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Background: The present study was designed to evaluate the extent to which pretreatment with 

microneedles can enhance skin permeation of nanoparticles in vitro and in vivo. Permeation 

of live bacteria, which are physically nanoparticles or microparticles, through mouse skin 

pretreated with microneedles was also studied to evaluate the potential risk of microbial 

infection.

Methods and results: It was found that pretreatment of mouse skin with microneedles 

allowed permeation of solid lipid nanoparticles, size 230 nm, with ovalbumin conjugated on 

their surface. Transcutaneous immunization in a mouse skin area pretreated with microneedles 

with ovalbumin nanoparticles induced a stronger antiovalbumin antibody response than using 

ovalbumin alone. The dose of ovalbumin antigen determined whether microneedle-mediated 

transcutaneous immunization with ovalbumin nanoparticles induced a stronger immune response 

than subcutaneous injection of the same ovalbumin nanoparticles. Microneedle treatment permit-

ted skin permeation of live Escherichia coli, but the extent of the permeation was not greater 

than that enabled by hypodermic injection.

Conclusion: Transcutaneous immunization on a microneedle-treated skin area with antigens 

carried by nanoparticles can potentially induce a strong immune response, and the risk of bacte-

rial infection associated with microneedle treatment is no greater than that with a hypodermic 

injection.
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Introduction
Microneedles have been researched extensively to improve intradermal or transdermal 

drug delivery.1–5 The feasibility of microneedle-mediated delivery of nanoparticles 

into or through the skin has also been confirmed.6,7 Initially, McAllister et al reported 

permeation of latex nanoparticles of up to 100 nm through human cadaver epidermis 

after the skin was treated with solid microneedles (150 µm long, base diameter 80 µm).6 

Coulman et al showed permeation of polystyrene nanoparticles (138 ± 25 nm) 

through the micropores created in human skin by microneedles 280 µm long with a 

base diameter of 200 µm.7 In contrast, Zhang et al did not observe any permeation of 

poly(lactic-co-glycolic) acid nanoparticles (166, 206, or 288 nm) through human skin 

pretreated with microneedles 200 µm long but did show penetration of nanoparticles 

into the epidermis and dermis.8

New-generation vaccines based on recombinant DNA technology generally need 

a vaccine adjuvant to be strongly immunogenic, and data from numerous studies 

have shown that many polymeric or solid lipid nanoparticles used as vaccine antigen 
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carriers have potent adjuvant activity.9 One of the attractive 

 applications of the combination of microneedle and nano-

particle technologies is in vaccine delivery.10 In fact, there 

have been significant and successful efforts to utilize solid 

microneedles coated with nanoparticle-based vaccine formu-

lations, mainly virus-like particles, to perform transcutaneous 

immunization in animal models and in clinical trials.10–25 

However, the feasibility of transcutaneous immunization 

by applying antigens carried by nanoparticles onto a skin 

area pretreated with microneedles has not been thoroughly 

 evaluated. Although application of a vaccine formulation 

onto the skin prior to or after the skin area is treated with 

microneedles is associated with the slight inconvenience 

of being a two-step process, it does have some advantages. 

For example, the dose of vaccines that can be applied is 

not as limited as when the vaccine is to be coated on solid 

microneedles, and coating of a vaccine onto microneedles on 

a mass production scale is still a topic of active research.26 

Recently, Bal et al showed that application of diphtheria 

 toxoid formulated into nanoparticles (211 ± 4 nm) prepared 

with N-trimethyl chitosan onto a mouse skin area pretreated 

with solid microneedles (300 µm long) induced an anti-

diphtheria toxoid antibody immune response. However, the 

response was not stronger than when the diphtheria toxoid 

was used alone.25 Interestingly, it was reported that the simple 

physical mixture of diphtheria toxoid with N-trimethyl chi-

tosan nanoparticles was more immunogenic than diphtheria 

toxoid alone.25 Therefore, there continues to be a need to 

test whether transcutaneous immunization onto a skin area 

pretreated with microneedles with an antigen carried by 

nanoparticles is more effective than with the antigen alone.

