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Background: Cerium oxide (CeO
2
) nanoparticles have been posited to have both beneficial 

and toxic effects on biological systems. Herein, we examine if a single intratracheal instillation 

of CeO
2
 nanoparticles is associated with systemic toxicity in male Sprague-Dawley rats.

Methods and results: Compared with control animals, CeO
2
 nanoparticle exposure was 

associated with increased liver ceria levels, elevations in serum alanine transaminase levels, 

reduced albumin levels, a diminished sodium-potassium ratio, and decreased serum triglyceride 

levels (P , 0.05). Consistent with these data, rats exposed to CeO
2
 nanoparticles also exhibited 

reductions in liver weight (P , 0.05) and dose-dependent hydropic degeneration, hepatocyte 

enlargement, sinusoidal dilatation, and accumulation of granular material. No histopathologi-

cal alterations were observed in the kidney, spleen, and heart. Analysis of serum biomarkers 

suggested an elevation of acute phase reactants and markers of hepatocyte injury in the rats 

exposed to CeO
2
 nanoparticles.

Conclusion: Taken together, these data suggest that intratracheal instillation of CeO
2
 

 nanoparticles can result in liver damage.

Keywords: cerium oxide nanoparticles, systemic toxicity, hepatic toxicity, hydropic 

degeneration

Introduction
Cerium is a rare earth lanthanide metal and a strong oxidizing agent. Cerium exists 

both in the trivalent state (Ce3+, cerous) and very stable tetravalent state (Ce4+, ceric) 

as cerium oxide (CeO
2
).1 CeO

2
 is widely used as a polishing agent for glass mirrors, 

television tubes, and ophthalmic lenses.2 In addition, CeO
2
 can also act as a catalyst 

because it can both accept and donate oxygen.3 This latter property has led to the wide-

spread use of CeO
2
 in the automobile industry, where it has been used to increase fuel 

efficiency and reduce particulate emissions.4–6 It appears that CeO
2
 nanoparticles may 

also be capable of acting as antioxidants, which has led some to postulate that these 

particles may be useful for the treatment of cardiovascular disease,7 neurodegenerative 

disease,8 and radiation-induced tissue damage.9,10 Nonetheless, other in vitro work has 

shown that CeO
2
 nanoparticles can also cause oxidative stress.11

The Organization for Economic Co-operation and Development Working Party 

on Manufactured Nanomaterials has demarcated CeO
2
 nanoparticles along with 

14 other nanoparticles as a high-priority for evaluation.12 Given current industrial 

applications, it is thought that the most common route of CeO
2
 exposure is likely to 

be through inhalation and/or ingestion. Although previous studies have shown that 

intratracheal instillation of CeO
2
 nanoparticles can cause a toxicological response 
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in the lung, whether these particles also exhibit systemic 

toxicity is currently unclear.2,13 Therefore, the purpose of the 

current study was to determine if the intratracheal instillation 

of CeO
2
 nanoparticles is associated with alterations in the  

indices of systemic toxicity and pathological change. On the 

basis of previous work examining the translocation of carbon 

nanotubes from the lung,14 we hypothesized that intratracheal 

instillation of CeO
2
 nanoparticles could lead to nanoparticle 

deposition in other organs through the circulation. Consistent 

with this hypothesis, our data suggest that the intratracheal 

instillation of CeO
2
 nanoparticles is associated with increased 

liver ceria levels, reductions in liver weight, and evidence of 

liver damage.

Materials and methods
Particle characterization
CeO

2
 nanoparticles, 10 wt% in water (average diameter 

approximately 20 nm), were obtained from Sigma-Aldrich 

(St Louis, MO) as previously outlined.13 Normal saline 

was used as vehicle to suspend the nanoparticles prior to 

 instillation. CeO
2
 samples diluted in saline were used for ani-

mal exposures. Since the CeO
2
 nanoparticles form agglomer-

ates in suspension, the size distribution of the agglomerates 

of CeO
2
 was analyzed using field emission scanning electron 

microscopy and transmission electron microscopy (TEM).

