3 blocks protein binding and inhibits modulin-activated 
HER-3 signaling.104 McDonagh et al showed that the combination of Mm-111 with trastuzumab or lapatinib improved 
antitumor activity, and may supplement existing HER-2 targeted therapies against drug-resistant or recurrent tumors.105 Triad 
or quadruple antibodies against tumor-specific antigens are also being developed to benefit more patients.

CAR-T Cell Immunotherapy for GC
CAR-T cell immunotherapy uses genetically engineered T cells to eliminate tumor cells expressing specific antigens.106 CAR- 
T cells were developed two decades ago and have since been divided into four generations based on the structure of 
intracellular signal transduction regions. Gross et al107 first proposed the concept of CAR-T therapy in 1989 and successfully 
constructed the first-generation CAR by combining the single-chain fragment variable (scFv) monoclonal antibody with 
immunoreceptor tyrosine-based activation motifs (ITAMs) like CD3ζ and FcεRIγ.108 The second-generation CAR was 
constructed by Finney et al and consists of a costimulatory domain that can overcome the poor T cell amplification and 
cytokine production of first-generation CARs.109 The third-generation CAR was generated by combining two tandem 
costimulatory molecules to further enhance the effector function and in vivo persistence of the T cells.110 Fourth-generation 
CAR-T cells were engineered to secrete a large number of cytokines into the tumor site to activate the innate immune response 
and enhance the antitumor effect.111 The current status of CAR-T cell therapy against GC has been summarized in Figure 3A.
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CAR-T Targets in GC
Several clinical trials are ongoing worldwide on first-, second-, and third-generation CAR-T cells112 targeting CD19, B7- 
1/B7-2, CD155, CEA, CLDN 18.2, EGFR, EpCAM, FOLR1, HER-2, HVEM, ICAM-1, LSECtin, MSLN, MUC1, 
NKG2D, PD-L1, PSCA and so on. Details are summarized in Table 2. The GC-related targets for CAR-T cell therapy 

Figure 3 The CAR-T cell therapy and gastric cancer. (A) CAR-T cell treatment procedure for gastric cancer. Patients were assessed for suitability for CAR-T therapy, and 
mononuclear cells were isolated from patient blood using a peripheral blood cell separator, and T cells were further purified by magnetic beads. The T cells are genetically 
engineered by introducing a viral vector expressing the chimeric antigen receptor that recognizes tumor antigens, and the engineered CAR-T cells are expanded in vitro and 
injected back into the body; (B) targets of CAR-T cells in gastric cancer.
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include CLDN 18.2, FOLR1, HER-2, ICAM-1, MSLN, NKG2D, PD-L1 and PSCA (Figure 3B), and have been 
discussed in greater detail in the following sections. However, most clinical trials on CAR-T cell therapy have been 
on lymphoid leukemia, a considerable number of which have reported that CD19-targeting CAR-T cells can alleviate or 
even cure refractory and relapsed B-cell malignancies with a complete response (CR) rate of >80%.113 In recent years, 
CAR-T cells against hematoma antigens such as CD22,114 CD30115 and CD123116 have also been studied in clinical 
trials. For other solid tumors, tumor-associated antigens (TAAs) rather than tumor-specific antigens are the preferred 
targets for CAR-T cell therapy. The clinical studies on CAR-T cell therapy against solid tumors are listed in Table 3.

Table 2 Tumor-Associated Receptors of CAR-T Cell Target

Receptor Full Name Related Diseases References

B7-1/B7-2 Cluster of differentiation (CD) 80/ 
CD86

B-Cell Malignancies [117,118]

CA125 Cancer antigen 125 (also known as 

MUC16)

Epithelial ovarian cancers [119]

CAIX Carbonic anhydrase IX Renal cell carcinoma; glioblastoma. [120,121]

CD19 Cluster of differentiation 19 (also 

known as T-cell surface antigen leu-12)

B-cell acute lymphoblastic leukemia; acute lymphoblastic leukemia [122,123]

CD23 Cluster of differentiation 22 B-cell acute lymphoblastic leukemia; acute lymphoblastic leukemia [59,124]

CD133 Cluster of differentiation 133 (also 

known as prominin-1)

Glioblastoma; leukemia; hepatocellular carcinoma; gastric cancer [125–128]

CD155 Cluster of differentiation 155 Thymus [129]

