
O R I G I N A L  R E S E A R C H

Anti-Inflammatory and Therapeutic Effects of a 
Novel Small-Molecule Inhibitor of Inflammation in a 
Male C57BL/6J Mouse Model of Obesity-Induced 
NAFLD/MAFLD
Kelly D McCall 1–6, Debra Walter1,2, Ashley Patton1,2, Jean R Thuma3, Maria C Courreges3, 
Grzegorz Palczewski7, Douglas J Goetz1,6,8, Stephen Bergmeier1,6,9, Frank L Schwartz3,5,6

1Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA; 2Department of Biological Sciences, Ohio 
University College of Arts & Sciences, Athens, OH, USA; 3Department of Specialty Medicine, Ohio University Heritage College of Osteopathic 
Medicine, Athens, OH, USA; 4Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA; 
5Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA; 6Biomedical Engineering Program, Ohio University 
Russ College of Engineering and Technology, Athens, OH, USA; 7Metabolon Inc., Durham, NC, USA; 8Department of Chemical & Biomolecular 
Engineering, Ohio University Russ College of Engineering and Technology, Athens, OH, USA; 9Department of Chemistry & Biochemistry, Ohio 
University College of Arts & Sciences, Athens, OH, USA

Correspondence: Kelly D McCall, Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Academic & 
Research Center 302B, Athens, OH, 45701, USA, Tel +1 740 593 0926, Fax +1 740 597 1371, Email mccallk@ohio.edu 

Purpose: Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic (dysfunction) associated fatty liver disease (MAFLD), 
is the most common chronic liver disease in the United States. Presently, there is an intense and ongoing effort to identify and develop novel 
therapeutics for this disease. In this study, we explored the anti-inflammatory activity of a new compound, termed IOI-214, and its 
therapeutic potential to ameliorate NAFLD/MAFLD in male C57BL/6J mice fed a high fat (HF) diet.
Methods: Murine macrophages and hepatocytes in culture were treated with lipopolysaccharide (LPS) ± IOI-214 or DMSO (vehicle), 
and RT-qPCR analyses of inflammatory cytokine gene expression were used to assess IOI-214’s anti-inflammatory properties in vitro. 
Male C57BL/6J mice were also placed on a HF diet and treated once daily with IOI-214 or DMSO for 16 weeks. Tissues were 
collected and analyzed to determine the effects of IOI-214 on HF diet-induced NAFL D/MAFLD. Measurements such as weight, 
blood glucose, serum cholesterol, liver/serum triglyceride, insulin, and glucose tolerance tests, ELISAs, metabolomics, Western blots, 
histology, gut microbiome, and serum LPS binding protein analyses were conducted.
Results: IOI-214 inhibited LPS-induced inflammation in macrophages and hepatocytes in culture and abrogated HF diet-induced 
mesenteric fat accumulation, hepatic inflammation and steatosis/hepatocellular ballooning, as well as fasting hyperglycemia without 
affecting insulin resistance or fasting insulin, cholesterol or TG levels despite overall obesity in vivo in male C57BL/6J mice. IOI-214 
also decreased systemic inflammation in vivo and improved gut microbiota dysbiosis and leaky gut.
Conclusion: Combined, these data indicate that IOI-214 works at multiple levels in parallel to inhibit the inflammation that drives HF 
diet-induced NAFLD/MAFLD, suggesting that it may have therapeutic potential for NAFLD/MAFLD.
Keywords: high fat diet, toll-like receptor 4, IOI-214, metabolomics, gut microbiome, lipopolysaccharide

