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Abstract: The prevalence of diabetic polyneuropathy (DPN) can approach 50% in subjects with 

longer-duration diabetes. The most common neuropathies are generalized symmetrical chronic 

sensorimotor polyneuropathy and autonomic neuropathy. It is important to recognize that 50% of 

subjects with DPN may have no symptoms and only careful clinical examination may reveal the 

diagnosis. DPN, especially painful diabetic peripheral neuropathy, is associated with poor quality of 

life. Although there is a better understanding of the pathophysiology of DPN and the mechanisms of 

pain, treatment remains challenging and is limited by variable efficacy and side effects of therapies. 

Intensification of glycemic control remains the cornerstone for the prevention or delay of DPN but 

optimization of other traditional cardiovascular risk factors may also be of benefit. The manage-

ment of DPN relies on its early recognition and needs to be individually based on comorbidities and 

tolerability to medications. To date, most pharmacological strategies focus upon symptom control. 

In the management of pain, tricyclic antidepressants, selective serotonin noradrenaline reuptake 

inhibitors, and anticonvulsants alone or in combination are current first-line therapies followed by 

use of opiates. Topical agents may offer symptomatic relief in some patients. Disease-modifying 

agents are still in development and to date, antioxidant α-lipoic acid has shown the most promising 

effect. Further development and testing of therapies based upon improved understanding of the 

complex pathophysiology of this common and disabling complication is urgently required.
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Introduction
Diabetes is the most common cause of neuropathy leading to significant morbidity 

and is associated with increased mortality.1 Prevalence approaches 50% for people 

with long-established diabetes. Presentation, in the early stages, can comprise sym-

metrical, painful neuropathy involving the lower limbs, which can predate the diag-

nosis of diabetes. Paradoxically in later stages, pain can still be present with disabling 

symptoms, yet on clinical examination there is loss of sensation, so-called “painful 

painless neuropathy”. Poor glycemic control leads to progression of DPN and many 

studies have shown that intensification of metabolic control can slow or halt disease 

progression. Currently available disease-modifying treatments have not been effec-

tive in reversing the pathological process and present therapies are targeted, therefore, 

more towards pain relief.

Definition
DPN is defined as the presence of symptoms and/or signs in the peripheral nerves, pre-

dominantly affecting the lower extremities in the absence of other causes of  neuropathy. 
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The San Antonio Consensus Statement on Diabetic  Neuropathy 

defined the condition as being a “demonstrable disorder, either 

clinically evident or subclinical in the setting of diabetes 

 without other causes of peripheral neuropathy”.2

Epidemiology
The epidemiology and the natural history of DPN are difficult 

to define, reflecting the inconsistencies of clinical diagnostic 

criteria, variable selection of patients, and wide-ranging 

physiological techniques. The EURODIAB Complications 

Study identified a prevalence of 28% for DPN at baseline, 

with glycemic control and duration of diabetes being major 

determinants; similar findings were observed in subjects in 

the Diabetes Control and Complications Trial (DCCT).2 In a 

cohort of 4400 Belgian patients, the prevalence was estimated 

to be about 7.5% in newly diagnosed diabetes, increasing to 

45% after 25 years of diabetes.3 In the United Kingdom, the 

prevalence of DPN among a hospital clinic population was 

around 29%.4 The prevalence is estimated to be 10% to 18% 

in newly diagnosed type 2 diabetes based on nerve electro-

physiological studies, reflecting that “mild” disturbances of 

the glucose milieu can lead to nerve  damage.5 The enhanced 

sensitivity of nerves to glucotoxicity is supported by the 

presence of symptomatic neuropathies in individuals who 

were found to have impaired glucose tolerance (IGT) which 

typically affects small nerve fibers based on measurements 

of intra-epidermal nerve fiber density (IENFD).6 In the 

Augsburg surveys, the prevalence of DPN based on Michigan 

Neuropathy Screening Instrument was 13.0% in those with 

IGT, 11.3% in those with impaired fasting glucose (IFG), 

and 7.4% in those with normal glucose tolerance (NGT) vs 

28.0% in subjects with established diabetes (P = 0.05 for 

diabetes vs NGT, IFG, and IGT).7

The reported prevalence of painful DPN typically ranges 

from 10%–26% based on differing criteria used to diagnose 

neuropathic pain.8 In a European multicenter study of 1171 

diabetic patients, the prevalence of painful DPN in subjects 

with type 1 and type 2 diabetes was 11.6% vs 32.1% respec-

tively in the lower limbs and 7.1% vs 16.6% in the upper 

limbs. In newly diagnosed type 2 subjects, the prevalence has 

been reported to be 6% increasing to 20% at 10 years.9

Risk factors for DPN  
and neuropathic pain
The risk factors for the development of DPN were analyzed 

in the EURODIAB Prospective Complications Study of 

1100 people with type 1 diabetes followed over a period 

of 7.3 years. Risk factors appeared to be similar to the 

factors for macrovascular disease, such as hypertension, 

smoking, elevated HbA
1c

, increased lipid levels, duration of 

diabetes, and body mass index (Figure 1).10 In the Augsburg 

surveys, age, waist circumference, and diabetes were shown 

to be independent risk factors for the developing neuropathic 

pain. The presence of peripheral arterial disease was a 

significant contributor to neuropathic pain both in diabetic 

and nondiabetic subjects. This is an important factor to be 

considered in the diagnosis and treatment of neuropathic  

pain.11

Symptoms and signs
The classification of diabetic neuropathies is complex 

reflecting the diverse etiology, pathology, the heterogeneous 

nature of symptoms, varied clinical course, and pattern of 

neurological involvement (Table 1). DPN can be broadly 

divided as suggested by Thomas et al12,13 and Boulton et al14,15 

into generalized polyneuropathies and focal and multifocal 

varieties. Recently the Toronto Diabetic Neuropathy Expert 

Group suggested a further division of the generalized vari-

eties into two subgroups of typical and atypical reflecting 

differences of onset, course, clinical manifestations, associa-

tions, and pathophysiology.16  Furthermore, minimal criteria 

were suggested for typical DPN (into categories of possible, 

probable, confirmed, and subclinical) based upon abnormali-

ties of symptoms and signs and nerve electrophysiology. 