CEA Carcinoembryonic antigen Colorectal cancers; pancreatic malignancy; liver metastases; solid 
tumors

[130–133]

CLDN 18.2 Claudin 18.2 Gastric Cancer; solid tumors; pancreatic cancer [134–136]

CTAG1B Cancer/testis antigen 1B (also 
known as NY-ESO-1)

Melanoma and ovarian cancer [137]

EGFR Epidermal growth factor receptor Central nervous system; rhabdomyosarcoma; Breast cancer; 

gastric cancer; non-small-cell lung cancer; epithelial carcinoma

[138–141]

EGFRvIII Variant III of the epidermal growth 

factor receptor

Glioblastoma [142]

EpCAM Epithelial cell adhesion molecule Acute myeloid leukemia; hepatocellular carcinoma [143,144]
FAP Fibroblast activation protein Pancreatic cancers; Malignant pleural mesothelioma [145,146]

FOLR1 Folate receptor 1 Gastric cancer [147]

FR-α Folate receptor-α Breast cancer; ovarian cancer [148,149]
GD2 Disialoganglioside 2 Neuroblastoma, melanoma [150,151]

GPC3 Glypican-3 Mesothelin; hepatocellular carcinoma [152,153]

HER-2 Human epidermal growth factor 
receptor 2

Gastric cancer; ovarian cancer, breast cancer, glioblastoma, colon 
cancer, osteosarcoma, medulloblastoma

[139,154–159]

HVEM Herpes Virus Entry Mediator Lymphoma [160]

ICAM-1 Intercellular adhesion molecule 1 Breast cancer; gastric cancer [161,162]
IL13Rα2 Interleukin-13Ra2 Glioma [163]

L1-CAM L1 cell adhesion molecule Neuroblastoma, melanoma, ovarian adenocarcinoma [164,165]

LSECtin Liver sinusoidal endothelial cell lectin Liver inflammatory diseases [166]
MSLN Mesothelin Mesothelioma; ovarian cancer, pancreatic adenocarcinoma [167–169]

MUC1 Mucin 1 Cholangiocarcinoma; seminal vesicle cancer [170,171]

NKG2D Natural killer group 2D Cervical cancer, breast cancer; prostate cancer [172–174]
PD-L1 Programmed death ligand 1 Non-small cell lung cancer, gastric cancer; breast cancer [175–177]

PSCA Prostate stem-cell antigen Gastric cancer; prostate cancer [178,179]

PSMA Prostate-specific membrane antigen Prostate cancer; solid tumors [180,181]
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CLDN 18.2
CLDN 18, a member of the CLAUDIN (CLDN) family, is encoded by the CLDN 18 gene and is expressed in the 
epithelium.189 CLDN 18.2, the second isotype of Claudine 18, is located in the extracellular membranes.190 It is usually 
expressed in primary GC tumors but may also be present in differentiated gastric mucosal epithelial cells.190 CLDN 18.2 
is expressed in 70% of the primary and metastatic gastric adenocarcinomas, and therefore is considered as a potential 
therapeutic target in GC.191 Hua Jiang et al found that CLDN18.2-CAR-T cells are effective against CLDN18.2 positive 
tumors, including GC.134 Besides, Guoyun Zhu et al indicated that targeting CLDN 18.2 through ADCs or BsAbs may be 
effective against GC and pancreatic cancer.136

FOLR1
FOLR1 (folic acid receptor 1), also known as folic acid receptor α and folate-binding protein, is a glycosylphosphatidylinositol 
junction protein192 that is closely related to tumor progression and cell proliferation.193,194 It is overexpressed in the tumors of 
ovarian, breast, colorectal, kidney, lung, and other solid tumors, and is present at low levels in normal cells.195,196 As reported, 
FOLR1 is highly expressed in about one-third of patients with GC, and FOLR1-CAR-T cells have exhibited high anti-cancer 
activity in preclinical studies.147

ICAM-1
ICAM-1 (intercellular cell adhesion molecule-1) belongs to the immunoglobulin superfamily of glycoproteins,197 and 
mediates cell–cell and cell-matrix adhesion.198 It is overexpressed in various cancers, including GC, and is associated 
with poor survival.199 Recently, Min IM et al reported encouraging results with anti-ICAM-1 CAR-T cells in thyroid 
tumor models.200 In addition, the strategy of anti-ICAM-1 CAR-T cells with or without chemotherapy has been found to 
be promising for the treatment of ICAM-1+ patients with advanced GC.161

Table 3 CAR-T Related Clinical Studies in Solid Tumors

Receptor Clinical 
Trial Phase

NCT 
No.