The CeO
2
 suspension was analyzed using field emission 

scanning electron microscopy as follows: the CeO
2
 particle 

suspensions were diluted with distilled water (about 10-fold) 

and were dried on carbon planchet and sputter-coated. After 

sputter-coating, the specimens were examined with a Hitachi 

Model S-4800 field emission scanning electron microscope 

(Schaumburg, IL) between 5 kV and 20 kV. In addition, the 

particles were diluted in double distilled filtered water and a 

drop was placed on a formvar-coated copper grid to dry before 

viewing the samples with a JEOL 1220 TEM (Tokyo, Japan).

Animal handling and instillation  
of CeO2 nanoparticles
Specific pathogen-free male Sprague-Dawley (Hla: SD-CVF) 

rats (6 weeks old) were purchased from Hilltop Laboratories 

(Scottdale, PA). Rats were kept in cages individually and 

ventilated with HEPA filtered air in an animal facility accred-

ited by the Association for Assessment and Accreditation of 

Laboratory Animal Care International. After acclimatization 

for one week, the rats were randomly divided into four groups 

(n = 7 per group) to receive vehicle control (saline, 0.9% NaCl), 

or instillation of 1.0, 3.5, or 7.0 mg/kg CeO
2
 nanoparticles. 

Rats were anesthetized with sodium methohexital (35 mg/kg, 

intraperitoneally) and placed on an inclined restraint board 

before instillation with 0.3 mL of saline suspension or CeO
2
 

nanoparticles. The animals were euthanized 28 days post-

exposure by drug overdose according to the Guide for the 

Care and Use of Laboratory Animals and as approved by the 

National Institute for Occupational Safety and Health Animal 

Care and Use Committee. All animals were humanely treated 

and were monitored for any potential suffering.

Determination of cerium content  
in the liver
Liver cerium content was estimated by induction coupled 

plasma-mass spectrometry (ICP-MS) at Elemental Analysis 

Inc (Lexington, KY) according to the standard protocol.14 

Briefly, liver samples (n = 4 for each group) were prepared 

using Environmental Protection Agency method 3050B for 

the analysis of total cerium by ICP-MS. A 2.5 g sample was 

weighed to the nearest 0.0001 g and digested with concen-

trated nitric acid, 30% hydrogen peroxide, and concentrated 

hydrochloric acid. A method blank, laboratory control 

sample, a laboratory duplicate, and a predigestion matrix 

spike were prepared for each sample. After digestion, the 

extracts and the quality control samples were diluted to a 

final volume of 50 mL before analysis using an Agilent 

7500cx ICP-MS. The instrument was calibrated for Ce-140 

with 0, 0.1, 1.0, 10.0, and 100 µg/L standards prepared from 

a certified reference standard traceable to National Institute 

of Standards and Technology reference materials. A second 

source calibration verification standard traceable to National 

Institute of Standards and Technology reference materials 

was analyzed to verify the calibration standards. A continuing 

calibration verification standard and a continuing calibration 

blank were analyzed at the beginning of the run, after every 

ten samples, and at the conclusion of the run.

Serum biochemical and lipid  
profile analysis
Blood was collected by cardiac puncture into a serum collec-

tion tube (BD Vacutainer®) before centrifugation at 800× g 

for 15 minutes. Serum was collected and used for biochemical 

assays using an Abaxis VetScan® analyzer (Abaxis, Union 

City, CA). Serum biochemical parameters, ie, alanine ami-

notransferase, alkaline phosphatase, bilirubin, blood urea 

nitrogen, albumin, calcium (Ca2+), creatinine, amylase, 

globulin, potassium (K+), sodium (Na+), phosphorus, total 

bilirubin, and total protein were evaluated with a Compre-

hensive Diagnostic Profile Disk. The lipid profile, ie, total 

cholesterol, triglycerides, and high-density lipoprotein was 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2328

Nalabotu et al

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2011:6

measured using lipid profile-Glu cassettes (Cholestech LDX) 

and a Cholestech LDX® analyzer. The remaining serum was 

stored at -80°C.

Multiplexed serum protein immunoassays
Pooled serum samples from all seven animals in each 

experimental group were shipped on dry ice to Rules-Based 

Medicine (Austin, TX) for Rodent MAP® version 2.0 anti-

gen analysis using a Luminex 100 instrument, as detailed 

elsewhere.14 The antigen panel consisted of 59 proteins, 

which included proteins involved in inflammation, cytokines, 

growth factors, and tissue factors. Each analyte was quanti-

fied using 4 and 5 parameter, weighted and nonweighted 

curve fitting algorithms using proprietary data analysis 

software developed at Rules-Based Medicine.