According to these criteria, the presence of an abnormality 

of nerve conduction in addition to a symptom(s) or a sign(s) 

is necessary for confirmation. However in the presence of 

normal electrophysiology, a validated measure of small fiber 

neuropathy (Figure 2) could be utilized.16
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Figure 1 eURODiAB: risk factors for incidence of polyneuropathy.
Notes: excluding cardiovascular disease and retinopathy. Odds ratios (95% Ci); 
n = 1101 with type 2 diabetes; follow up 7.3 ± 0.6 years.
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Table 1 Classification of diabetic polyneuropathies

A. Generalized symmetrical polyneuropathy

 • Chronic sensorimotor polyneuropathy
  ◊ Small fiber neuropathy
  ◊ Large fiber neuropathy
  ◊ Mixed
 • Acute sensory neuropathy
  ◊ Hyperglycemic neuropathy
  ◊ “Cachetic” neuropathy
 • “Peripheral”autonomic neuropathy
  ◊ Sudomotor neuropathy
  ◊ “Autosympathectomy”
B. Focal neuropathy
 • Cranial neuropathy
 • Focal-limb neuropathy
C. Multifocal neuropathies
 • Radiculoplexus neuropathies
  ◊ Lumbar polyradiculopathy (diabetic amyotrophy)
  ◊ Lumbo-sacral polyradiculopathy
  ◊ Thoracic polyradiculopathy

Generalized polyneuropathy
Diabetic sensorimotor polyneuropathy
Diabetic sensorimotor polyneuropathy (DSPN) is perhaps 

the most common form of DPN. It is a chronic, symmetrical 

neuropathy, which typically begins in the toes and gradually 

and insidiously ascends to involve the lower legs. Lesions 

or dysfunction of small myelinated and unmyelinated 

nerve fibers and larger myelinated nerve fibers occur in 

varying combinations; however, in most cases, the earliest 

deficits involve small nerve fibers. The features of small 

fiber neuropathy can include paresthesias and dyesthesia, 

hyperalgesia, burning, or lancinating pain and deficits in 

pain and temperature perception. Sensory symptoms can 

be mild; occasional tingling or pins and needles (paresthe-

sia) or more disabling in terms of burning or stabbing with 

symptoms tending to be worse at night. The most frequent 

location of pain has been reported to be as follows: 96% 

feet, 69% balls of feet, 67% toes, 54% dorsum of foot, 39% 

hands, 37% plantum of foot, 37% calves, and 32% heels.17 

In extreme cases, patients may experience hypoalgesia and 

allodynia when even the lightest of touch can provoke per-

ception of severe pain. The precise prevalence of allodynia 

in DPN is however controversial. Unpleasant sensations of 

lancinating or “electric-shock” nature can result from small 

fiber involvement. Negative symptoms of numbness and 

hypoalgesia are also commonly reported within the presenta-

tion of sensorimotor polyneuropathy. Large myelinated fiber 

involvement leads to loss of vibration, touch, and position 

perception with decreased or absent ankle reflexes. Severe 

impairment of proprioception can lead to sensory ataxia and 

denervation-mediated wasting of small intrinsic muscles of 

the feet and hands, which can lead to weakness and deformity 

and occurs late in the disease process.12,18–21 The duration of 

pain varies with complete to partial remission possible if a 

precipitating event can be identified.22 Shorter pain duration 

(ie, ,6 months), in general, has a better prognosis.

It is generally proposed that chronic hyperglycemia 

with resultant downstream metabolic derangements in 

concert with cardiovascular risk factors23 leads to impaired 

microvascular perfusion which is the fundamental deficit in 

pathogenesis of DSPN and is often found in association with 

other long-term microvascular complications.16,23

Acute sensory neuropathy
Rarely, the symptoms of DPN are acute with severe inten-

sity of pain associated with sudden and extreme weight 

loss. This has been associated with depression and erectile 

dysfunction. Electrophysiological evidence of neuropathy 

may be mild or absent consistent with predominant involve-

ment of small nerve fibers. Symptoms may subside in 

,1 year and weight loss responds well to insulin therapy.24 

Similar findings may be observed in girls with anorexia 

and diabetes,24 which can portend a troublesome future of 

rapidly progressive DPN.

Similarly, the so-called rapidly reversible hyperglycemic 

neuropathy, which occurs in patients with recently diagnosed 

or poorly controlled diabetes, usually presents with distal 

sensory symptoms that are unlikely to be associated with 

structural nerve abnormalities and recover following restora-

tion of euglycemia.16

Acute painful neuropathy which develops after improve-

ment of glycemic control, so-called “insulin neuritis”, has 

been described as “non-length-dependent” in that the distal 

extremities are not necessarily the most severely affected.25,26 

This topographic distribution of neuropathy has also been 

described in subjects with impaired glucose tolerance.27 

Symptoms usually respond to conventional treatments for 

neuropathic pain within 1 year.

Autonomic polyneuropathies
In diabetic neuropathy, innervation of peripheral vascula-

ture is decreased or absent. Loss of sympathetic tone in the 

blood vessels results in vasodilation leading to arteriovenous 

shunting. The “warm” neuropathic feet due to arteriovenous 

shunting can be associated with the distension of foot veins 

that fail to collapse even when the foot is elevated and 

can result in edema, which is resistant to diuretics. The 
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increased blood flow in the feet has been postulated to cause 

osteopenia and is associated with the development of Charcot 

 neuroathropathy.28 The oxygen tension of the blood in these 

veins is typically raised.

Peripheral sudomotor neuropathy can affect the feet with 

loss of sweating, resulting in dry skin with fissures predispos-

ing to the risk of infection.29 The term “autosympathectomy” 

has been used to describe the occurrence of peripheral vaso-

motor instability and peripheral sudomotor neuropathy. Sweat 

glands are innervated by sudomotor, postganglionic, thin, 

unmyelinated cholinergic sympathetic C-fibers. C-fibers also 

contribute to microvascular blood flow regulation. C-fiber 

dysfunction can occur early in the course of DPN.

Several methods have been developed to assess sudomo-

tor function with variable degree of complexity and accu-

racy including thermoregulatory sweat testing, quantitative 

sudomotor axon reflex test sympathetic skin response, and 

quantitative direct and indirect axon reflex testing, silicone 

impressions, and the indicator plaster. The indicator plaster 

has been developed as a simple tool to detect the presence 

of DPN.30

Measurement of IENFD is also becoming widely 

accepted as an important highly reproducible31,32 tool for 

the quantitative assessment of the presence and severity of 

small sensory fiber loss. Intra-epidermal nerve fibers are the 

most distal processes of small myelinated and unmyelinated 

axons. These fibers can be quantified utilizing a minimally 

invasive technique of skin punch biopsy31 (Figure 2). 