Tumor 
Types

Patients Study Arms Period Median OS (m/ 
95% CI)

References

CD133 II 02541370 HCC 21 CD133-CAR-T 2015.06–2017.09 12 (9.3–15.3) [126]

CEA I 02349724 CRC 10 CEA-CAR-T 2014.12–2018.12 NF [132]

CEA I 01373047 Liver 
metastases

8 CEA -CAR-T 2011.06–2013.07 3.75 (2–25.5) [182]

c-Met 0 01837602 BC 6 c-Met -CAR-T 2013.04–2018.08 NF [183]

EGFR I 03182816 NSCLC 9 EGFR-CAR-T 2017.03–2018.06 15.63 
(8.82–22.03)

[184]

EGFR I 01869166 Metastatic 

PC

16 EGFR-CAR-T 2015.04–2019.05 4.9 (2.9–30) [185]

FAP I 01722149 MPM 3 FAP-CAR-T 2015.02–2019.07 NF [186]

MUC1 I 02587689 Metastatic 
SVC

20 MUC1-CAR-T 2006–2015.02 NF [171]

PSMA I NF Prostate 

cancer

6 PSMA-CAR-T 2008.09–2010.04 NF [187]

HER-2 I 01935843 BTCs/ PC 11 HER-2-CAR-T 2015.07–2016.06 4.8 (1.5–8.3) [188]

HER-2 I/ II 00902044 Sarcoma 19 HER-2-CAR-T 2010.06–2013.09 10.3 (5.1–29.1) [154]

Abbreviations: BC, breast cancer; BTCs, biliary tract cancers; CAR-T, chimeric antigen receptor T; CD, cluster of differentiation; CEA, carcino-embryonic antigen; CI, 
confidence interval; CRC, colorectal cancer; EGFR, epidermal growth factor receptor; FAP, fibroblast activation protein; GC, gastric cancer; HCC, hepatocellular carcinoma; 
HER, human epidermal growth factor receptor; MPM, malignant pleural mesothelioma; MUC1, mucin 1; NSCLC, non-small cell lung cancer; PC, pancreatic carcinoma; 
PSMA, prostate-specific membrane antigen; SVC, seminal vesicle cancer. OS, overall survival; m, month; NCT, national clinical trial; NF, not found.
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MSLN
Mesothelin (MSLN) is a membrane protein (40 kDa) that is expressed in normal epithelial tissues and highly upregulated in 
breast, lung, pancreas, ovary, mesothelioma, and gastric tumor cells.201–203 MSLN-specific CAR-T cells have been engineered 
for solid cancers, including mesothelioma, pancreatic cancer, BC, lung cancer and GC.202,204–206 Jiang LV et al found that 
a peritumoral delivery strategy improved the infiltration of anti-MSLN CAR-T cells into a subcutaneous GC xenograft, which 
significantly inhibited tumor growth.202 Besides, Zhang Q et al discovered that MSLN-CAR-T cells reduced the growth of 
MSLN-positive tumor cells by significantly increasing the levels of T cells and cytokines.207 In addition, the growth of GC 
cells can also be inhibited by anti-MSLN-CAR-T cells,208 indicating its potential as a therapeutic option against GC.

NKG2D Receptor
Natural killer group 2 member D (NKG2D) receptor is a lectin-like transmembrane glycoprotein that is expressed primarily 
in natural killer (NK) cells, CD8+ T cells and auto-immunosuppressed CD4+ T cells.209 NKG2D is expressed at low levels or 
entirely absent in normal tissues or cells, although its expression increases rapidly in response to pathogens, genotoxic drugs, 
or malignant transformation of cells.210 Therefore, NKG2D is a potentially suitable target for CAR-T cell therapy. In 
addition, Spear et al found that NKG2D-specific CAR-T cells not only killed the tumor cells directly but also activated the 
host immune system.211 At present, NKG2D-targeting CAR-T cells have been proved to be effective against multiple 
myeloma,212 glioblastoma,213 and hepatocellular carcinoma.214 Furthermore, the up-regulation of NKG2D levels in GC cells 
can sensitize them to NKG2D-CAR-T cells-mediated cytotoxicity.215 The currently ongoing clinical trials of CAR-T cells 
targeting NKG2D, including those in patients with GC, are expected to be completed in 2021 (NCT04107142).