Tissue collection and histopathological 
examination
Liver, kidney, spleen, and heart were collected at the 

time of death. Each tissue was weighed and then fixed in 

FineFIX™ (Milestone medicals, Shelton, CT) preserva-

tive for later histopathological examination. Tissues from 

liver, spleen,  kidney, and heart were embedded in paraffin 

wax, sectioned at 5 µm, mounted on glass slide and stained 

with hematoxylin-eosin using standard histopathological 

 techniques. Sections were examined by light microscopy in 

a blinded fashion by a board certified pathologist.

Data analysis
Results are presented as the mean ± standard error of the 

mean. Data were analyzed using the SigmaPlot 11.0 statisti-

cal program. One-way analysis of variance was performed 

for overall comparisons, while the Student–Newman–Keuls 

post hoc test was used to determine differences between 

groups. Values of P , 0.05 were considered to be statisti-

cally significant.

Results
Nanoparticle characterization
Similar to previous work using the same batch of CeO

2
 

nanoparticles,13 analysis of nanoparticle size by TEM and 

scanning electron microscopy confirmed the presence of 

single and agglomerated CeO
2
 nanoparticles in the suspen-

sions (Figure 1A and B). Field emission scanning electron 

microscopy showed that the CeO
2
 nano particles were 

generally dispersed into submicron groups with an average 

size of 9.26 ± 0.58 nm. The diameter of the primary CeO
2
  

particles was determined to be 10.14 ± 0.76 nm by TEM.

CeO2 instillation decreases  
liver wet weight
CeO

2
 instillation at the 1, 3.5, or 7 mg/kg dosages had no 

significant effect on rat body, heart, kidney, or spleen weight 

(Table 1). Compared with control animals, only the high-

est CeO
2
 dosage (7 mg/kg) decreased liver weight (saline 

control 14.55 ± 0.27 versus CeO
2
 7.0 mg/kg 12.50 ± 0.54; 

P , 0.05, Table 1).

CeO2 instillation increases  
liver ceria content
The ceria content of animals instilled with 7.0 mg/kg CeO

2
 

nanoparticles was higher than that observed in the other 

groups (saline control nondetectable versus 1.0 mg/kg CeO
2
: 

0.05 ± 0.01 ppm versus 3.5 mg/kg CeO
2
: 0.11 ± 0.02 ppm  versus 

CeO
2
 7.0 mg/kg: 0.50 ± 0.18 ppm; P , 0.05; Figure 2).

Effect of CeO2 instillation  
on serum biochemical profile
Table 2 shows the alterations of the serum biochemical param-

eters following CeO
2
 nanoparticle exposure. Compared with 

control animals, CeO
2
 instillation at 1, 3.5, or 7 mg/kg dimin-

ished the sodium to potassium ratio (P , 0.05), while the CeO
2
 

dosage of 7 mg/kg increased serum alanine aminotransferase 

levels and reduced albumin levels (P , 0.05). The serum lipid 

profile analysis (Table 2B) indicated a reduction in the triglyc-

eride levels with 7 mg/kg CeO
2
 nanoparticle exposure.

CeO2 nanoparticle exposure is associated 
with evidence of liver pathology
The primary alterations considered for liver tissue damage 

were hydropic degeneration of the hepatocytes, dilation 

of the sinusoids, portal inflammation, and fibrosis of the 

liver compared to tissues obtained from control animals. 

CeO
2
 nanoparticle exposure showed widespread hydropic 

Figure 1 Characterization of the cerium oxide nanoparticles by (A) field 
emission scanning electron microscopy and (B) transmission electron microscopy 
(scale bar = 200 nm) of a dilute cerium oxide suspension.
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degeneration of hepatocytes around the central vein region 

with sparing of the immediate periportal region (Figure 3). 