 Normative ranges have been reported31 which demonstrate 

that the density of epidermal nerve fibers decreases with 

age and is lower in men than in women.32 IENFD has been 

found to correlate with the severity of neuropathy34,35 as 

measured using sural nerve small myelinated fiber density,35 

thermal thresholds,33,36,37 vibration perception threshold, and 

electrophysiology.33,36

Small sensory nerve fiber loss in the cornea can also 

be assessed using the technique of corneal confocal 

microscopy.16,33 This technique has been shown to correlate 

with loss of IENFs and with the severity of neuropathy in 

patients with diabetes.33 It appears to be a highly sensi-

tive measure by which to measure a therapeutic effect 

of disease-modifying interventions since it was reported 

to improve 6 months following pancreatic and kidney 

transplantation.38

Focal and multifocal neuropathies
Different mechanisms such as mild, repeated mechanical 

trauma, compression and entrapment, ischemia, and inflam-

matory process have been invoked in the development of 

focal and multifocal neuropathies,39–41 which differ from 

typical DSPN in that they may occur early as well as later in 

the course of diabetes.

Mononeuropathy is common in both type 2 and type 1 

diabetes. Cranial neuropathy, which perhaps results from 

inflammation, microvasculitis, and/or ischemia is rare and 

commonly affects the nerves that supply the extraocular 

muscles, especially oculomotor, abducens, and trochlear. 

Patients with diabetic opthalmoplegia present with unilateral 

pain, ptosis, and diplopia with sparing of pupillary reaction. 

Though these neuropathies are similar to those observed in 

nondiabetic subjects, Bell’s palsy occurs more frequently 

in diabetic than nondiabetic patients. Mechanical insult 

is likely to contribute to carpal tunnel syndrome which 

results from median nerve entrapment at the wrist (median 

mononeuropathy) or foot drop secondary to peroneal nerve 

involvement at the fibular head. Median mononeuropathy can 

be asymptomatic and can lead onto wasting and weakness 

of hand grip.42

Radiculo-plexus neuropathies
Lumbosacral plexus-radiculo-neuropathy involve the L2, L3, 

and L4 roots and is often described as diabetic amyotrophy.16 

Typically, older patients in the fifth to sixth decades of life 

with type 2 diabetes present with thigh pain followed by 

muscle weakness in one leg and sensory loss at the level of 

the lumbar plexus or lumbar roots and femoral nerve. The 

knee jerk reflex is usually reduced or absent on the affected 

side with preservation of ankle jerk unless affected by distal 

polyneuropathy. The symptoms may have monophasic or 

stepwise progression and are usually accompanied by weight 

loss. The condition tends to resolve over 6 months to 1 year. 

The diagnosis is made on history and clinical examination 

and electromyographic studies. The etiology may be an 

Epidermis

Dermis

Dermis

Epidermis

Intra-epidermal
nerve fibers
stained for 
PGP9.5 Intra-epidermal

nerve 
fibers 
stained for 
PGP9.5

Normal skin Diabetic skin

Figure 2 PGP 9.5 staining in nerves.
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immune mediated vasculitis with ischemia since there is 

evidence of immune complex and complement deposition in 

nerve and muscle biopsy. Limited data suggest that treatment 

with intravenous immunoglobulins, prednisolone, and/or 

plasma exchange may result in fewer long-term neurologi-

cal sequelae.43–45 It is important to achieve good metabolic 

control in all cases.

Diabetic truncal radiculoneuropathy tends to affect 

middle-aged to elderly male patients. It is less common 

than lumbosacral plexus-radiculo-neuropathy but causes 

marked symptoms with a girdle-like distribution pain over 

the lower thoracic or abdominal wall. It may be uni- or 

bilaterally distributed and resolution generally occurs within 

4–6 months.

Pathophysiology
The development of DPN is multifactorial. The metabolic 

effects of chronic hyperglycemia and the consequences of 

ischemia on the peripheral nerves are likely to be the two 

fundamental mechanisms leading to neuro-axonal dysfunc-

tion and damage.

In sensorimotor polyneuropathy, the pathophysiologi-

cal effects of hyperglycemia are wide ranging and include 

activation of polyol pathway, generation of reactive oxygen 

species (ROS) (oxidative stress) and reactive nitrogen species 

(nitrosative stress), and accumulation of advanced glycation 

end products (AGE)46 (Figure 3). Excess glucose flux through 

the polyol or sorbitol pathway is reduced to sorbitol by the 

enzyme aldose reductase, a rate limiting step in this pathway, 

before being oxidized by sorbitol dehydrogenase to fructose, 

a potent glycating agent. The intracellular accumulation of 

sorbitol leads to reduction in nerve myoinositol and taurine 

and disruption of Na+/K+-ATPase membrane activity, leading 

to nerve sodium accumulation, impaired axonal transport and 

structural damage to the nerves.

Hyperglycemia accelerates the glycation of free amino 

group on proteins, lipids, and nucleic acids with alteration 

in their molecular structure and functions.47 The base-

ment membrane of endothelial cells becomes glycosylated 

thereby contributing to impaired vasodilation. There is also 

excess formation and accumulation of AGEs due to reduced 

clearance of these macromolecules. Additionally, AGEs 

bind to receptors of AGE on macrophages with production 

of inflammatory cytokines (interleukin-1, tumor necro-

sis factor-α), growth factors (insulin like growth factor, 

platelet derived growth factor, tissue growth factor-β) and 

adhesion molecules (vascular cell adhesion molecules-1) 

(VCAM-1).48–54

Elevated intracellular glucose also stimulates formation 

of diacylglycerol, which leads to the activation of protein 

kinase C (PKC).53,54 The role of PKC is better defined in the 

pathogenesis of diabetic retinopathy and although the mecha-

nism of its involvement in neuronal damage is unclear and 

debated, it probably is mediated via an effect on endothelial 

cell function.

A common final endpoint for many pathogenic pathways 

is impaired nerve perfusion, hypoxia, and nerve energetic 

defects. The multiple mechanisms cited above can result 

in overproduction of ROS, especially superoxide anion by 

the mitochondrial electron transport chain. The availability 

of endothelial nitric oxide (NO) is reduced as superoxide 

binds to NO to form the strong oxidant peroxynitrite which 

is directly toxic to endothelial cells.56–59 Endothelial cells 

elaborate NO, a potent vasodilator, which antagonizes 

thrombosis, has anti-inflammatory properties, is important 

in cell signaling, and can inhibit growth of vascular smooth 

muscle cells.56–62 NO also inhibits the production of the potent 

vasoconstrictor peptide endothelin (ET)-1. Other agents 

involved in mediating the vasodilatation of microcircula-

tion include substance P and calcitonin gene related peptide 

(CGRP), in addition to bradykinin, histamine, and vasoactive 

intestinal polypeptide there is impaired dilator response to 

these peptides in diabetes.55–58 Therefore, diabetes results in 

an imbalance of vasoactive agents, with the ultimate effect 

of impaired microvascular perfusion.