PD-L1
Programmed death ligand 1 (PD-L1) is a member of the B7 family and the ligand of PD-1.216,217 It is composed of 290 amino 
acids218 and is expressed on the surface of several tumor cells, including lung cancer,219 BC,220 and GC.221 Chimeric switch 
receptor PD-L1 can enhance the function of CAR-T cells in solid tumors.222,223 CAR-T cells targeting PD-L1 effectively 
suppressed the growth of GC patient-derived xenograft (PDX) in animal models.224 Further research revealed the killing effect 
of PD-L1 on GC, therefore improving the killing effect of CAR-T cells in GC.177

PSCA
Prostate stem cell antigen (PSCA) is a glycosyl-phosphatidylinositol cell immobilized by a face protein that belongs to 
the Thy-1/Ly-6 family.225 Existing evidence has indicated that PSCA-CAR-T cells are effective against metastatic 
prostate cancer and non-small cell lung cancer (NSCLC).178,226 In vivo experiments have shown that PSCA-CAR-T 
cells inhibited the growth of prostate cancer PDX and extended the survival of tumor-bearing mice.227 A Phase I clinical 
trial was initiated to evaluate PSCA-CAR-T cells in patients with relapsed and refractory metastatic prostate cancer.228 In 
addition, Di Wu et al have confirmed the feasibility of anti-PSCA-CAR-T cells against GC,179 suggesting a potential 
clinical application.

HER-2-Specific CAR-T Cells in the Treatment of GC
Construction of HER-2-Targeted CAR
The CAR targeting HER-2 consists of an extracellular antigen-binding region, a transmembrane region, and an intracellular 
signal transduction region.229,230 The extracellular antigen-binding region is composed of a single-chain variable fragment 
(scFv) and the hinge region of the anti-HER-2monoclonal antibody.231 The variable weight chain and the variable weight 
chain constitute the scFv,232 which recognizes and binds to the TAAs on the surface of tumor cells.233 In addition, it determines 
the specificity of CAR antigens and can bind to multiple TAAs in an MHC-independent, non-restrictive manner.234,235 

IL13Rα2 can also be combined with HER-2 on the surface of tumor cells by CAR-T cells, further enhancing their 
activation.236 The transmembrane region is involved in signal transduction, although it is unclear whether it also has an 
effect on the structure and biochemistry of CAR.237 Finally, CAR-T cells can also increase the immune response by releasing 
tumor cell killing factors. The details of the process are illustrated in Figure 4.
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Advances in HER-2-Targeted CAR-T Cell Therapy for GC
Current immunotherapeutic strategies against GC include nonspecific immunoboosters, tumor vaccines, adoptive cell 
transfer, and monoclonal antibodies.238 The HER-2 signaling pathway is a key target of the adoptive immune cell 
therapy against solid tumors.156 Although several HER-2 targeted drugs have entered clinical trials for patients with 
GC, the FDA has approved only trastuzumab for first-line treatment of patients with advanced GC.239–241 In addition, 
HER-2-targeted CAR-T cell therapy for GC is increasingly gaining attention to avoid drug resistance and improve 
treatment outcomes.241,242 Song et al produced genetically modified human T cells that express HER-2-specific CAR 
consisting of CD137 and CD3ζ,156 which not only recognized and killed HER-2+ GC cells in vitro but also showed 
effective and persistent antitumor activity against HER-2+ GC xenografts in vivo.156 This suggested that HER- 
2-targeted CAR-T cells might be suitable for the treatment of advanced HER-2+ GC, although their toxicity and 
immunogenicity will have to be verified in future trials.156,243–245 Furthermore, the focus of future studies would be to 
improve the antitumor activity of HER-2 targeted CAR-T cells by improving their proliferation capacity, function and 
persistence.