These changes were panlobular in nature. Along with 

hydropic degeneration, we also observed enlargement of the 

hepatocytes, enlargement of the nucleus in the hepatocyte, 

binucleation of some hepatocytes, dilatation of the sinusoids, 

and occasional focal inflammation areas in a few of the 

exposed animals ( Figure 4). As the dose of the nanoparticles 

was increased, the number of hepatocytes that show hydropic 

degeneration was also elevated suggesting that changes in 

hepatocyte structure were dose-dependent.

CeO2 nanoparticle exposure does not 
appear to affect spleen, kidney, and heart
Alterations considered for the kidney pathologies were 

necrosis of the proximal tubular epithelium, tubular accumu-

lation of proteinaceous material, and inflammatory reaction 

in the interstitial areas of the cortex and medulla. Spleen 

and heart tissues were examined for any histological altera-

tions in structure along with the infiltration of inflammatory 

cells. We did not observe any alterations in the histological 

appearance or the infiltration of inflammatory cells in the 

kidney, spleen, and heart with CeO
2
 nanoparticle exposure  

(Figures 5–7).

Effect of CeO2 instillation  
on serum protein expression
A panel of 59 protein biomarkers comprising cytokines, 

inflammatory markers, growth factors, and tissue factors 

were quantified in the serum samples collected in this study 

using the RBM RodentMAP® V2.0 multiplex immune assay 

service. Compared with levels observed in the control ani-

mals, the levels of 16 different analytes appeared to exhibit 

a trend towards being increased or decreased by at least 15% 

or more following the instillation procedure with the CeO
2
 

nanoparticles (Figure 8A, B, and C). At the 7.0 mg/kg CeO
2
 

dosage, ten of the analytes (fibroblast growth factor-basic, 

haptoglobin, immunoglobulin A, interleukin-11, matrix met-

alloproteinase-9, myoglobin, serum amyloid protein, serum 

glutamic oxaloacetic, transaminase thrombopoietin, and 

von Willebrand factor) exhibited a trend towards increased 

expression whereas two (tumor necrosis factor-related activa-

tion protein (CD-40 L) and interleukin-7) appeared to exhibit 

a trend towards decreased expression (Figure 8C).

Discussion
Investigation of the effects that nanomaterials may have on 

cellular function is essential for ensuring that the utilization 

of these materials in industrial or medical applications is safe. 

Although CeO
2
 nanoparticles have demonstrated excellent 

potential for biomedical use,7,8,10 limited knowledge exists 

concerning their potential systemic toxicity. The primary 

finding of this investigation was that intratracheal instillation 

of CeO
2
 nanoparticles (Figure 1) results in increased liver 

ceria levels (Figure 2), and that these changes in liver ceria are 

associated with evidence of liver pathology (Figures 3 and 4), 

decreases in liver weight (Table 1), and alterations in blood 

chemistry (Table 2). Consistent with other reports examining 

CeO
2
,15 titanium dioxide,16 silica,17 and copper18 nanopar-

ticles, our data suggest it is possible that CeO
2
 nanoparticles 

are capable of translocating from the lung to the liver via the  

circulation.

The histopathological appearance of the liver fol-

lowing CeO
2
 nanoparticle instillation is consistent with 
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Figure 2 Concentration of cerium in liver after intratracheal instillation of cerium 
oxide nanoparticles.
Note: *Significantly different from the vehicle control (P , 0.05).

Table 1 Alterations in absolute organ wet weight 28 days after intratracheal instillation of cerium oxide nanoparticles

Organ weight (g) Saline control  
(n = 7)

CeO2 1.0 mg/kg  
(n = 7)

CeO2 3.5 mg/kg  
(n = 7)

CeO2 7.0 mg/kg  
(n = 7)

Heart (g)  1.52 ± 0.15  1.35 ± 0.05  1.27 ± 0.07  1.23 ± 0.05
Liver (g) 14.55 ± 0.27 14.30 ± 1.04 14.78 ± 0.57 12.50 ± 0.54*
Kidney (g)  2.67 ± 0.31  2.55 ± 0.21  2.54 ± 0.33  2.43 ± 0.31
Spleen (g)  0.58 ± 0.06  0.65 ± 0.10  0.56 ± 0.08  0.64 ± 0.04

Note: *Significantly different from vehicle control (P , 0.05).
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the  possibility that ceria can induce several different 

pathological alterations, including hydropic degeneration 

of hepatocytes, enlargement of hepatocytes, dilatation of 

the sinusoids, and nuclear enlargement (Figures 3 and 4). 