Previously, Sloat et al reported the engineering of solid 

lipid nanoparticles of 200 nm in size from lecithin/glyceryl 

monostearate-in-water emulsions.27,28 It was shown that sub-

cutaneous injection of protein antigens conjugated onto the 

nanoparticles induced strong functional antibody and cellular 

immune responses.27,29 In the present study, the antibody 

responses induced by ovalbumin nanoparticles or ovalbumin 

alone when applied onto a mouse skin area pretreated with 

microneedle rollers were evaluated and compared, using 

ovalbumin as a model antigen chemically conjugated onto 

nanoparticles (mean diameter 230 nm) and three different 

microneedle rollers with different-sized microneedles. Prior 

to an in vivo animal immunization study, permeation of the 

ovalbumin nanoparticles through mouse skin treated with 

microneedle rollers was evaluated in vitro. Microneedle 

rollers are commercially available and used for cosmetic 

(self-application) and clinical treatment of the skin. It has 

been shown that sequential insertion of microneedles on a 

microneedle roller requires less insertional force than inser-

tion of microneedles on a flat patch.2

Finally, a very important issue related to microneedle-

based drug delivery has been rarely studied, ie, the potential 

risk of bacterial or viral infection via micropores created by 

the microneedles. Bacteria and viruses are physically nanopar-

ticles or microparticles. Therefore, any micropores that allow 

the permeation of nanoparticles might also allow permeation 

of bacteria and viruses. It is generally assumed that the risk 

of infection associated with microneedle treatment is low, 

and many microneedle-related safety studies in clinical trials 

have focused on the degree of irritation and pain caused by 

the microneedles.30–33 The first study on the ability of microbes 

to traverse microneedle-induced micropores was reported by 

Donnelly et al, whereby permeation of microbes through por-

cine skin pretreated with a microneedle array (280 µm long, 

base diameter 250 µm) was confirmed in vitro.34 In the present 

study, an ex vivo model was designed to evaluate permeation 

of live bacteria through a mouse skin area pretreated with 

microneedles of different sizes. A nonpathogenic Escherichia 

coli DH5α strain was used for this study.

Materials and methods
Materials
Dermaroller® microneedle rollers were purchased from 

 Cynergy (Carson City, NV). Digital pictures of the 

microneedle roller are shown in Figures 1A and 1B. There 

are 192 needles in eight rows on each roller. Three different 

microneedle rollers were used. Dimensions of microneedles 

on the different rollers are shown in Figure 1C. Based on 

the size of the microneedles, the microneedle rollers were 

named as rollers with large (1000 µm long, base diameter 

80 µm), medium (500 µm long, base diameter 50 µm), and 

small (200 µm long, base diameter 20 µm) microneedles. 

Ovalbumin, fluorescein-5(6)-isothiocyanate, 2-iminothiolane 

(Traut’s reagent), 3,3’,5,5’-tetramethylbenzidine  solution, 

sodium bicarbonate, sodium carbonate, Tween 20, and 

phosphate-buffered saline were from Sigma-Aldrich 

(St Louis, MO). Lecithin (soy, refined) was from Alfa 

Aesar (Ward Hill, MA). Glyceryl monostearate was from 

Gattefosse Corporation (Paramus, NJ). The 1,2-dipalmitoyl-

sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidophyl)

butyramide] (DPPE-maleimide) and 1,2-dioleoyl-sn-glycero-

3-phosphoethanolamine-N-carboxyfluorescein (DOPE-

fluorescein) were from Avanti Polar Lipids (Alabaster, AL). 

Goat antimouse immunoglobulin G was from Southern 

 Biotechnology Associates Inc (Birmingham, AL).
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L = 200 µm, d = 20 µm (small)

L = 500 µm, d = 50 µm (medium)

L = 1000 µm, d = 80 µm (large)

A

B

C

~ 2 cm

Figure 1 (A, B) Digital photos of a Dermaroller® microneedle roller (1000 µm 
long, base diameter 80 µm). (C) Diagram of microneedles on the three different 
Dermaroller microneedle rollers used (not to scale).
Note: L indicates the length of the microneedles and d is the base diameter of the 
microneedles.
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Preparation of nanoparticles
Nanoparticles were prepared as previously described.27,28 

Briefly, soy lecithin 3.5 mg and glyceryl monostearate 0.5 mg 

were placed into a 7 mL glass vial. One milliliter of deionized 

filtrated (0.22 µm) water was added into the vial, followed 

by heating on a hot plate to 70–75°C, with stirring and 

brief intermittent periods of sonication (Ultrasonic Cleaner 

Model 150T, VWR International, West Chester, PA). Once 

a homogeneous milky slurry was formed, Tween 20 was 

added in a stepwise manner to a final concentration of 1% 

(v/v) to form an emulsion, which was then allowed to stay at 

room temperature while stirring to form nanoparticles. The 

endotoxin level in the nanoparticle preparation was estimated 

to be 0.18–0.57 EU/mL using a ToxinSensorTM chromogenic 

limulus amebocyte lysate endotoxin assay kit from GenScript 

(Piscataway, NJ).29 The size and zeta potential of the nano-

particles were determined using a Malvern Zetasizer® Nano 

ZS (Westborough, MA).

To prepare the maleimide nanoparticles, DPPE maleim-

ide, which has a reactive maleimide group, was included in 

the lipid mixture (5%, w/w).27,29 To label the nanoparticles 

fluorescently, DOPE-fluorescein (5%, m/m of total lipids) 

was included in the lecithin and glyceryl monostearate mix-

ture during nanoparticle preparation.27,29

conjugation of ovalbumin  
onto the nanoparticles
The conjugation of ovalbumin onto the nanoparticles was 

completed as previously described.27–29 Prior to conjuga-

tion, ovalbumin was thiolated using Traut’s reagent. Oval-

bumin was diluted in carbonate buffer (0.1 M, pH 9.6), 

followed by addition of Traut’s reagent (20× molar excess) 

and a 60-minute incubation at room temperature.  Thiolated 

 ovalbumin was desalted using a PD10 column (GE 

 Healthcare, Piscataway, NJ). To react the thiolated ovalbumin 

with the nanoparticles, 1 mL of freshly prepared maleimide 

nanoparticles were mixed with thiolated ovalbumin (10 mg) 

in phosphate-buffered saline (0.1 M, pH 7.4) and stirred 

under nitrogen gas for 12 to 14 hours at room temperature. 