Ahmed et al constructed the second generation of HER-2-targeted CAR composed of FRP5-CD28-CD3ζ, and 
found that CAR-T cells had high affinity for HER-2 monoclonal antibody and specifically recognized and killed 
HER-2+ glioblastoma cells.246 HER-2-specific T cells have also been found to be effective against HER-2+ osteo-
sarcoma cells.247 Sun et al successfully constructed a novel humanized chA21-28z CAR consisting of a chA21 single- 
chain variable region and an intracellular signal transduction region containing CD28 and CD3ζ. The CD4+ and CD8+ 

Figure 4 The specific mechanism of HER-2-CAR-T cells. The HER-2-targeting CAR is a synthetic receptor composed of extracellular antigen binding region, transmem-
brane region and intracellular signal transduction region. CAR-T cells bind to tumor cell surface antigens, which activates a series of responses within CAR-T cells to kill 
tumor cells.
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CAR-T cells248 recognized and killed HER-2+ ovarian cancer cells in vitro and significantly inhibited the growth of 
xenografts in mice.248 Taken together, HER-2 targeted CAR-T cell immunotherapy for GC can be further improved.

Current Status of Clinical Research on HER-2-CAR-T Therapy
HER-2-targeted CAR-T cell therapy is currently in the preclinical stage for GC, while clinical trials are underway for other 
solid tumors (summarized in Table 4). Ahmed et al administered high-dose HER-2-CAR-T cells to 10 patients with recurrent 
or refractory HER-2 positive sarcomas (5 osteosarcomas, 3 rhabdomyosarcomas, and 1 synovial sarcomas) who had received 
myeloablative therapy (fludarabine or fludarabine plus cyclophosphamide) and found that the combination of HER-2-CAR-T 
cells with other immunomodulatory agents cleared the tumors.154 The efficacy of CAR-T-HER-2 immunotherapy has also 
been demonstrated against tumors of the central nervous system,139 rhabdomyosarcoma,138 biliary tract cancers and pancreatic 
cancer.188 In addition, results of a phase I clinical trial indicated that the EGFR-CAR-T cell therapy was feasible and safe for 
patients with EGFR positive advanced NSCLC.184 Similar results were observed in patients with pancreatic carcinoma.185 

O’Rourke et al suggested that overcoming adaptive changes in the local TME and addressing antigenic heterogeneity might 
improve the efficacy of EGFR variant III (EGFRvIII)-targeted strategies against glioblastoma.249 At present, more than 20 
clinical trials are being conducted for HER-2-CAR-T therapy (Table 5), of which 2 are related to GC.

The Safety of HER-2-CAR-T
There are several concerns about HER-2-targeted CAR-T cell therapy. Side effects of CAR-T cell therapy include 
systemic toxicity associated with T cell activation and cytokine release, as well as local toxicity caused by the specific 
interaction between target antigens expressed by non-malignant cells and CAR-T cells.250,251

To avoid systemic toxicity while maintaining clinical efficacy, CAR-T cells should be injected at a threshold that 
activates cytokine secretion but not above the level that induces a cytokine storm.252 The degree of CAR-T cell activation 
is influenced by tumor burden, tissue distribution and antigen expression, affinity of the scFv to the antigen and the 
costimulatory elements included in the CAR.250,253 Therefore, tumor burden and antigen expression/distribution should 
be considered when designing CARs to reduce the risk of systemic toxicity. For instance, HER-2 is not a tumor-specific 
antigen and is also expressed in normal tissues.254,255 One study reported that patients with metastatic colon cancer 
developed acute respiratory distress and pulmonary edema 15 minutes after receiving HER-2-specific CAR-T cells, 
followed by multiple organ failure and even death, suggesting off-tumor effects caused by CAR-T cells that recognize 
HER-2 expressed in normal lung tissues.256 Differences in binding sites between various scFv and HER-2 might 

Table 4 HER Family-Related CAR-T Clinical Studies in Cancers

Receptor Tumor Types Clinical 
Trial 

Phase

NCT 
No.