Another novel pathway, which has been implicated in the 

pathogenesis of the complications of diabetes, is activation 

of nuclear enzyme poly (ADP ribose) polymerase (PARP). 

Increased oxidative stress results in DNA damage and 

PARP 1 activation, which can lead to cellular energy fail-

ure, which is thought to be important in the pathogenesis of 

DPN.63 Diabetic rodent models administered PARP inhibitors 

or deficient in the PARP gene demonstrate protection against 

the development of experimental DPN. These models also 

demonstrate reduced levels of epineurial vessel superoxide 

and nitrotyrosine, suggesting that the relationship between 

oxidative stress and PARP may be bidirectional rather than 

unidirectional.63 For a detailed review of the role of oxidative 

stress in the pathogenesis of DPN, the reader is referred to 

Figueroa-Romero et al.56

Mechanism of neuropathic pain
Overall the mechanisms that contribute to the development of 

pain in diabetes are poorly understood but probably involve 

deficits at multiple levels from the skin nociceptors to the 

pain processing areas of the brain.16 It is also important to 
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consider the impact of cultural influences on the perception 

of pain, since the experience of pain complicating diabetes 

differs across ethnic groups which cannot be explained on the 

basis of clinical findings. The pain pathway starts from the 

periphery with nociceptor activation and transmission through 

the small unmyelinated C fibers and the larger myelinated 

A-δ fibers and A–β fibers. The major neurotransmitter in C 

fibers is glutamate and its release is regulated through calcium 

channels. Glutamate in turn excites postsynaptic N-methyl-

D-aspartate (NMDA) receptors resulting in the release 

of substance P in the substantia gelatinosa, an important 

neurotransmitter of pain perception. The descending fibers 

modulate the response to pain via serotonergic, opioidergic, 

and α-2-adrenergic pathways.64 The A-β the A-δ fibers 

Hyperglycemia 

AGE activation DAG
accumulation 

PARP
activation  

AR activation 

PKC activation Hypertension
dyslipidemia

smoking 

Oxidative
stress

Endothelial
dysfunction 

NO Local
mediators

Growth factors Prothrombotic
factors

Tissue
ACE

Endothelin/ET1
thromboxane

VCAM/ICAM
cytokines 

PDGF/FGF
A-II

PAI -1
prostacyclin

AII

Vasoconstriction Vascular lesion
and remodeling 

Thrombosis Inflammation Plaque
rupture 

Figure 3 Pathophysiology of microvascular injury.
Abbreviations: ACe, angiotensin converting enzyme; AGe, glycation end products; AR, aldose reductase; DAG, diacylglycerol; PARP, poly (ADP ribose) polymerase; PKC, 
protein kinase C; vCAM, vascular cell adhesion molecules.
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transmit pain perception by depolarization, which is mediated 

by sodium channels, of which sodium channels 1.7 and 

1.8 play an important role in pain signaling via glutamate. 

This excites an interneuron with release of γ-aminobutyric 

acid (GABA), which further  modulates pain sensation.65,66 

Interestingly, a number of  studies suggest that loss of IENFs 

is related to the development of pain in a variety of chronic 

disease states. For example, subjects with painful diabetic 

neuropathy have been shown to exhibit a significant reduc-

tion of IENFD compared with diabetic patients with painless 

neuropathy.67

The definition of neuropathic pain (NP) as proposed by 

International Association of Study of Pain “pain initiated or 

caused by a primary lesion or dysfunction in the nervous 

system” has limitations as it overlooks the plasticity of the 

nervous system and its continuous modulation, which may 

change after activation or injury.68 The word “dysfunction” 

in the definition of NP allows the inclusion of organic pain 

states that do not have identifiable lesions of any part of the 

nervous system or an initiating neural injury. The revised 

definition proposed by Treede et al, based on consensus state-

ment defines NP as “pain arising as a direct consequence of 

a lesion or disease affecting the somatosensory system”.68 

Peripheral NP and central NP refer to lesions/disease of 

the peripheral nervous system and central nervous system, 

respectively.

Treatment of diabetic 
polyneuropathy
Treatment of DPN can be viewed as approaches aimed at 

modifying the disease process or strategies aimed at the 

alleviation of symptoms. Often the primary aim is to protect 

the lower limbs from damage due to sensory loss or to relieve 

pain, thus improving physical well-being and reducing psy-

chological distress in order to enhance the quality of life.

Disease-modifying treatment
Glycemic control
The pathogenesis of DPN is fundamentally mediated by 

hyperglycemia and/or insulin deficiency and their associated 

downstream actions. Indeed, glycemic control appears to be 

the most effective treatment to slow the progression of dia-

betic neuropathy and delay its onset. In the DCCT, intensive 

metabolic control with insulin resulted in a 60% reduction 

in clinical and electrophysiological evidence of neuropathy 

compared to standard care over a period of 5 years in sub-

jects with type 1 diabetes.69,70 In patients with early diabetes, 

intensive glycemic control significantly attenuates neuropathy 

 progression.70 Furthermore, the beneficial effect of intensive 

glycemic control applied early in the course of diabetes 

appears to have long-lasting effects (metabolic memory).71 

However, the DCCT gave little evidence that established 

neuropathy could be reversed by intensive insulin therapy. In 

the Epidemiology of Diabetes Intervention and Complication 

Trial (EDIC Trial), 64% of the original cohort from DCCT 

were followed up for 16 years. The incidence of diabetic neu-

ropathy remained lower in subjects previously randomized to 

intensive treatment after 5 years despite the lack of difference 

in HbA
1c

. The term “imprinting” of metabolic memory or 

“legacy” effect has been coined to describe this effect.71

Limited information exists with regards to the effects of 

glycemic control on pain. Boulton et al demonstrated that 

greater mean glucose excursions are associated with higher 

neuropathic pain scores and that use of continuous subcutane-

ous insulin infusion resulted in significant improvement in 

pain scores. These studies were, however, limited to a small 

number of patients.72,73

In the (UK Prospective Diabetes Study) UKPDS, in newly 

diagnosed type 2 diabetes, intensive treatment with sulfonylu-

rea, metformin, and insulin, which resulted in a 0.9% reduction 

in HbA
1c

 after 10 years compared to conventional treatment, 

led to 25% reduction in microvascular endpoints, especially 

in retinopathy progression and albuminuria.74,75 However, 

absent ankle reflexes, taken as a sign of diabetic neuropathy 

were noted in 35% and 37% of intensively and conventionally 

treated subjects respectively, suggesting limited impact on this 

endpoint. In the Steno-2 trial, which assessed the efficacy of 

multifactorial risk  factor intervention, improvements in glyce-

mic control, lipid profile, and blood pressure were associated 

with a reduction in the odds ratio to 0.32 for the development 

of autonomic neuropathy.76 Intensification of metabolic control 

did not affect the progression of DPN, but may have reflected 

the limited assessment of DPN performed in this study (limited 

to a biothesiometer assessment).