 Unconjugated ovalbumin was removed by repeated ultra-

centrifugation (600,000 × g) and washing with phosphate-

 buffered saline three times. The amount of ovalbumin 

conjugated onto the nanoparticles was estimated as previ-

ously described using fluorescein-labeled ovalbumin.27,29 

Ovalbumin was labeled with fluorescein following the manu-

facturer’s instructions (Promega Corporation, Madison, WI) 

before being conjugated onto the nanoparticles.

Permeation of ovalbumin and ovalbumin 
nanoparticles through microneedle- 
treated skin
An in vitro permeation assay using Franz diffusion cells 

was completed as previously described.6 The lower dorsal 

skin of C57BL/6 mice was used in all permeation stud-

ies. Hair was trimmed using an electric clipper 24 hours 

before collection of the skin, which was stored at -20°C 

for a maximum period of one month and used when 

needed. After the fat layer was carefully removed, the 

skin was placed onto the flat surface of a balance, and 

the microneedle rollers were rolled in four perpendicular 

lines over the skin surface, five times each for a total of 20 

times, with an applying pressure of 350 to 400 g, which 

was constantly measured using the balance while rolling 

the microneedle roller.35 The skin was then mounted onto 

Franz diffusion cells from PermeGear Inc (Hellertown, PA), 

dorsal side facing upward. The receiver compartment con-

tained 5 mL of phosphate-buffered saline (pH 7.4, 10 mM) 

and was maintained at 37°C with a Haake SC 100 water 

circulator from ThermoScientific (Wellington, NH). The 

diffusion area of the skin was 0.64 cm2. The donor com-

partment was loaded with fluorescein-labeled ovalbumin or 

 fluorescein-ovalbumin nanoparticles in phosphate-buffered 

saline (500 µL, pH 7.4, 10 mM) and covered with parafilm 

to prevent evaporation. The amount of ovalbumin protein 

loaded into the donor compartment was 0.6 mg. At hours 

0, 1, 2, 4, 8, and 24, 200 µL samples were withdrawn from 

the receiver compartment and immediately replenished with 

fresh phosphate-buffered saline. The fluorescence intensity 

in the sample was measured using a BioTek SynergyTM HT 

multimode microplate reader (Winooski, VT).
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Methylene blue staining for visualization 
of micropores
Hair on the dorsal skin of C57BL/6 mice was trimmed before 

the mice were euthanized to remove the skin. The skin sample 

was treated with Nair® lotion (Church and Dwight Co, Princ-

eton, NJ), rinsed with water, paper dried, and placed onto 

the flat surface of a balance. Microneedle rollers were rolled 

once over the skin surface with an applying pressure of 350 to 

400 g. The skin was then stained with 20 µL of methylene blue 

solution for no more than five minutes, followed by removal 

of excessive stain using normal saline swabs and later alcohol 

swabs. Stained skin was visualized using a Stereoscopic Zoom 

Nikon SMZ1500 microscope (Melville, NY). As a control, 

skin was also punctured with a 21 gauge hypodermic needle 

(Becton Dickinson, Franklin Lakes, NJ).

Immunization studies
All animal studies were carried out following the National 

Institutes of Health guidelines for animal care and use. The 

animal protocol was approved by the Institutional Animal 

Care and Use Committee at The University of Texas at 

 Austin. Female C57BL/6 mice (18–20 g) were used for the 

immunization studies. Twenty-four hours prior to the applica-

tion of the vaccine formulations, hair on the dorsal side of 

the mice was carefully trimmed. The skin was cleaned with 

an alcohol swab, and a 2 cm2 area was marked on the skin 

surface. Mice were anesthetized and placed onto the flat 

surface of a balance to monitor the pressure applied during 

application of the microneedle rollers. The microneedle 

rollers were disinfected with ethanol 70% and then rolled in 

two perpendicular lines over the lower dorsal marked skin 

surface, ten times each, again for a total of 20 times,5 with an 

applying pressure of 350 to 400 g. Ovalbumin in phosphate-

buffered saline or ovalbumin-conjugated nanoparticles in 

phosphate-buffered saline were carefully dripped onto the 

treated area; the skin area was then covered with a piece of 

self-adhesive Tegaderm® patch (3M, St Paul, MN), which was 

carefully removed 24 hours later. Immunization was repeated 

10 days apart on two further occasions. As a positive control, a 

group of mice were subcutaneously injected three times with 

ovalbumin-conjugated nanoparticles in phosphate-buffered 

saline. Two weeks (or as where mentioned) after the last 

immunization, mice were bled for antibody assay. The dose 

of ovalbumin was 10.5 µg or 70 µg per mouse.