Patients HER-2-CAR- 
T Dose Level

Period Median OS (m/ 
95% CI)

References

HER-2 Positive sarcoma I/ II 00902044 19 1×104 to 1×108 

cells /m2

2010.06–2013.03 10.3 (5.1–29.1) [154]

HER-2 Biliary tract cancers 
and pancreatic 

cancers

I 01935843 11 2.1×106 

cells /kg
2015.07–2016.06 4.8 (1.5–8.3) [188]

HER-2 Central nervous 
system tumors

I 03500991 48 NF 2018.06–2020.06 NF [139]

HER-2 Rhabdomyosarcoma I 00902044 1 1×108 cells/m2 2010.02-NF 20 (NF) [138]

EGFR Non-small cell lung 
cancer

I 03182816 9 1×106 or 3×106 

cells/kg
2017.07–2018.06 15.63 (8.82–22.03) [184]

EGFR Pancreatic 
carcinoma

I 01869166 16 1.3×106 to 
8.9×106 cells/kg

2015.04–2019.05 4.9 (2.9–30) [185]

EGFRvIII Glioblastoma I 02209376 10 1×108 to 5×108 

cells
2014.11–2018.04 11.9(6.0–22.7) [249]

Abbreviations: CAR-T, chimeric antigen receptor T; CI, confidence interval; EGFRvIII, EGFR variant III; HER, human epidermal growth factor receptor; OS, overall 
survival; m, month; NCT, national clinical trial; NF, not found.

Journal of Inflammation Research 2022:15                                                                                          https://doi.org/10.2147/JIR.S368138                                                                                                                                                                                                                       

DovePress                                                                                                                       
4073

Dovepress                                                                                                                                                              Sun et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 5 Ongoing Clinical Trials of HER-2-CAR-T Therapy

NCT 
No.

Tumor Phase Study Title Locations EE Period Status

04650451 Gastric 

cancer, 
breast 

cancer, et al

I/ II Safety and Activity Study of HER2-Targeted 

Dual Switch CAR-T Cells (BPX-603) in 
Subjects with HER2-Positive Solid Tumors

City of Hope National Medical Center Duarte, California, United 

States; Winship Cancer Institute at Emory University Atlanta, Georgia, 
United States, John Theurer Cancer Center, Hackensack University 

Medical Center Hackensack, New Jersey, United States, The University 

of Texas MD Anderson Cancer Center Houston, Texas, United States

220 2020.12–2021.04 Recruiting

04511871 Gastric 

cancer, 

breast 
cancer, et al

I A Phase I Trial of CCT303-406 in Patients 

with Relapsed or Refractory HER2 Positive 

Solid Tumors

Zhongshan Hospital Affiliated to Fudan University Shanghai, Shanghai, 

China

15 2020.07–2023.04 Recruiting

03198052 Lung cancer I HER2/Mesothelin/Lewis-Y/PSCA/MUC1/ 

GPC3/AXL/EGFR/B7-H3/Claudin 18.2-CAR- 
T Cells Immunotherapy Against Cancers

The First Affiliated Hospital of Sun Yat-sen University Guangzhou, 

Guangdong, China; the Second Affiliated Hospital of Guangzhou 
Medical University Guangzhou, Guangdong, China

30 2017.07–2023.08 Recruiting

02442297 Brain tumor I T Cells Expressing HER2-specific Chimeric 

Antigen Receptors (CAR) for Patients with 
HER2-Positive CNS Tumors

Houston Methodist Hospital Houston, Texas, United States; Texas 

Children’s Hospital Houston, Texas, United States

28 2016.02–2036.01 Recruiting

03500991 Pediatric 

glioma, et al

I HER2-specific CAR T Cell Locoregional 

Immunotherapy for HER2-positive 
Recurrent/Refractory Pediatric CNS Tumors

Seattle Children’s Hospital; Seattle, Washington, United States 48 2018.04–2021.03 Recruiting

03696030 BC, et al I HER2-CAR T Cells in Treating Patients with 

Recurrent Brain or Leptomeningeal 
Metastases

City of Hope Medical Center; Duarte, California, United States 39 2018.08–2023.08 Recruiting

04684459 Peritoneal 

cancer

I Dual-targeting HER2 and PD-L1 CAR-T for 

Cancers with Pleural or Peritoneal Metastasis

West China Hospital, Sichuan University Chengdu, Sichuan, China 18 2021.03–2024.01 Active

03740256 Bladder 

Cancer, et al

I Binary Oncolytic Adenovirus in Combination 

with HER2-Specific Autologous CAR VST, 

Advanced HER2 Positive Solid Tumors

Baylor St. Luke’s Medical Center Houston, Texas, United States 45 2020.12–2038.12 Recruiting

03618381 Pediatric 

solid tumor, 

et al

I EGFR806 CAR T Cell Immunotherapy for 

Recurrent/ Refractory Solid Tumors in 

Children and Young Adults

Seattle Children’s Hospital Seattle, Washington, United States 36 2019.06–2038.06 Recruiting