Introduction
NAFLD/MAFLD is the hepatic manifestation of the metabolic syndrome that is linked to acquisition of visceral obesity 
(a systemic inflammatory state), dyslipidemia, insulin resistance (IR), and type 2 diabetes mellitus (T2DM); all of which 
have reached epidemic proportions.1–5 The pathogenesis of NAFLD/MAFLD is multifactorial and complex, leading to 
diagnostic and therapeutic challenges. In short, fatty liver results from ectopic accumulation of a variety of lipids due to 
systemic dysregulation of lipid homeostasis. This occurs as a consequence of 1) increased consumption of dietary fat 
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and/or carbohydrate, 2) increased circulating free fatty acid (FFA) levels derived primarily from increased adipose tissue 
lipolysis and/or 3) increased hepatic de novo lipogenesis, 4) decreased FFA oxidation, and 5) decreased hepatic very low- 
density lipoprotein (VLDL)-triglyceride (TG) secretion.6,7

Obesity induces a chronic inflammatory state, and chronic inflammation is a main contributor to the development of 
NAFLD/MAFLD.8–28 A pathologic shift (ie, an increased Firmicutes to Bacteroidetes ratio) in gut-derived bacteria from 
obesity (ie, gut microbiota dysbiosis) contributes via additionally increased levels of LPS,27–29 which triggers inflamma-
tion in the gut (at least in part via TLR4 signaling) (reviewed in29) leading to downregulation of tight junction proteins 
[occluding (OCLN), zona-occludin (ZO-1), etc.], disrupting the integrity of the gut barrier30,31(reviewed in32,33), and 
leading to “leaky gut syndrome” (reviewed in29,32,33). Bacterial LPS, FFAs, other inflammatory molecules and their 
metabolites are then released into the bloodstream from the leaky gut, causing inflammation systemically in other tissues 
(such as adipose tissue) contributing to a state of chronic inflammation/metabolic endotoxemia7,34,35(reviewed in29). In 
addition, itaconate is an anti-inflammatory metabolite36–39 that has been shown to be significantly less abundant in 
obesity-associated steatotic liver,19 and genetic deletion of the gene that encodes the protein (ie, immune response gene 1, 
Irg1) exacerbates HF diet-induced NAFLD/MAFLD in C57BL/6J mice.18 It has been reported that the induction of 
NAFLD/MAFLD is often accompanied by an increase in circulating tryptophan and a decrease in circulating levels of the 
tryptophan catabolite, kynurenine (a marker of immune system activation),40 and that this change also contributes to a 
pro-inflammatory status.41 A schematic diagram of how each of the aforementioned work together to contribute to HF 
diet-induced chronic inflammation and the development of NAFLD/MAFLD is provided in Figure 1.

Presently, there is a dearth of Food and Drug Administration approved drugs for the treatment of NAFLD/MAFLD 
and nonalcoholic steatohepatitis (NASH).42–45 The current management of NAFLD/MAFLD includes lifestyle modifica-
tions (ie, weight loss, exercise) and the treatment of co-morbidities (ie, diabetes, dyslipidemia, hypertension and 
atherosclerosis). However, there is poor patient adherence to lifestyle modifications, efficacy studies of metformin in 
improving liver histology have led to mixed results,46–48 and insulin-sensitizing drugs such as pioglitazone have shown 
some beneficial effects,49 but cause increased water retention and weight gain,50,51 while glucagon-like peptide 1 (GLP- 
1) agonists and other “dual and triple” incretin analogs combinations are being developed.52 Moreover, less than half of 
NASH patients will respond to current therapeutic regimens,53 underscoring the critical need for continued research 
aimed at the development of novel therapeutics for the treatment of this rapidly expanding, life-threatening liver disease.