enzyme-linked immunosorbent assay
An enzyme-linked immunosorbent assay was completed as 

previously described.27,28 Briefly, EIA/RIA flat-bottomed, 

medium-binding, 96-well polystyrene plates (Corning 

Costar, Corning, NY) were coated with 100 ng of ovalbumin 

in 100 µL of carbonate buffer (10 mM, pH 9.6) overnight 

at 4°C. Plates were washed with phosphate-buffered saline/

Tween 20 (10 mM, pH 7.4, 0.05% Tween 20, Sigma-Aldrich) 

and blocked with 5% (v/v) horse serum in phosphate-

buffered saline/Tween 20 for one hour at 37°C. Samples 

were diluted 10-fold serially in 5% (v/v) horse serum in 

phosphate-buffered saline/Tween 20, added to the plates 

following the removal of the blocking solution, and incu-

bated for a further two hours at 37°C. The serum samples 

were removed, and the plates were washed five times with 

phosphate-buffered saline/Tween 20. Horseradish peroxi-

dase-labeled goat antimouse immunoglobulin G (5000-fold 

dilution in 1.25% (v/v) horse serum in phosphate-buffered 

saline/Tween 20) was added into the plates, followed by 

another hour of incubation at 37°C. Plates were again 

washed five times with phosphate-buffered saline/Tween 

20. The presence of bound antibody was detected following 

incubation for 30 minutes at room temperature in the pres-

ence of 3,3’,5,5’-tetramethylbenzidine solution, followed 

by addition of 0.2 M sulfuric acid as the stop solution. The 

absorbance was read at 450 nm using a BioTek SynergyTM 

HT multimode microplate reader.

Transepidermal water loss
Mice were anesthetized, and hair on the lower dorsal skin 

was trimmed. Twenty-four hours later, the trimmed area 

was disinfected with ethanol 70% and treated with the 

microneedle rollers as mentioned earlier. Negative control 

mice received hair trimming only. Before and immediately 

after the needle treatment (0 hour), transepidermal water loss 

was measured using a VapoMeter from Delfin Technologies 

Inc (Stamford, CT) following the manufacturer’s  instructions. 

At least three readings were taken at every time point. If 

there were any uncharacteristic spikes during this period, a 

more representative reading was used.  Transepidermal water 

loss readings were also recorded at hours 2, 3, 4, and 24. For 

mice treated with the large microneedle roller, transepider-

mal water loss readings were also recorded 48 hours after 

treatment. The experiment was repeated using at least four 

mice per group.

In vitro permeation of bacteria  
through microneedle-treated skin
Hair-trimmed mice were treated with the microneedle rollers 

on the lower dorsal skin (10 times each in two perpendicular 

directions, for a total of 20 times) and then immediately 
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Figure 2 Magnified microscopic view of mouse skin after treatment with a 21 gauge 
hypodermic needle (A) or microneedle rollers with different size microneedles, ie, small 
(B), medium (C), and large (D). The skin was stained with methylene blue solution.
Notes: The distance between the bars in A is 1 mm; all photos were taken under 
the same magnification.
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euthanized. The skin in the treated area was collected and 

used to evaluate the permeation of live bacteria on the same 

day. As controls, intact skin (hair trimmed) or skin punctured 

once with a 21 gauge needle were also used. In addition, 

for the microneedle roller with large microneedles, mice 

were treated with the roller and euthanized immediately or 

at hours 1, 3, 6, or 24 to collect the skin in the treated area. 

The collected skin was mounted onto Franz diffusion cells to 

evaluate the microbial permeation. Mouse skin in the treated 

area and the working surface in a laminar flow cabinet were 

disinfected with ethanol 70% before treatment. All dissecting 

tools were autoclaved before use.

E. coli DH5α bacteria were used to evaluate permeation 

of live bacteria through the treated skin. Bacteria were grown 

in Luria-Bertani medium (Sigma-Aldrich), harvested, and 

resuspended into the same volume of sterile phosphate-

buffered saline (pH 7.4, 10 mM). The OD
600

 value of the 

suspension was determined to be 1.27 ± 0.11. The bacterial 

suspension was diluted in sterile phosphate-buffered saline 

(pH 7.4, 10 mM) to 1000-fold, and 500 µL was then placed 

into the donor compartment of the diffusion cells. Four hours 

later, the sample in the receiver compartment was withdrawn, 

diluted 1-fold, 10-fold, and 100-fold in sterile phosphate-

buffered saline, and 50 µL was then spread onto Luria-Bertani 

agar plates, which were incubated at 37°C overnight to count 

the number of colonies formed. The number of bacteria dif-

fused through the skin was reported as colony forming units, 

and it was assumed that each colony had developed from a 

single bacterial cell. The diffusion cells and the parafilm 

used to cover the cells were thoroughly disinfected with 

ethanol 70% three times before use, and all other items were 

autoclaved before use.

statistical analysis
Statistical analyses were performed using analysis of variance 

followed by Fisher’s protected least significant difference 

procedure. A P value of #0.05 (two-tailed) was considered 

statistically significant.