04430595 Breast 

cancer

I/ II Multi-4SCAR-T Therapy Targeting Breast 

Cancer

The Seventh Affiliated Hospital, Sun Yat-Sen University Shenzhen, 

Guangdong, China

100 2020.06–2023.12 Recruiting

04483778 Pediatric 
solid tumor, 

et al

I B7H3 CAR T Cell Immunotherapy for 
Recurrent/Refractory Solid Tumors in 

Children and Young Adults

Seattle Children’s Hospital Seattle, Washington, United States 68 2020.07–2040.12 Recruiting
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04020575 Breast 
cancer

I Autologous huMNC2-CAR44 T Cells for 
Breast Cancer Targeting Cleaved Form of 

MUC1 (MUC1*)

City of Hope Medical Center Duarte, California, United States 69 2020.01–2035.01 Active

04660929 Solid tumors I CAR-macrophages for the Treatment of 
HER2 Overexpressing Solid Tumors

City of Hope National Medical Center Duarte, California, United 
States; UNC Lineberger Comprehensive Cancer Center Chapel Hill, 

North Carolina, United States; Abramson Cancer Center Philadelphia, 

Pennsylvania, United States

18 2021.02–2023.02 Recruiting

02792114 Breast 

cancer

I T-Cell Therapy for Advanced Breast Cancer Memorial Sloan Kettering Cancer Center Basking Ridge, New Jersey, 

United States; Memorial Sloan Kettering Monmouth Middletown, New 

Jersey, United States; Memorial Sloan Kettering Bergen Montvale, New 
Jersey, United States; Memorial Sloan Kettering Cancer Center at 

Commack Commack, New York, United States; Memorial Sloan 

Kettering Westchester Harrison, New York, United States; Memorial 
Sloan Kettering Cancer Center New York, New York, United States; 

Memorial Sloan Kettering Nassau Uniondale, New York, United States

186 2016.06–2022.06 Active

03423992 Glioma I Personalized Chimeric Antigen Receptor 
T Cell Immunotherapy for Patients with 

Recurrent Malignant Gliomas

Xuanwu Hospital Beijing, China 100 2018.03–2023.01 Recruiting

04995003 Sarcoma I HER2 Chimeric Antigen Receptor (CAR) 
T Cells in Combination with Checkpoint 

Blockade in Patients with Advanced Sarcoma

Texas Children’s Hospital Houston, Texas, United States 25 2021.12–2040.02 Not yet 
recruiting

00902044 Sarcoma I Her2 Chimeric Antigen Receptor Expressing 
T Cells in Advanced Sarcoma

Houston Methodist Hospital Houston, Texas, United States; Texas 
Children’s Hospital Houston, Texas, United States

36 2010.02–2032.07 Active

03330691 Leukemia; 

lymphoma

I A Feasibility and Safety Study of Dual 

Specificity CD19 and CD22 CAR-T Cell 
Immunotherapy for CD19+CD22+ Leukemia

Children’s Hospital Los Angeles Los Angeles, California, United States; 

Children’s National Medical Center Washington, District of Columbia, 
United States; Riley Hospital for Children Indianapolis, Indiana, United 

States; Seattle Children’s Hospital Seattle, Washington, United States; 

Children’s and Women’s Health Centre of British ColumbiaActive, 
Vancouver, British Columbia, Canada.

60 2017.11–2034.11 Recruiting

04903080 Ependymoma I HER2-specific Chimeric Antigen Receptor 

(CAR) T Cells for Children with 
Ependymoma

Pediatric Brain Tumor Consortium Texas Children’s Cancer Center 

Baylor College of Medicine

50 2021.09–2040.07 Recruiting

03684889 Leukemia; 

lymphoma

I/ II CD19-specific CAR T Cells with a Fully 

Human Binding Domain for CD19+ 
Leukemia or Lymphoma

Children’s Hospital Los Angeles Los Angeles, California, United States; 

Seattle Children’s Hospital Seattle, Washington, United States

16 2018.11–2036.12 Active

Note: The table data were downloaded from NIH; US National Library of Medicine. ClinicialTrials/.gov [homepage]; 2022. Available at: https://www.clinicaltrials.gov/; 2022. Accessed July 11, 2022.278 