In the current study, we evaluated the ability of a promising, non-toxic (Supplemental Table 1) and novel small 
molecule, IOI-214 (Figure 2), to inhibit LPS-induced inflammation and its efficacy in preventing HF diet-induced 
NAFLD/MAFLD in male C57BL/6J mice. Our group previously studied a phenyl derivative of methimazole termed 
phenylmethimazole (ie, C10).11,54–60 In an attempt to find more effective compounds, we generated a library of small 
organic molecules derived from C10 in which a large number of aryl groups (Ar), substituted alkyl groups (R), and 
different heteroatoms (X, Y) were inserted into the ring system of C10 (see scheme in Figure 2). The pharmacological 
properties of these compounds were investigated in a series of assays. These assays revealed a compound’s ability to 
reduce cytokine expression in in vitro models of pathological inflammation. This effort led to the identification of the 
compound used in this study (IOI-214) that was more potent than C10 in the screening assays. We hypothesized that IOI- 
214, a novel compound that is similar to, yet structurally distinct from phenylmethimazole (C10) which we have shown 
previously to be a potent inhibitor of TLR3 and TLR4-mediated inflammation,11,55–59,61,62 would block LPS-induced 
inflammatory cytokine expression, and would therefore ameliorate HF diet-induced inflammation and hepatic steatosis in 
C57BL/6J male mice. Herein, we show that IOI-214 blocks inflammation and abates HF diet-induced NAFLD/MAFLD 
and begin to explore its therapeutic mechanism(s) of action.

Materials and Methods
IOI-214 Synthesis
IOI-214 was prepared from commercially available a-halo ketone using the general method of Gan.63 A schematic 
describing the synthesis of 3-propyl-4-(pyridin-3-yl)thiazole-2(3H)-thione (IOI-214) can be found in Figure 3. In brief, to 
a stirred solution of the amine 1 (0.22 mL, 2.67 mmol) in a 1:1 mixture of H2O/EtOH (9 mL) was added CS2 (0.32mL, 
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Figure 1 Simplified schematic diagram of the pathologic cycle in obesity-induced NAFLD/MAFLD resulting from multiple parallel hits. 
Notes: In a state of obesity, there is an over-abundance of circulating free fatty acids (FFAs) that are released from adipose tissue and absorbed in the gut. There is also a 
pathologic shift in the gut microbiome (ie, gut microbiome dysbiosis) that leads to an inflammatory state in the gut (in part via activation of TLR4 signaling by gut derived 
FFAs and bacterial LPS). Gut inflammation then leads to a decrease in gut tight junction proteins (such as OCLN), which causes a disruption in the gut protective barrier (ie, 
leaky gut). The leaky gut then leads to the release of increased levels of LPS, FFAs, inflammatory proteins (ie, cytokines and chemokines), and other metabolites into the 
portal vein, where it then goes to the liver. In the liver, these substances cause hepatic inflammation (in part via activation of TLR4 signaling in both hepatocytes and resident 
immune cells). This hepatic inflammation then leads to an increase in hepatic steatosis (via modulation of lipid metabolism in the liver), hepatocellular ballooning, hepatic 
insulin resistance, and other liver injury that is associated with NAFLD/MAFLD. In parallel, the increase in chronic, systemic circulating levels of LPS, FFAs, inflammatory 
proteins, and other metabolites also leads to the activation of inflammation (again, in part, via activation of TLR4 signaling) in adipose tissue (in both adipocytes and 
associated macrophages/immune cells). This also contributes to the overall state of chronic inflammation systemically in the obese individual. This chronic systemic 
inflammation is the cause of whole-body insulin resistance that occurs in NAFLD/MAFLD. This is certainly not a complete, comprehensive schematic, but encompasses the 
main overall processes in the pathogenesis of obesity-induced NAFLD/MAFLD that are relevant to this study.
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5.34mmol) and K2CO3 (0.495 g, 3.56 mmol). The reaction was stirred for 5 min and 3-(2-bromoacetyl) pyridine 
hydrobromide (1) (0.503 g, 1.78 mmol) was added and stirred for an additional 3 h. The yellow solid was filtered and 
dried under vacuum overnight to provide 0.36 g, (80%) of 4-hydroxy-3-propyl-4-(pyridin-3-yl)thiazolidine-2-thione (2), 
Rf = 0.28 (2% CH3OH in CH2Cl2) mp 129–131 °C; 1H NMR (CD3OD, 500 MHz) δ 8.68 (s, 1H) 8.54 (d, J = 4.9, 1H) 
7.91 (d, J = 7.8, 1H) 7.51 (m, 1H) 3.67 (s, 1H) 3.11 (s, 1H), 1.60 (m, 2H) 0.79 (t, J = 7.3, 3H).