Results and discussion
The ovalbumin nanoparticles were 230 ± 22 nm in diam-

eter, with a polydispersity index of 0.2. Their zeta potential 

was –31 ± 1 mV. The amount of ovalbumin conjugated 

onto the nanoparticles was determined to be 96.6 ± 11.0 µg 

ovalbumin per mg of nanoparticles.29 Lower dorsal mouse 

skin samples were harvested, treated with microneedle 

rollers, and used to evaluate permeation of the ovalbumin 

nanoparticles. Microscopic pictures of the skin stained with 

methylene blue solution immediately following treatment 

with different microneedle rollers are shown in Figure 2. As 

a control, the picture of the skin punctured by a 21 gauge 

hypodermic needle is also shown (Figure 2A). The single 

pore created by the hypodermic needle was about 1 mm in 

diameter, which is to be expected because the nominal outer 

diameter of a 21 gauge needle is 819.2 µm. The pores created 

by the microneedles were much smaller, and it seemed that 

the diameter of the micropores created using a roller with 

larger microneedles tended to be larger than that created using 

a roller with smaller microneedles (Figure 2), in agreement 

with what was previously reported by Zhou et al,5 who used 

ZTGSTM microneedle rollers. Due to the extensive diffusion 

of the blue dye, an accurate measurement of the diameters 

of those micropores was not attempted.

As shown in Figures 3A and 3B, neither ovalbumin 

protein in solution nor ovalbumin conjugated onto nanopar-

ticles could permeate through the intact skin, demonstrat-

ing the physical integrity of the skin samples. In contrast, 

both ovalbumin and ovalbumin nanoparticles were able to 

permeate through skin pretreated with microneedle rollers 

(Figures 3A and 3B). Moreover, pretreatment using a roller 

with larger microneedles allowed more extensive permeation 

than treatment using a roller with smaller microneedles. For 

example, within 24 hours, only a minimum amount of oval-

bumin nanoparticles permeated through the skin pretreated 

using a roller with small microneedles (200 µm long, base 

diameter 20 µm), whereas 13.6 ± 2.4% of the ovalbumin 

nanoparticles permeated through the skin treated with the 

roller with large microneedles (1000 µm long, base diameter 
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Figure 3 Permeation of fluorescein-labeled ovalbumin nanoparticles (A), fluorescein-labeled ovalbumin (B), or fluorescein-labeled ovalbumin-free nanoparticles (C) through 
mouse skin treated with different microneedles (small 200 µm, medium 500 µm, and large 1000 µm).
Note: Data shown are mean ± standard error (n = 5–7).
Abbreviations: MN, microneedle; OVA, ovalbumin; NPs, nanoparticles; FITC, fluorescein-5(6)-isothiocyanate.
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of 80 µm, Figure 3A). As expected, pretreatment with the 

microneedle rollers allowed more extensive permeation of 

the ovalbumin in solution than the ovalbumin conjugated 

onto nanoparticles (Figure 3A and 3B), considering that the 

ovalbumin nanoparticles are much larger than the ovalbumin 

molecules. For example, within 24 hours, 28.3 ± 6.5% of the 

ovalbumin in solution diffused through the pores created by 

the roller with large microneedles, which is significantly 

higher than the 13.6 ± 2.4% for the ovalbumin nanoparticles. 

To confirm that it was the ovalbumin nanoparticles, rather 

than the ovalbumin protein hydrolyzed from the ovalbumin 

nanoparticles, that diffused through the pores created by the 

microneedle rollers, permeation of the fluorescein-labeled 

nanoparticles alone was also monitored. As shown in 

 Figure 3C, the rate of diffusion of the fluorescein nanopar-

ticles was similar to the diffusion of the fluorescein-labeled 

ovalbumin nanoparticles. Finally, diffusion of DOPE-

fluorescein from the fluorescein-labeled nanoparticles 

placed into a dialysis tube (molecular weight cut off, 50,000) 

was evaluated as well. It was found that, within 24 hours, 

release of DOPE-fluorescein from the nanoparticles was 

not detectable, regardless of whether the release medium 

was phosphate-buffered saline or phosphate-buffered saline 

with sodium dodecyl sulfate 0.5% (data not shown), which 

indicated that the observed permeation of fluorescein-labeled 

nanoparticles in Figure 3C was not caused by the diffusion of 

the DOPE-fluorescein molecules from the fluorescein-labeled 

nanoparticles and then through the skin.

Taken together, the data in Figure 3 demonstrate that oval-

bumin nanoparticles of 230 ± 22 nm permeated through the 

micropores created by a microneedle, even using the roller with 

the smallest microneedles (200 µm long, base diameter 20 µm), 

and that as expected, the extent of permeation was dependent 

on the size of the microneedles used. This observation is in 

agreement with that of Coulman et al who showed permeation 

of 138 ± 22 nm polystyrene nanoparticles through human skin 

pretreated with microneedles (280 µm long, base diameter 

200 µm),7 but is in disagreement with the reports by Zhang et al 

and Bal et al using poly(lactic-co-glycolic) acid nanoparticles 

(166, 206, or 288 nm) and diphtheria toxoid-N-trimethyl chito-

san nanoparticles (211 ± 4 nm), respectively.8,25 In the study by 

Bal et al, the length of microneedles used was 300 µm.25 The 

size of the nanoparticles used in the present study was similar to 

that used by Bal et al. It is interesting that the ovalbumin nano-

particles permeated through the skin area pretreated with the 

smallest microneedles (200 µm long, base diameter 20 µm). 