α-lipoic acid
As discussed above, there is considerable evidence for an 

important role for neurovascular dysfunction in the patho-

genesis of DPN related to the downstream effects of free 

radical-mediated oxidative stress. D-L-α-lipoic acid (ALA) 

is a potent antioxidant, which has been extensively evaluated 

in prospective, placebo-controlled studies in subjects with 

diabetic neuropathy. A meta-analysis of 1258 patients who 

were treated with infusions of ALA (600 mg intravenously/

day) concluded that neuropathic symptoms and deficit were 

reduced after 3 weeks of treatment.77,78
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Initial studies with ALA showed limited benef it 

in symptom scores with some improvement in nerve 

 electrophysiology. In the (Alpha-Lipoic Acid in Diabetic 

Neuropathy) ALADIN II trial, subjects with type 1 and type 

2 diabetes complicated by symptomatic polyneuropathy were 

randomly assigned for 2 years to 1200 mg, or 600 mg ALA 

or placebo after intravenous infusion of ALA or placebo. 

The severity of diabetic neuropathy was assessed by the 

neuropathy disability score and electrophysiological studies. 

No significant differences between the groups were detected 

after 24 months apart from dose-dependent improvement in 

electrophysiological nerve function. In the ALADIN III trial, 

there was a small but significant improvement in neuropathy 

impairment score in patients treated with ALA.79,80

However, in the Symptomatic Diabetic Neuropathy 

(SYDNEY) 1 trial, ALA intravenously given for 3 weeks was 

associated with improvement of symptoms. In SYDNEY 2 

trial, three doses of oral ALA (600, 1200, or 1800 mg daily) 

or placebo were randomly assigned to 181 diabetes patients 

with symptomatic polyneuropathy for 5 weeks. All three 

doses were associated with significant improvement in the 

neuropathy total symptom score compared to placebo.81,82

The benefit and safety of ALA has been demonstrated in a 

long-term study, NATHAN, which was a multicenter, random-

ized, double-masked, parallel group clinical trial involving 

460 diabetic patients with polyneuropathy randomly assigned 

to receive ALA 600 mg or placebo. After 4 years, ALA was 

shown to be well tolerated and to improve neuropathic symp-

toms and deficits compared to a progression of these endpoints 

in the placebo arm.83 ALA has been licensed and is currently 

used in treatment of symptomatic diabetic neuropathy in 

Germany. A dose of 600 mg/day appears to offer the best 

balance between efficacy and side effect profile.

Protein kinase C
Activation of PKC is thought to be an important pathogenetic 

pathway in diabetic microvascular complications. In the 

multinational, randomized, Phase II double-blind placebo-

controlled trial using ruboxistaurin (a PKC-β inhibitor) there 

was, however, no difference in the primary endpoint of change 

in vibration detection threshold (VDT). For the secondary 

endpoint, there was improvement in the neuropathy total 

symptom score 6 (NTSS 6). Patients who had significant 

symptoms at baseline did show a statistically significant 

change in symptoms with 64 mg dose but not with a 32 mg 

dose compared to the placebo. In a subgroup analysis of 

patients with clinically significant symptoms and less severe 

DPN, there was significant greater reduction in NTSS 6 total 

score with the 64 mg dose (P = 0.006 vs placebo) and an 

improvement in the VDT.84,85

Polyol pathway
Aldose reductor inhibitors (ARIs) reduce the flux of glucose 

through the polyol or sorbitol pathway, resulting in the reduc-

tion of intracellular accumulation of sorbitol and fructose. In 

a 52-week, multicenter, placebo-controlled, double-blind trial, 

the use of fidarestat in patients with type 1 and type 2 diabetes 

with peripheral neuropathy was associated with significant 

improvement in five out of the eight electrophysiological 

measures over the course of the study with no deterioration 

from baseline in the treated group. At the study conclusion, 

the fidarestat-treated group improved significantly compared 

with the placebo group in two of the electrophysiological 

measures. There was also subjective symptomatic improve-

ment in the treated group.86 The ARI epalrestat is approved in 

Japan for clinical use. The clinical efficacy has been assessed 

in a 3-year, open-label, randomized control trial (RCT) of 594 

DPN subjects. One hundred and fifty mg/day of epalrestat was 

found to result in improvement in patients’ symptoms and 

prevented the deterioration of median motor nerve conduction 

velocity and minimum F wave latency.87

Another ARI that has been evaluated in a Phase III study is 

ranirestat. 549 patients with DPN were randomized to  placebo 

or 10, 20, or 40 mg/day of ranirestat for 52 weeks. There 

was no change in the Toronto clinical neuropathy score and 

quantitative sensory testing among the groups. There were 

nonsignificant changes in sural and sensory nerve conduc-

tion but significant improvement in summed motor nerve 

conduction velocity of tibial, peroneal, and median nerves 

in the ranirestat group by 12 weeks.88 Currently, the focus 

has changed from reversing established disease to slowing 

the progression of neuropathy and a prospective clinical trial 

with ranirestat is underway to address this.

Advanced glycation end  
products
The accumulation of AGEs and activation of AGE receptors 

results in multiple downstream pathogenetic effects leading 

to microvascular damage. However the identification and 

testing of a safe AGE inhibitor has proved problematic. The 

inhibition of AGE formation, amino-guanidine, was discon-

tinued because of toxicity in humans.89

Benfotiamine, a derivative of thiamine (vitamin B1), has 

been shown to reduce tissue AGEs. Studies of benfotiamine in 

subjects with DPN with varying doses and duration have been 

reported to show some effectiveness compared to placebo. 
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A 6-week, placebo-controlled study with benfotiamine 300 mg 

or 600 mg demonstrated a reduction in neuropathic symptoms, 

which was optimal at the higher dose. Benfotiamine has also 

been studied in combination with pyridoxamine (vitamin B6) 

and cyanocobalamin (vitamin B12). These studies reported 

a significant improvement in vibration perception threshold, 

motor function, and symptom score.90,91

Growth factors
There is evidence for deficient neurotrophism in diabetes. 