To the crude alcohol (2) (200 mg, 0.78 mmol) in a dry flask was added a freshly prepared solution of anhydrous HCl (1 M 
in EtOAc, 2.0 mL) and dry EtOH (1.6 mL). The reaction mixture was refluxed for 24 h. TLC confirmed reaction completion 
and the solvent was removed under vacuum to provide 190 mg (100%) of IOI-214 as a dark yellow solid, Rf = 0.62 (2% 
CH3OH in CH2Cl2) mp 175–177 °C; 1H NMR (CD3OD, 500 MHz) δ 9.16 (s, 1H), 9.05 (d, J = 4.0, 1H), 8.79 (d, J = 7.4, 1H), 
8.26 (t, J = 6.9, 1H), 7.20 (s, 1H) 4.15 (t, J = 7.8, 2H), 1.64 (m, 2H), 0.80 (t, J = 7.6, 3H); 13C NMR (CD3OD, 125 MHz) δ 
189.0, 147.0, 142.9, 142.57, 136.9, 130.7, 127.5, 114.0, 48.9, 20.6, 9.7; HPLC (30–80%- Acetonitrile/H2O-20min), TR 

4.98min, 98.1%. The sample was run on a Hypersil Gold C8 Column (5µm, 4.6 x 150mm) with solvent (30–80%- 
Acetonitrile/H2O) gradually increasing the percentage of Acetonitrile from 30 to 80% over 20 mins.

IOI-214 Solutions
Dr. Stephen Bergmeier (Ohio University, Athens, OH, USA) prepared IOI-214 for these studies as a 200 mM stock 
solution using 100% (v/v) dimethyl sulfoxide (DMSO) (Sigma-Aldrich, St. Louis, MO, USA). This stock solution was 

IOI-214

Figure 2 Derivation and structure of IOI-214 from C10. 
Notes: IOI-214 is a small organic compound that was derived from a phenyl derivative of methimazole termed C10. In an attempt to generate compounds that had more 
potent anti-inflammatory activity than C10, we generated a library of small organic molecules derived from C10 (see scheme above) in which a large number of aryl groups 
(Ar), substituted alkyl groups (R), and different heteroatoms (X, Y) were inserted into the ring system of C10. The molecular structures of C10 and IOI-214 are shown here 
and were drawn using the ChemDraw program (Perkin Elmer Informatics, Waltham, MA, USA). The structure of IOI-214 used in these studies was verified by both 1H-NMR 
and 13C-NMR and was shown to be 98% pure by HPLC.