It is speculated that, besides particle size, other factors, such 

as materials used to prepare the nanoparticles, surface charge 

of the nanoparticles, and the strain and source of animals used 

to harvest skin all contributed to different observations in the 

different studies.

Finally, in the present study, for easy detection, diffusion 

of the fluorescein-labeled nanoparticles through the skin and 

into the receiver compartment was measured. Figure 3 clearly 

shows that the ovalbumin nanoparticles diffused into the 

receiver compartment. We are aware that, for transcutaneous 

immunization, one expects to target the antigen inside the 

skin, particularly the epidermis, not necessarily to deliver 

the antigen through the skin because the skin epidermis has 

abundant antigen-presenting cells.36

As shown in Figure 4A, both ovalbumin in solution or 

ovalbumin nanoparticles failed to induce an antiovalbumin 

immunoglobulin G response when applied to intact mouse 

skin with hair trimmed. However, pretreatment using the 
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Figure 4 (A) serum antiovalbumin immunoglobulin g induced by ovalbumin or ovalbumin nanoparticles applied onto a skin area treated or not treated with a microneedle 
roller (1000 µm long, base diameter 80 µm). (B) Antiovalbumin immunoglobulin g induced by ovalbumin nanoparticles applied onto a skin area treated with different 
microneedles. Data reported are mean ± standard error for five mice per group. The ovalbumin dose was 70 µg per mouse.
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microneedle roller with large microneedles (1000 µm 

long, base diameter 80 µm) allowed both ovalbumin alone 

and ovalbumin nanoparticles to induce an antiovalbumin 

immunoglobulin G response (Figure 4A). Importantly, the 

antiovalbumin immunoglobulin G level in mice that received 

the ovalbumin nanoparticles was significantly higher than 

that in mice that received ovalbumin alone (Figure 4A), 

demonstrating that, when dosed onto a mouse skin area 

pretreated with microneedles, formulating a protein antigen 

into nanoparticles can enhance its immunogenicity.

Bal et al showed that microneedle-mediated delivery of 

diphtheria toxoid incorporated into N-trimethyl chitosan nano-

particles did not induce a stronger antibody response than the 

diphtheria toxoid alone.25 Therefore, it does not appear that 

formulating any protein antigen in any nanoparticles will be 

beneficial. Many factors, including the physical, chemical, and 

immunological properties of the nanoparticles, the antigen 

itself, and the dimension of the microneedles, may be respon-

sible for the disagreement observed. Interestingly, Bal et al 

actually reported that when diphtheria toxoid was physically 

mixed with the N-trimethyl chitosan nanoparticles and applied 

onto mouse skin pretreated with microneedles, it induced a 

stronger antidiphtheria toxoid immune response than diphthe-

ria toxoid alone.25 This observation led the authors to predict 

that conjugation of antigen with polymeric nanoparticles, 

instead of incorporation of antigens inside nanoparticles, could 

be a better option to potentiate further the immune responses 

by microneedle-mediated vaccination.25 Our data in Figure 4A 

appear to support their prediction. Therefore, more research 

on formulating the antigen of interest into the proper nano-

particles is warranted for successful microneedle-mediated 

immunization using antigens carried by nanoparticles.

Figure 4B shows the antiovalbumin immunoglobulin G 

response induced by the ovalbumin nanoparticles applied onto 

a mouse skin area pretreated with different sized microneedle 

rollers. As expected, pretreatment using the roller with large 

microneedles enabled induction of a significantly stronger 

antiovalbumin immunoglobulin G response than using the 

rollers with small and medium microneedles (Figure 4B). 

However, pretreatment using the roller with small micronee-

dles and the roller with medium microneedles did not lead to 

different levels of antiovalbumin immunoglobulin G response 

(Figure 4B). The in vitro diffusion data in Figure 3A show 

that the roller with medium microneedles (500 µm long, base 

diameter 50 µm) allowed significantly more permeation of 

ovalbumin nanoparticles than the roller with small micro-

needles (200 µm long, base diameter 20 µm). It is possible 

that the amounts of ovalbumin nanoparticles that can permeate 

through the micropores created by these two different sized 

microneedles in vivo were not different enough to be detected 

by measuring the resulting antiovalbumin antibody levels. 