There was no evidence of granuloma, portal inflammation, 

fibrosis, or bile duct abnormalities, except for the presence 

of some local inflammation of the lobules in some  

animals.

Because the liver is the major organ for biotransforma-

tion of toxins, it may be the first organ to be exposed to 

nanoparticles that are able to enter into the circulation. It 

is thought that hydropic degeneration can be caused by 

hypoxia,19 ischemia,20 or the treatment of hepatocytes with 

endotoxins21 or chemicals.22 Consistent with our findings, 

this response has also been observed following exposure 

to other toxic materials, including copper nanoparticles23 

and carbon tetrachloride,24 or following the inhalation of 

anesthetics such as sevofulrane and desflurane.25 How 

exposure to CeO
2
 nanoparticles may induce hydropic 

degeneration or if these changes are reversible is currently 

unclear. Sinusoidal dilatation is the increased gap between 

the hepatic cords in the hepatic lobule that has also been 

observed in aluminum-induced hepatic toxicity,26 carbon 

tetrachloride-induced hepatic toxicity,27 and ischemia,28 

as well as with the organophosphate insecticide, methi-

dathion.29 In addition, we also noted the accumulation of 

granular material inside the hepatocytes which appeared 

to be dose-dependent and perhaps related to reduction of 

liver weight (Table 1).

Table 2 Changes in serum biochemical parameters (A) and lipid profile (B) 28 days after the intratracheal instillation of cerium oxide 
nanoparticles

Analyte Saline control  
(n = 7)

CeO2 1.0 mg/kg  
(n = 7)

CeO2 3.5 mg/kg  
(n = 7)

CeO2 7.0 mg/kg  
(n = 7)

A
Glucose 186.4 ± 25.7 208 ± 43.0 197.6 ± 40.2 231 ± 93.5
ALP 276.1 ± 53.7 263 ± 55.4 242 ± 35.3 222.23 ± 81.9
ALT 58.3 ± 10.7 83.4 ± 28.5 88.3 ± 31.4 130.5 ± 94.5*
Amylase 974.7 ± 97.4 1055.1 ± 124.2 991.4 ± 116 908.4 ± 277.0
Total protein 6.0 ± 0.1 5.9 ± 0.6 6.2 ± 0.5 5.4 ± 1.3
Albumin 4.2 ± 0.2 4.1 ± 0.5 4.5 ± 0.4 3.5 ± 1.1*
Globulin 1.8 ± 0.2 1.8 ± 0.2 2.0 ± 0.2 1.8 ± 0.2
ALB-GLOB ratio 2.3 ± 0.3 2.3 ± 0.3 2.2 ± 0.3 1.9 ± 0.6
BUN 15.4 ± 1.1 15 ± 3.1 15.7 ± 1.9 14.4 ± 4.2
Creatinine 0.3 ± 0.1 0.27 ± 0.1 0.23 ± 0.1 0.28 ± 0.1
Ca2+ 11.4 ± 0.7 10.7 ± 1.3 11.5 ± 1.1 10.4 ± 2.4
Phosphorus 8.6 ± 0.9 7.9 ± 1.2 8.7 ± 1.0 8.2 ± 1.9
Na+ 142.3 ± 0.9 138 ± 10.7 138.1 ± 10.7 132.1 ± 16.3
K+ 5.5 ± 0.4 6.0 ± 0.5 6.5 ± 0.6 5.8 ± 0.9
Na+-K+ ratio 25.8 ± 2.0 22.9 ± 1.7* 21.2 ± 1.4* 22.8 ± 2.5*

B
Total cholesterol 100.7 ± 1.9 100 ± 0 100 ± 0 103.1 ± 8.3
Triglycerides 143 ± 53 109.6 ± 50.9 190.3 ± 83.7 93.1 ± 22.3*
HDL 21 ± 6.0 19.4 ± 5.4 20 ± 6.4 19 ± 5.1

Note: *Significantly different from the vehicle control (P , 0.05).
Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; ALB-GLOB ratio, albumin to globulin ratio; BUN, blood urea nitrogen; Ca, calcium; Na, sodium; 
K, potassium; Na-K ratio, sodium to potassium ratio; HDL, high density lipoproteins.