IOI-214

Figure 3 Synthesis of 3-propyl-4-(pyridin-3-yl)thiazole-2(3H)-thione (IOI-214). 
Notes: To a stirred solution of the amine 1 (0.22 mL, 2.67 mmol) in a 1:1 mixture of H2O/EtOH (9 mL) was added CS2 (0.32mL, 5.34mmol) and K2CO3 (0.495 g, 
3.56 mmol). The reaction was stirred for 5 min and 3-(2-bromoacetyl) pyridine hydrobromide (1) (0.503 g, 1.78 mmol) was added and stirred for an additional 3 h. The 
yellow solid was filtered and dried under vacuum overnight to provide 0.36 g, (80%) of 4-hydroxy-3-propyl-4-(pyridin-3-yl)thiazolidine-2-thione (2), Rf = 0.28 (2% CH3OH in 
CH2Cl2) mp 129–131 °C; 1H NMR (CD3OD, 500 MHz) δ 8.68 (s, 1H) 8.54 (d, J = 4.9, 1H) 7.91 (d, J = 7.8, 1H) 7.51 (m, 1H) 3.67 (s, 1H) 3.11 (s, 1H), 1.60 (m, 2H) 0.79 (t, J = 
7.3, 3H). To the crude alcohol (2) (200 mg, 0.78 mmol) in a dry flask was added a freshly prepared solution of anhydrous HCl (1 M in EtOAc, 2.0 mL) and dry EtOH (1.6 mL). 
The reaction mixture was refluxed for 24 h. TLC confirmed reaction completion and the solvent was removed under vacuum to provide 190 mg (100%) of IOI-214 as a dark 
yellow solid, Rf = 0.62 (2% CH3OH in CH2Cl2) mp 175–177 °C; 1H NMR (CD3OD, 500 MHz) δ 9.16 (s, 1H), 9.05 (d, J = 4.0, 1H), 8.79 (d, J = 7.4, 1H), 8.26 (t, J = 6.9, 1H), 
7.20 (s, 1H) 4.15 (t, J = 7.8, 2H), 1.64 (m, 2H), 0.80 (t, J = 7.6, 3H); 13C NMR (CD3OD, 125 MHz) δ 189.0, 147.0, 142.9, 142.57, 136.9, 130.7, 127.5, 114.0, 48.9, 20.6, 9.7; 
HPLC (30–80%- Acetonitrile/H2O-20min), TR 4.98min, 98.1%. The sample was run on a Hypersil Gold C8 Column (5µm, 4.6 x 150mm) with solvent (30–80%- Acetonitrile/ 
H2O) gradually increasing the percentage of Acetonitrile from 30 to 80% over 20 mins.
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then further diluted using sterile 1X phosphate-buffered saline (PBS) (Gibco, Thermo Fisher Scientific, Waltham, MA, 
USA) to a 10% working solution.

Cell Culture
To culture the murine macrophage cell line, RAW 264.7 (ATCC, Manassas, VA, USA), Dulbecco’s Modified Eagle 
Medium (DMEM) (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) was prepared using 10% (v/v) fetal bovine 
serum. To culture the murine hepatocyte cell line, AML-12 (ATCC, Manassas, VA, USA), DMEM/Nutrient Mixture F-12 
(DMEM-F12) (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) was prepared with insulin (0.005 mg/mL), 
transferrin (0.005 mg/mL), selenium (5 ng/mL), dexamethasone (40 ng/mL), fetal bovine serum [10% (v/v)] (Gibco, 
Thermo Fisher Scientific, Waltham, MA, USA), and penicillin/streptomycin [1% (v/v)] (Gibco, Thermo Fisher Scientific, 
Waltham, MA, USA). The conditions used to grow all cell lines were 37°C in 5% carbon dioxide. A working solution of 
IOI-214 (20 μM) was prepared in 0.25% DMSO (Sigma-Aldrich, St. Louis, MO, USA). LPS treatment of cells (passaged 
less than 20 times) was done using 10 ng/mL LPS (Sigma-Aldrich, St. Louis, MO, USA) in complete culture media.

Mice and Experimental Design
All mouse studies were approved by the Ohio University Institutional Animal Care and Use Committee (Approval 
Number 13-H-035) and conform to the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Experimental Design
Male C57BL/6J mice were purchased from The Jackson Laboratories (Bar Harbor, ME, USA) at 6 weeks of age and 
acclimated for one week prior to the initiation of the experiment (ie, diet introduction and initiation of compound 
treatment). These mice were housed in a temperature- and humidity-controlled environment (18°C–22°C) that is 
maintained on a 14:10 hour light/dark cycle.