Therefore, it is likely that for any specific nanoparticle 

formulation, the optimal dimension of the microneedles to 

be used needs to be identified individually.
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Mice were treated with ovalbumin nanoparticles 

containing 10.5 µg of ovalbumin initially in order to compare 

the antibody responses induced by ovalbumin nanoparticles 

applied onto a skin area pretreated using microneedles with 

the same ovalbumin nanoparticles applied by subcutaneous 

injection. As shown in Figure 5A, antiovalbumin immu-

noglobulin G levels induced by ovalbumin nanoparticles 

given by subcutaneous injection or by transcutaneous 

immunization following microneedle treatment were not 

significantly different (P = 0.38, 100-fold dilution).  Moreover, 

it appeared that the antibody response induced by the oval-

bumin nanoparticles dosed onto a skin area pretreated with 

microneedles was dose-dependent. For example, ovalbumin 

nanoparticles at a dose of 70 µg per mouse applied onto a 

skin area pretreated with the microneedles induced a stronger 

antiovalbumin immunoglobulin G response than at a dose 

of 10.5 µg (Figure 5A). However, when the ovalbumin dose 

was increased from 10.5 µg per mouse to 70 µg per mouse, 

transcutaneous immunization following microneedle treat-

ment induced a weaker antiovalbumin immunoglobulin G 

response than subcutaneous injection (Figure 5B), indicating 

that the antigen dose determines whether transcutaneous 

immunization following microneedle treatment with antigens 

carried by nanoparticles is more effective than subcutane-

ous injection. The dose of 70 µg ovalbumin per mouse was 

initially selected because data from a previous study showed 

that subcutaneous immunization with 70 µg of ovalbumin 

in ovalbumin-conjugated nanoparticles induced a strong 

antibody response.29 The ovalbumin dose of 10.5 µg (ie, 15% 

of 70 µg) per mouse was used later because the in vitro data 

in Figure 3A showed that, within 24 hours, only about 15% of 

the ovalbumin nanoparticles permeated through a mouse skin 

area pretreated using the roller with large microneedles. Of 

course it is likely that in vivo, less than 15% of the ovalbumin 

nanoparticles have permeated through the skin treated using 

the same microneedle roller due to factors such as acceler-

ated closure of the micropores and less than ideal permeation 

conditions. Moreover, it is known that microneedle puncture 

is less efficient in vivo than in vitro because of the more 

flexible skin tissue, a nonflat skin surface, the cushioning 

effect of fat and muscle layers.37 Nonetheless, transcutaneous 

immunization with a nanoparticle-based vaccine formulation 

onto a skin area pretreated with microneedles has the poten-

tial to elicit a stronger immune response than that achieved 

by subcutaneous injection using a hypodermic needle.

Transepidermal water loss was measured to evaluate 

the extent to which treatment with microneedle rollers had 

damaged the integrity of the skin. As shown in Figure 6, 

transepidermal water loss in the treated skin area increased 

significantly, and the roller with larger microneedles led to a 

larger increase in transepidermal water loss immediately after 

treatment using the microneedle rollers.  Transepidermal water 

loss then gradually decreased and reached a level similar to 

that of intact skin within 24 hours when the rollers with 

small and medium microneedles were used (Figure 6), in 

agreement with what was previously reported.5 However, it 
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permeation of live nonpathogenic E. coli DH5α. E. coli 

is a rod-shaped bacterium about 200–500 nm in diameter 

and 2 µm long, which is physically a nanorod particle.38 

As shown in  Figure 7A, live E. coli DH5α bacteria can 

permeate through micropores created by microneedle roll-

ers on the skin, and pretreatment using a roller with larger 

microneedles allowed permeation of more bacteria. It was 

determined that using the present method, the microneedle 

rollers created about 250 pores/cm2 on the treated skin area. 

The area in the Franz diffusion cells was 0.64 cm2, which 

means that the number of bacterial colony forming units 

shown in Figure 7A represent the total number of bacteria 

that permeated through roughly 160 micropores created by 

the microneedle rollers within four hours. Data in Figure 7B 

showed that the micropores created by the microneedles also 

closed rather quickly. Within 3–6 hours of microneedle treat-

ment, the pores became impermeable to E. coli bacteria, in 

agreement with what was previously reported, ie, that skin 

recovers its barrier function 3–4 hours after microneedle 

treatment.39

Data in Figure 7A indicate that the number of E. coli 

bacteria permeating through the single pore created by a 

21 gauge hypodermic needle within four hours was equal 

to the number of E. coli permeating through the micropores 

(about 160) created by the roller with large microneedles 

(1000 µm long, base diameter 80 µm) within the same 

period of time. In other words, one single pore created by 

the 21 gauge hypodermic needle was equivalent to about 

160 micropores created by the roller with large microneedles. 

Clinically, a 21 gauge needle is normally used to withdraw 

blood, and smaller needles are generally used for vaccination. 

It is expected that the risk of bacterial infection associated 

with microneedle treatment is more likely to be less than 

the risk associated with a hypodermic needle injection. 

 Nonetheless, the finding in the present study does underscore 

the need for sterilization of any formulation that is to be 

applied onto a skin area pretreated with microneedles and 

also the need to keep the application area clean prior to and 

after microneedle treatment. Of course, the microneedles per 

se should be pathogen-free as well.