Abbreviations: AXL, anexelekto; CAR-T, chimeric antigen receptor T; CD, cluster of differentiation; CNS, central nervous system; EE, estimated enrollment; GPC3, glypican 3; HER, human epidermal growth factor receptor; MUC1, 
mucin 1; NCT, national clinical trial; PD-L1, programmed death ligand-1; PSMA, prostate-specific membrane antigen.
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influence the antitumor and off-tumor effects of HER-2 blockade by CAR-T cell cells.257 Luo et al selected HER-2 and 
CD3-targeted CAR-T cells to reduce the damage to normal tissues.258 The route to administer CAR-T cells is another 
factor that affects toxicity. Katz et al found that the intraperitoneal rather than the intravenous injection of CAR-T cells 
had a stronger effect on peritoneal metastasis and ascites, along with less toxicity.259 Thus, the improvement of the safety 
level is a prerequisite for the clinical translation of HER-2-CAR-T cell therapy.

CAR-T cell therapy has been widely used to treat hematologic malignancies, but its use is limited in solid tumors due 
to factors, such as low penetration. Incorporation of the tumor-penetrating signal peptide iRGD can improve the 
penetration of HER-2-CAR-T cells and therefore improve their efficacy.260 The novel CAR design is also a viable 
direction for HER-2-specific CAR-T cell therapy.261 The HER-2 binding domain of HER-2-CAR-T cells is not limited to 
scFv; the designed ankyrin repeat protein (DARPin) has also been used to bind HER-2 in other tumors.262 Several novel 
DARPin molecules with high affinity to HER-2 receptor have been developed, including MP0274, DARPin 9.26, 
DARPin 9.29, etc.263,264 In addition, CAR-modified NK cells, cytokine-induced killer (CIK) cells, and γδ T cells are 
other promising cell-based options.265,266 CAR-NK and CAR-CIK cells targeting HER-2 have achieved good efficacy 
against BC and glioblastoma multiforme,266,267 and are expected to be introduced into the treatment of HER-2 
positive GC.

Conclusion
HER-2-targeted drugs were initially developed for BC and have since been extended to other HER-2-overexpressing 
tumors, such as stomach and gastroesophageal cancers.268 The first-generation HER-2 monoclonal antibody of trastu-
zumab is still the first-line treatment for GC, despite the high rate of drug resistance. The second generation of 
pertuzumab has not been extensively studied in GC patients.269,270 The conjugation of HER-2 antibodies to novel 
cytotoxic drugs such as T-DM1 was deemed promising for the treatment of HER-2 overexpressing tumors.94,271 

However, studies showed that most patients with BC or GC exhibited primary or acquired resistance to T-DM1.97,272 

Although the HER-2-targeting TKI lapatinib has achieved a good effect in BC, it has not been effective against GC.273 

Bispecific antibodies with dual-targeting functions have also shown encouraging results,274 but further research is still 
needed. In short, these HER-2-targeted therapies may obviate the resistance to first-line drugs, reduce metastasis or 
prevent recurrence, and may also be used in combination with chemoradiotherapy and monoclonal antibodies to further 
improve first-line therapy in patients with GC.

CAR-T cells are a highly promising immunotherapeutic approach for ablating solid tumors. However, the efficacy of 
HER-2-targeted CAR-T therapy in GC141,156,188 needs to be supported by large-scale, multi-center and high-quality 
randomized clinical trials and evidence-based studies before full-scale clinical application. Given inherent heterogeneity, 
immunosuppressive TME and antigen migration, single target CAR-T cell immunotherapy cannot achieve ideal 
outcomes.275–277 Future researches on HER-2-CAR-T therapy in GC may focus on the following aspects: 1) upgrading 
the structural design of CARs to improve antitumor activity and migration capacity, as well as constructing CARs to 
target multiple antigens; 2) exploring more therapeutic subsets of T cells to reduce tumor immune escape; 3) reversing 
the immunosuppressive TME (for example, PD-L1/PD-L2 blockade) and enhancing CAR-T cell proliferation and 
cytokine production; 4) adjusting and optimizing treatment regimens to minimize CAR-T cell-induced adverse reactions. 
Therefore, with the continuous development of genetic engineering technology, HER-2-CAR-T cell therapy will become 
a safe and effective treatment for GC and other solid tumors in the future.
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