Male mice were used in these studies since it has recently been shown that C57BL/6J male mice, and to a much lesser 
extent female C57BL/6J mice,64–68 fed a HF diet develop obesity, IR, and NAFLD/MAFLD.8,69–78 In fact, female 
C57BL/6J mice have even been shown to be protected from HF diet-induced metabolic syndrome, adipose tissue 
inflammation, and hepatic steatosis.67,68,79 More specifically, estrogens have been shown to attenuate metabolic dysfunc-
tion and NAFLD due to their effects on hepatic lipogenic and inflammatory signaling and energy balance (eg, regulation 
of food intake, energy expenditure, direct effects on the physiology of energy metabolism-regulating organs such as liver, 
muscle, adipose tissue and pancreas).80–88

At the initiation of the experiment, the mice were randomly divided into the following groups: Chow Diet, HF DMSO 
(10% v/v), and HF IOI-214 (1 mg/kg) in 10% DMSO. The mice were then placed on either a chow diet consisting of 
10% fat, 20% protein, 70% carbohydrate [(#D12450B, Research Diets Inc., New Brunswick, NJ, USA), or a HF diet 
consisting of 60% fat, 20% protein, 20% carbohydrate [(#D12492, Research Diets Inc., New Brunswick, NJ, USA)]. We 
chose this diet since it is a highly used model for studying NAFLD/MAFLD89–93 and one in which our laboratory has 
experience using.11 On the same day, mice were placed on their respective diets, the mice on the HF diet began receiving 
daily intraperitoneal injections. The diets and treatments continued for 16 weeks. Body weights of the mice were 
measured weekly. Multiple cohorts of mice were used to generate all of the data.

Intraperitoneal Glucose Tolerance Tests
For intraperitoneal glucose tolerance tests (IPGTT), mice were fasted for 4–5 hours. Blood glucose (Freestyle Freedom 
Lite Blood Glucose Monitoring System, Abbott Laboratories, Lake Bluff, IL, USA) and body weight were then 
measured. Next, glucose (1 g/kg body weight) (Sigma-Aldrich, St. Louis, MO, USA) was delivered via intraperitoneal 
injection. Blood glucose measurements were then measured at time 0, 15, 30, 60, 90, 120, and 180-minutes following the 
glucose injection.
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Hepatic Histological Analysis
To evaluate liver morphology and steatosis microscopically, 10% buffered formalin was used to fix the liver tissue for a 
period of 12–24 hours. After fixation in formalin, the tissues were dehydrated in ethanol, embedded in paraffin, and cut to 
5 µm using a microtome. The liver tissues were then subjected to hematoxylin and eosin (H&E) staining. The Ohio 
University Heritage College of Osteopathic Medicine Histological Core Services conducted the tissue preparation and 
staining.

For Oil Red O (ORO) staining, frozen liver samples were cut to 10 µm using a cryostat. The sections were then dried 
onto the slides, fixed in 10% buffered formalin, and then briefly washed with running tap water. The slides were then 
rinsed with 60% isopropanol and stained with freshly prepared ORO working solution. After rinsing again with 60% 
isopropanol, the slides were lightly stained with haematoxylin, rinsed with distilled water, and mounted with aqueous 
mountant (CC/Mount, C9368-30ML, Sigma-Aldrich, St. Louis, MO, USA).

Hepatic Triglyceride Quantification
A protocol based on the Salmon and Flatt method of lipid saponification was used to measure hepatic triglyceride 
content.94 Triglycerides concentration in the samples was determined using Triglycerides Liquid reagent set (Pointe 
Scientific, Canton, MI, USA) following the manufacturer’s instructions and corrected using a dilution factor and amount 
of tissue used. Final triglyceride concentration is expressed as mg/g of liver tissue.

Untargeted Global Metabolomics Analysis
Serum and liver samples were collected from HF DMSO and HF IOI-214 mice and sent to Metabolon Inc. (Durham, NC, 
USA) (N = 8/group) for nontargeted metabolite profiling as previously described.95 Briefly, samples were extracted and 
split into equal parts for by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Proprietary software was 
used to match ions to an in-house library of standards for metabolite identification and for metabolite quantitation by 
peak area integration. For all analyses, following normalization to volume extracted for serum, missing values, if any, 
were imputed with the observed minimum for that particular compound. The statistical analyses were performed on 
natural log-transformed data.