All the aforementioned experiments were carried out 

using C57BL/6 mice and their skin. It is known that human 

skin is significantly thicker than mouse skin. Therefore, any 

findings made in a mouse model will ultimately need to be 

validated in humans. Before transition to humans, porcine 

skin is a good model to predict more accurately what is 

expected in humans because porcine skin is very similar to 

human skin.40
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Figure 6 Transepidermal water loss from the skin at different time points after 
treatment with different microneedles.
Note: Data shown are mean ± standard error of the mean (n = 4).
Abbreviations: TeWL, transepidermal water loss; PT, prior to treatment with 
microneedles; ctrl, control.

took a longer period of time, ie, 48 hours, for transepidermal 

water loss on the skin area pretreated using the roller with 

large microneedles (1000 µm long, base diameter 80 µm) to 

reach the intact level (Figure 6).

The kinetics of transepidermal water loss in Figure 6 

confirmed that treatment with microneedles caused physical 

damage, albeit reversible, to the skin, which was previously 

known.5 However, the relevance of this reversible physical 

damage is not well understood. Specifically, it is unknown to 

what extent the micropores created by the microneedles may 

enhance penetration of microbes through the treated skin area, 

considering that microbes, such as bacteria and viruses, exist 

physically as nanoparticles or microparticles in the environ-

ment and on the skin surface. This information is clinically 

relevant because it allows prediction of the potential risk or 

lack of risk of microbial infection associated with treatment 

using microneedles. Recognizing this issue, Donnelly et al 

studied in vitro permeation of radiolabeled microbes through 

porcine skin pretreated with microneedles.34 In their study, 

harvested porcine skin was saturated with bacteria and then 

treated with microneedles to evaluate the extent to which the 

microneedles can carry pre-existing microbes through the 

skin.34 In the present study, an ex vivo system was devised to 

evaluate the extent to which  pre-existing micropores created 

by the microneedles will allow permeation of live bacteria 

through the skin.  Anesthetized mice were treated with the 

microneedle rollers and immediately euthanized to harvest 

the treated skin samples, which were then used to evaluate 
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Finally, microneedles have been exploited in various 

ways to deliver vaccine, ie, solid microneedles coated with 

vaccines, dissolvable microneedles with vaccine incorporated 

in the needles, hollow microneedle-based injection, and the 

application of a vaccine formulation onto the skin prior to 

or after the skin area was treated with microneedles. At this 

moment, transcutaneous immunization on a skin area pre-

treated with microneedles has the slight limitation of being 

a two-step procedure. However, it is not impossible that this 

limitation can be overcome by creative engineering in the 

future. Moreover, all the four methods mentioned above 

have their own unique advantages and disadvantages.26 Solid 

microneedles of sufficient strength are commercially avail-

able, and it is economical to mass produce them. However, 

coating of a particular vaccine onto solid microneedles 

involves reformulation to optimize viscosity and protein 

concentration to avoid aggregation.26 The long-term stabil-

ity of a dry-coated microneedle vaccine is likely better than 

for liquid injectables, but the stability of a particular vac-

cine is dependent on refined formulation and appropriate 

packaging.24 In addition to all these issues, immunization 

via a coated solid microneedle is also a multistep process. 

Immunization needs administration of needles, a waiting 

time of 1–2 minutes to allow the coating to dissolve and, 

finally, application of a patch over the treated area. The 

manufacturing of dissolvable microneedles with sufficient 

strength is still a challenge, and laboratory scale production 

of dissolvable microneedles usually involves the melting 

of polymers at a high temperature, which is detrimental to 

protein stability.41 Hollow microneedles for injection suffer 

from concerns about potential clogging, back pressure from 

densely packed skin layers, and aggregation and syringe-

ability for highly concentrated formulations.26 In addition, 

stability of the proteins and leakage issues during storage of 

prefilled hollow microneedles are still of practical concern.26 

Therefore, the perceived inconvenience associated with the 

two-step procedure of transcutaneous immunization prior 

to or after microneedle treatment should not preclude fur-

ther research efforts. Moreover, knowledge gleaned from 

using solid microneedles is always transferable to other 

microneedle systems.

Conclusion
Pretreatment with microneedles allowed skin permeation 

of nanoparticles with antigen protein conjugated onto them. 

Transcutaneous immunization onto a skin area pretreated 

with microneedles with the protein antigen carried by 

nanoparticles induced a stronger antigen-specific antibody 

response than using the protein antigen alone. The antigen 

dose used to immunize the mice determined whether the 

 microneedle-mediated immunization can induce a stronger 

immune response than when the same nanoparticle-based 

vaccine formulation was dosed by subcutaneous injection. 

Damage to the physical integrity of the skin caused by 
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microneedles, although reversible, may permit permeation of 

live bacteria through the skin, but the risk of bacterial infec-

tion associated with microneedles is not expected to be higher 

than that associated with injection using a hypodermic needle. 

With the increasing interest in nanoparticles as a drug delivery 

system, more research on skin permeation of nanoparticles 

prior to or after microneedle treatment is warranted.
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