A B

C D

100 µm

Figure 3 Cerium oxide nanoparticle exposure alters histopathological architecture 
of the liver. (A) Saline control (400×), (B) CeO2 at 1.0 mg/kg (400×), (C) CeO2 
3.5 mg/kg (400×), and (D) CeO2 7.0 mg/kg (400×). Note evidence of hydropic 
degeneration (arrow) with CeO2 instillation.
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A B

C D

100 µm

Figure 5 Cerium oxide nanoparticle exposure has no effect on the histological 
appearance of the kidney. (A) Saline control (400×), (B) CeO2 at 1.0 mg/kg (400×), 
(C) CeO2 3.5 mg/kg (400×), and (D) CeO2 7.0 mg/kg (400×).

A B

C D

100 µm

Figure 6 Cerium oxide nanoparticle exposure has no effect on the histological 
appearance of the spleen. (A) Saline control (400×), (B) CeO2 at 1.0 mg/kg (400×), 
(C) CeO2 3.5 mg/kg (400×), and (D) CeO2 7.0 mg/kg (400×).

A B

C D

100 µm

Figure 7 Cerium oxide nanoparticle exposure has no effect on histological 
appearance of heart. (A) saline control (400×), (B) CeO2 at 1.0 mg/kg (400×), 
(C) CeO2 3.5 mg/kg (400×), and (D) CeO2 7.0 mg/kg (400×).

A B C

100 µm

Focal inflammation Arrow: sinusoidal dilatation Arrow: binucleation

Figure 4 Histopathological alterations with the CeO2 nanoparticle exposure (7.0 mg/kg) include (A) focal inflammation, (B) sinusoidal dilatation, and (C) binucleation of 
the hepatocyte (400×).

Our serum biochemical profile data suggest that CeO
2
 

nanoparticle instillation in the rat may be associated with an 

elevation of alanine aminotransferase and reduction in albu-

min (Table 2). It is well established that hepatocyte damage 

is associated with the release of liver enzymes into the cir-

culation and reduced albumin levels.26 In addition to changes 

in the level of circulating liver enzymes, CeO
2
 nanoparticle 

instillation also appears to decrease the sodium-potassium 

ratio and the amount of triglycerides (Table 2).

Similar to other work examining other types of nano-

particles,30,31 we observed a trend towards an increasing 

serum concentration of haptoglobin (16%), serum amyloid 

P protein (24%), and von Willebrand factor (33%) following 

exposure to CeO
2
 nanoparticles. Consistent with our histo-

pathological findings, and the possibility of hepatic injury, 

we also found evidence that CeO
2
 nanoparticle instillation 
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Figure 8 Cerium oxide nanoparticles exposure results in alterations in the expression of serum protein biomarkers.

was associated with a trend toward increases in the amount 

of serum thrombopoietin, fibroblast growth factor, serum 

glutamic oxaloacetic transaminase, and transaminase throm-

bopoietin (Figure 4). Elevation in these serum biomarkers is 

thought to be highly correlated with acute hepatic injury.22,32 

Taken together, these data suggest that ceria deposition may 

be associated with liver damage. Given our findings that 

CeO
2
 nanoparticle instillation, at least at the levels used 

in the current study, does not induce appreciable damage 

to the heart, kidney, or spleen. It is possible that the liver, 
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by acting to clear CeO
2
 nanoparticles from the circulation, 

is  functioning to prevent additional secondary or tertiary 

pathological changes elsewhere.

Conclusion
In summary, our data suggest that intratracheal instillation of 

CeO
2
 nanoparticles may be associated with  hepatotoxicity. 

The toxicity induced by CeO
2
 nanoparticles appears to be 

dose-dependent, because the rats instilled with 7.0 mg/kg 

body weight of CeO
2
 nanoparticles exhibited the  greatest 

 evidence of toxicological response. The  toxicological 

response appears to be limited to the liver and may 

occur through extrapulmonary translocation of the CeO
2
 

 nanoparticles into the systemic circulation. Given these 

findings, additional research to evaluate the health effects 

of CeO
2
 nanoparticles is likely warranted.
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