However prospective clinical trials utilizing nerve growth factor 

(NGF) and neurotropin 3 did not show promising results.92,93 

Another growth factor, vascular endothelial growth factor 

(VEGF), which is an important stimulus for angiogenesis, has 

been studied in animal models of diabetic neuropathy as well as 

in clinical trials in patients with diabetes.94,95 VEGF was shown to 

improve symptoms without effecting nerve  electrophysiology.94 

Islet neogenesis associated protein, a pancreatic cytokine that can 

regenerate the islet tissue when administered to diabetic mice, 

resulted in improvement in thermal hypoalgesia in the rodent 

model following 2 weeks of treatment.96

inhibition of PARP
Chemical inhibition of PARP offers potential to slow or reverse 

diabetes complications including DPN.63 Weak PARP inhibi-

tors such as nicotinamide can prevent experimental neuropathy 

in diabetic rodents.97 The challenge remains to develop more 

potent inhibitors that can be evaluated in patients.

Angiotensin converting enzyme inhibitors
The role of angiotensin converting enzyme inhibitors in 

DPN is probably due to inhibition of angiotensin II, which 

is a potent vasoconstrictor with pro-inflammatory properties, 

which especially in the absence of NO, promotes thrombosis 

and stimulation of vascular smooth muscle cells and adhe-

sion molecules such as VCAM and intercellular adhesion 

molecules. The efficacy of trandolapril has been studied in 41 

normotensive DPN patients who were randomly assigned to 

active treatment or placebo. Patients on trandolapril showed 

a small but significant improvement in several measures of 

peroneal and sural nerve physiology after 12 months of treat-

ment compared with placebo. Vibration-perception threshold, 

autonomic function, and the neuropathy symptom and deficit 

score, however, showed no improvement in either group.98

Symptomatic treatment
Therapeutic targets to alleviate pain include diabetes-induced 

peripheral and central sensitization (Figures 5 and 6). There 

is no predictor of the response to analgesics dependent on 

the character of the pain, although some believe that burn-

ing pain responds best to antidepressants and shooting pain 

to anticonvulsants. These agents are widely used in clinical 

practice, although not all are supported by adequate prospec-

tive RCTs. It is of great importance to consider individual 

patient comorbidities and drug side-effect profile as many 

agents have dose-related and potentially serious side effects 

(Table 2).

Tricyclic antidepressants
Tricyclic antidepressants (TCAs) inhibit the reuptake of 

norepinephrine and/or serotonin. These agents may act by 

altering the central perception of pain or may antagonize 

the NMDA receptors in the dorsal horn that mediates 

 hyperalgesia and allodynia.99 In a placebo-controlled, 

 double-blind, randomized, cross-over trial comparing 

amitriptyline, desipramine, and fluoxetine with placebo, 

the average effective dose, titrated over 6 weeks to achieve 

control of symptoms, was 111 mg/day for desipramine, 

105 mg/day for amitriptyline, and 40 mg/day for fluoxetine. 

Both TCAs were equally effective and superior to fluoxetine 

or placebo. The beneficial effect was seen within 2 weeks 

and continued to increase at 6 weeks. The clinical response 

and tolerability of side effects are the best guides to dose 

titration, as there was no correlation demonstrated with pain 

relief, dosage, or plasma concentration.99,100 TCAs can cause 

prolongation of the QT interval and are contraindicated in 

patients with recent unstable angina, myocardial infarction, 

heart failure, history of ventricular arrhythmias, and signifi-

cant disease of conduction pathway.101 Concern exists about 

Table 2 Oral therapy for diabetic painful neuropathy

Drug class Drug Daily dose  
(mg)

NNT

Tricyclics Amitriptyline 25–150 2.4 (2.0–3.0)
imipramine 25–150 2.4 (2.0–3.0)

SSRis Paroxetine 40 6.8 (3.4–441)
Citalopram 40 6.8 (3.4–441)

Anticonvulsants Gabapentin 900–1800 3.7 (2.4–8.3)
Pregabalin 150–600 3.3 (2.3–5.9)
Carbamazepine 200–400 3.3 (2.0–9.4)
Topiramate Up to 400 3.0 (2.3–4.5)

Opioids Tramadol 50–400 3.4 (2.3–6.4)
Oxycodone 10–120 2.6 

(1.19–4.1)
SNRis Venlaflaxine 150–200 5.5 

(3.4–4.14)

Duloxetine 60–120 4.0 (3–9)

Abbreviations: NNT, number needed to treat; SNRis, selective serotonin 
norepinephrine reuptake inhibitors; SSRis, selective serotonin reuptake inhibitors.
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their safety, particularly in patients with cardiovascular 

autonomic neuropathy.

Selective serotonin reuptake inhibitors
Selective serotonin reuptake inhibitors (SSRIs) inhibit 

presynaptic reuptake of serotonin but not norepinephrine 

and lack postsynaptic receptor blocking effects. These agents 

can be considered in patients who cannot tolerate TCAs. 

 However, they should be used with caution, especially with 

aspirin and nonsteroidal anti-inflammatory drugs (NSAIDs), 

as a case-control study showed moderately increased risk of 

upper gastrointestinal bleeding.99

In a randomized, double-blind, crossover study, parox-

etine 40 mg/day significantly reduced neuropathic symptoms 

compared to placebo but was less effective than imipramine.102 

Paroxetine was also shown to be effective in relieving both 

steady and lancinating type of pain and the therapeutic effect 

was seen within 1 week. The number needed to treat (NNT) 

to achieve .50% pain relief was 6.8 (3.4–441) and was not 

significant. Citalopram but not fluoxetine has been reported 

to have beneficial effects on pain relief.99,103

Selective serotonin norepinephrine 
reuptake inhibitors
Selective serotonin norepinephrine reuptake inhibitors 

(SNRIs) such as duloxetine and venlafaxine have been shown 

to be effective in relieving neuropathic pain by increasing 

the synaptic availability of 5-HT and norepinephrine in the 

descending pathways that inhibit pain impulses. The efficacy 

and safety has been established in three 12-week randomized, 

blinded, controlled trials involving 1102 subjects. Duloxetine, 

60 mg or 120 mg daily, effectively reduced pain intensity 

(47% and 48% vs 29% with placebo).103–110 Duloxetine has 

a rapid onset of action with a reduction in pain scores within 

24 hours with effects persisting for the duration of the study. 

It was effective at relieving pain at night. The medication 

was, in general, well-tolerated with only 20% discontinua-

tion due to side effects. The most common side effects were 

nausea, somnolence, dizziness, decreased appetite, and 

constipation. Duloxetine is not associated with weight gain 

but may cause a slight increase in fasting blood glucose.90 

Duloxetine is licensed for treatment of neuropathy at a dose 

of 60 mg/day.109

The efficacy of venlaflaxine extended release has been 

assessed in a 6-week multicenter, double-blind RCT involv-

ing 244 patients with DPN. Venlaflaxine was associated 

with significant benefit in the primary outcome measures 

of pain intensity and pain relief compared to placebo.  

The most significant improvement in pain score occurred 

with higher dose of venlaflaxine, 50% on 150–225 mg, and 

32% on 75 mg vs 27% on placebo. The effect was attrib-

uted to a neuropathic rather than an antidepressant action 

since patients with depression were excluded. Nausea, 

somnolence, and myalgia were common side effects. Some 

patients on venlaflaxine had significant cardiac rhythm 

abnormalities.111

Anticonvulsants
Anticonvulsants have traditionally been utilized for the 

treatment of painful diabetic neuropathy. Older anticon-

vulsants such as carbamazepine are still useful in treating 

neuropathic pain but have been replaced by newer agents 

such as gabapentin and pregabalin, which have better efficacy 

and safety profile.112,113

Gabapentin is structurally related to aminobutyric acid, 

a neurotransmitter, involved in modulation of pain signals. 

Gabapentin binds to α2-δ subunit of voltage-activated cal-

cium channels on the presynaptic neurone and reduces neu-

rotransmitter release.112,113 In three randomized, double-blind 

studies, gabapentin was shown not only to improve painful 

neuropathy but also has an additional benefit of improving 

sleep.114–116 In an 8-week multicenter dose escalation trial, 

60% of patients treated with gabapentin had moderate pain 

relief compared to 33% on placebo. Of the 165 patients, 

67% achieved doses up to 3600 mg per day, 23% of these 

patients experienced adverse events particularly dizziness and 

somnolence. A randomized study comparing gabapentin and 

amitriptyline did not show any difference in efficacy between 

the two drugs.115

Pregabalin is structurally related to gabapentin and 

has a six-fold higher binding affinity for α2-δ subunit 

of voltage-activated calcium channels but has no action 

on GABA or benzodiazepine receptors.117 It inhibits the 

release of  excitatory neurotransmitters including glutamate, 

substance P, and CGRP.118,119 In a pooled analysis of seven 

 randomized clinical trials of 5–13 weeks duration involving 

a total of 1510 patients, pregabalin at varying doses (150, 

300, 600 mg) demonstrated a significant reduction in mean 

pain score. There was better efficacy with higher doses but 

these were associated with increased incidence of side effects. 

Adverse effects included giddiness, tremors, dry mouth, and 

peripheral edema. Pregabalin-treated subjects demonstrated 

greater weight gain but this did not affect diabetes control. 

The conventional starting dose of pregabalin is 75 mg twice 

daily but this can be slowly titrated to 300 mg in divided 

doses over 1 week or more.120,121
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Sodium channel blockers
Carbamazepine has been traditionally used for neuropathic 

pain and the use is limited by its side effects  (dizziness, 

nausea, skin rash, and rare cases of leucopenia) and 

 limited  efficacy data. Studies have shown lamotrigine can 

attenuate the pain of DPN but the data on topiramate is  

equivocal.122–126

Lacosamide is an antiepileptic drug used as adjunctive 

therapy for partial-onset seizures. Studies suggest that lacos-

amide selectively enhances slow inactivation of voltage-gated 

sodium channels and unlike other anticonvulsants it does not 

influence fast sodium channel inactivation. The mechanism of 

action includes interaction with collapsin response  mediator 

protein 2, which plays an important role in regulating micro-

tubule assembly in neurons.99 Lacosamide has been evaluated 

in a number of studies and in an 18-week, Phase III, double-

blind RCT, lacosamide in doses of 200, 400, 600 mg was 

effective at pain relief in DPN. Similarly, in another Phase 

III trial of 400 mg/day of lacosamide there was an improve-

ment in Likert pain score compared to placebo. Most frequent 

adverse events are headache, nausea, and vertigo.127–129

Topical applications
Topical capsaicin cream
Capsaicin is a naturally occurring pungent substance in red 

peppers and causes analgesia through local tissue deple-

tion of substance P, which is considered to be the primary 

neurotransmitter of painful stimuli from the periphery to the 

central nervous system. In randomized, double-blind placebo-

controlled trials in patients with DPN; capsaicin cream has 

been associated with statistically significant improvement in 

symptoms and quality of life. Pooled data analysis of six trials 

involving 656 patients, showed that the relative benefit of topi-

cal capsaicin (0.075%) compared with placebo was 1.4 (95% 

CI: 1.2–1.7) and NNT was 5.7 (4.0–10.0).130 It is recommended 

that the duration of treatment should not be more than 8 weeks, 

although there were no detectable adverse effects on sensory 

function in diabetic patients. However, a study in healthy sub-

jects showed 74% decrease in epidermal nerve fibers as early 

as 3 days, which may be a mechanism of analgesia, thus raising 

caution for its use in insensitive diabetic foot.131

Topical lidocaine
In an open-label trial, the use of 5% lidocaine patches, (up 

to four patches for 18 hours/per day) significantly improved 

pain and quality of life score in 56 subjects with painful 

DPN.132 In another open-label study of 204 patients with 

DPN, the noninferiority of 5% lidocaine patch compared to 

pregabalin was evaluated. Pain response rate was comparable 

between the two treatment groups and lidocaine showed 

greater improvements in quality of life and had fewer side 

effects.132–134 Lidocaine patches are often utilized in concert 

with other analgesic agents.

Opioids
Opioid receptors are distributed throughout the nervous system 

and are involved in pain transmission and control, including 

primary afferent neurons, spinal cord, midbrain, and thalamus. 

Opioids produce effects on neurons by interacting with recep-

tors located on neuronal cell membranes. The action of opioids 

at the presynaptic nerve terminal is to prevent neurotransmitter 

release and they exhibit inhibitory effects at the postsynaptic 

neuron. Tramadol acts directly via opioid receptors and may 

have an effect on postsynaptic neurons apart from acting 

indirectly via monoaminergic receptor systems. The efficacy 

of tramadol has been studied in a 6-week multicenter trial, 

which included 131 patients with painful DPN. There was 44% 

pain relief in the tramadol treated group compared to 12% on 

placebo. Common side effects are nausea and constipation.135 

Stronger opioids such as controlled release oxycodone in doses 

of 10 to 60 mg appear to be effective and safe in the treatment 

of DPN based on data from two randomized clinical trials. 

Opioids are a useful adjuvant to the treatment of painful DPN 

along with antidepressants.136,137

Other agents
Several other approaches have been evaluated to relieve 

pain in DPN.

Topical agents
Among the topical agents, isosorbide nitrate spray has shown 

promising results in a placebo-controlled pilot study of 22 
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Figure 6 Treatment algorithm for painful diabetic polyneuropathy.

DPN patients, which elicited a reduction in overall neuro-

pathic pain and burning sensation.138 Similar results were also 

obtained by the use of glyceryl trinitrate patches in 18 patients 

with DPN with 44% reporting a reduction in pain.139

The combination of 4% amitriptyline and 2% ketamine 

 (EpiCept NP-1) is being evaluated in Phase IIB study. 

A borderline significant reduction in pain intensity has been 

demonstrated.140 Topical clonidine (0.1% gel) has been 

 evaluated in a Phase II, double-blind RCT in 166 subjects 

with DPN. A 30% reduction in pain was achieved in 47.2% 

of study subjects using the gel compound compared to 29.3% 

on placebo.140

Taurine
Taurine is an antioxidant with effects on neuronal calcium 

signaling which resembles pregabalin in diabetic rodent 

 models.141 Taurine treatment has been shown to improve 

nerve blood flow and electrophysiological parameters and 

exhibit analgesic properties. A Phase II clinical trial utilizing 

a dose of 3 g/day in subjects with DPN is ongoing.

Acetyl-L-carnitine
Acetyl-L-carnitine (ALC), the acetylated ester of the amino 

acid L-carnitine, has been studied in patients with DPN. 

ALC therapy has been associated with significant improve-

ment in pain scores in one of the two identically designed 

randomized, placebo-controlled trials in patients with DPN 
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Table 3 Newer agents for diabetic peripheral neuropathy

Compound Indication Stage of development MOA

Tectin DN
Post-op pain
Post-herpetic
Cancer related pain

Preclinical Sodium channel antagonist

Amitriptyline + ketamine DN
Post-herpetic

Phase ii TCA, SNRi, NMDA antagonist

Clonidine, topical DN Phase ii Alpha 2 adrenoreceptor agonist
Coleneuramide DN Phase ii NGF modulator
indantadol DN

Post-op pain
Phase ii NMDA antagonist and MAO inhibitor

Radiprodil DN Phase ii NMDA 2B receptor antagonist
SB-509 DN

PvD
Phase ii Gene therapy veGF

Acetyl L- carnitine DN Phase iii Antioxidant and affects Na/K ATPase, NO, PGN
Fidarestat DN Phase iii AR inhibitor
Lacosamide DN

epilepsy
Fibromyalgia

Phase iii enhances the inactivation of slow voltage-
dependent NA channels.

Memantine HCL DN Phase iii NMDA antagonist
Nabiximols DN

MS
Cancer pain

Phase iii Cannabinoid receptor 1 agonist

Ranirestat DN Phase iii AR inhibitor
Ruoxistaurin mesylate DN

DR
DNeph

Phase iii PKC inhibitor

Tapentadol, eR DN
Post-op pain

Phase iii Dual mu-opioid receptor agonist and 
norepinephrine reuptake inhibitor

Abbreviations: AR, aldose reductase; DN, diabetic neuropathy; DR, diabetic retinopathy; DNeph, diabetic nephropathy; MAO, mono amine oxidase; MOA, mechanism 
of action; MS, multiple sclerosis; NGF, nerve growth factor; NMDA, N-methyl-D-aspartate; NO, nitric oxide; PGN, prostaglandin; PKC, protein kinase C; PvD, peripheral 
vascular disease; SNRi, serotonin noradrenaline reuptake inhibitor; TCA, tricyclic antidepressant; veGF, vascular endothelial growth factor.

at doses of 1000 mg three times daily. This benefit needs to 

be confirmed in future studies.142,143

Nonsteroidal anti-inflammatories
NSAIDs may be effective in DPN patients with underlying 

musculoskeletal or joint abnormalities by modulating the 

nociceptive and inflammatory pain pathways. Ibuprofen at 

a dose of 600 mg four times daily and sulindac at a dose of 

200 mg twice daily can provide pain relief in DPN.144

Failure to respond to pharmacological agents may require 

referral to a pain clinic at which specialized techniques 

such as transcutaneous electrical nerve stimulation (TENS), 

percutaneous electrical nerve stimulation, or spinal cord 

electrostimulation should be considered.

Management of focal neuropathies
Few systematic studies have addressed the optimal 

approach to the management of most focal neuropathies. 

Diabetic amyotrophic may benefit from use of steroid 

and  immunoglobulins. There are also anecdotal reports of 

insulin being beneficial.43–45 The management for foot drop 

secondary to peroneal nerve damage is supportive including 

splints. Surgical decompression can be of value in median 

nerve entrapment and has been utilized in other compression 

focal neuropathies.145

Treatment algorithm based  
on present evidence
The first-line treatments based on clinical trial evidence are an 

SNRI, an α-2-δ agonist, or TCA. Thus, duloxetine, pregabalin, 

or amitriptyline would be the drugs of choice as initial therapy 

after consideration of factors such as comorbidities and cost. 

Duloxetine is contraindicated in patients with liver disease 

and pregabalin should be avoided in those with edema. Car-

diovascular disease or cardiac autonomic neuropathy (CAN) 

may preclude the use of amitriptyline. If pain control is not 

adequate, then a combination of first-line therapies could be 

considered before utilizing opioids16 (Figure 4).

Conclusions
DPN remains a common and disabling complication of dia-

betes. The initial treatment of DPN should focus upon the 
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identification of risk factors and intensification of metabolic 

control, the implementation of a diabetic foot care program 

in subjects with insensitivity, and the provision of adequate 

pain or symptom relief to improve quality of life. In some 

patients, negative symptoms (ie, numbness or loss of func-

tion) are as disabling as positive symptoms such as pain and 

are perhaps more challenging to treat. Patient education is the 

key and pathophysiology of the disease should be explained 

and a treatment plan agreed upon. The psychological con-

sequences of DPN should be sought and treatment offered. 

Symptoms that interfere with sleep are particularly disabling. 

Therapeutic strategies should be individualized taking into 

consideration underlying patient comorbidities. It is also 

important not to ignore multifactorial risk interventions such 

as weight reduction and smoking cessation along with blood 

pressure and lipid control. Improving patient mobility and the 

instigation of exercise regimens can be helpful in reducing 

symptoms. Newer techniques such as magnetic resonance 

imaging, IENFD, and corneal confocal microscopy are 

offering new insights into the pathogenesis of pain and small 

sensory fiber damage in DPN and directing the development 

of therapeutic agents (Table 3). Despite the relative lack of 

success of interventional agents to slow or reverse established 

DPN, approaches such as gene therapy to promote neurotro-

phism and the targeted delivery of antioxidant therapy may 

in the future offer the best potential to reverse this common 

and disabling complication of diabetes.
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