Serum Insulin, Cholesterol, and Triglyceride Analyses
Serum was collected from 4–6-hour fasted mice at experimental termination (end of the 16-week experiment). Insulin 
(80-INSMSU-E01, ALPCO, Salem, NH, USA), cholesterol (ab65359, ABCAM, Waltham, MA, USA), and triglyceride 
(10,010,303, Cayman Chemical, Ann Arbor, MI, USA) levels were obtained according to the manufacturer’s protocols.

Fasting Blood Glucose Measurements
Fasting blood glucose was measured on mice fasted for 4–6 hours using Freestyle Freedom Lite Blood Glucose 
Monitoring System (Abbott Laboratories, Lake Bluff, IL, USA) via the tail vein just prior to euthanasia.

Quantitative Real Time-PCR Analysis
TRIzol reagent (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) was used to isolate total RNA from frozen 
liver tissue. Total RNA was isolated from cell lines (RAW 264.7 and AML-12) using the RNeasy kit (Qiagen, 
Germantown, MD, USA). cDNA was synthesized using the high-capacity cDNA reverse transcription kit (Applied 
Biosystems, Thermo Fisher Scientific, Waltham, MA, USA) with the inclusion of RNase inhibitor. Gene expression was 
then quantified via qPCR using SYBR Green biochemistry (iTaq Universal SYBR Green Supermix, Bio-Rad 
Laboratories, Inc., Hercules, CA, USA). Murine Taqman (Applied Biosystems, Thermo Fisher Scientific, Waltham, 
MA, USA) gene expression assays that were used as qPCR primers include: tumor necrosis factor (Tnf) 
(Mm00443258_m1), interferon beta 1 (Ifnb1) (Mm00439546_s1), C-C motif chemokine ligand 2/monocyte chemoat-
tractant protein 1 (Mcp1) (Mm00441242_m1), interleukin 1 beta (Il1b) (Mm00434228_m1), interleukin 6 (Il6) 
(Mm00446190_m1), and perilipin 5 (Plin5) (Mm00508852_m1). Murine housekeeping Taqman gene expression assays 
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that were used as qPCR primers include: Beta actin (Actb) (Mm02619580_g1) and glyceraldehyde 3-phosphate 
dehydrogenase (Gapdh) (Mm99999915_g1). Cycling parameters were: 40 cycles of 95°C for 3 seconds, followed by 
60°C for 30 seconds. Melting curves were run for each qPCR. The delta delta Ct Method was used to evaluate relative 
fold change in gene expression.96

ELISAs
Protein was isolated from the liver using a standard protein lysis buffer (10mM Tris HCL, pH 7.5, 150 mM NaCl, 1% 
NP-40) supplemented with protease inhibitors (Calbiochem, San Diego, CA, USA) followed by manual homogenization 
using zirconium oxide beads (Next Advance Inc., Troy, NY, USA). The same amount of protein from each sample was 
then subjected to Enzyme-Linked Immunosorbent Assays (ELISAs) specific for detecting TNFα (ELM-TNFα-CL-1), 
MCP1 (ELM-MCP1-CL-1), IL6 (ELM-IL6-CL-1), and IL1β (ELM-IL1β-CL-1) (RayBiotech Life, Peachtree Corners, 
GA, USA) according to the manufacturer’s protocol.

Western Blot
For the detection of colonic OCLN, 60 µg of total protein isolated from the colon of the mice at the end of the experiment 
was subjected to SDS-PAGE and Western blot analysis using an antibody specific for the detection of OCLN (91131S, 
Cell Signaling Technologies, Danvers, MA, USA) at a dilution of 1:500. Blots were also stripped and re-probed with an 
antibody specific for the detection of βActin (4967S, Cell Signaling Technologies, Danvers, MA, USA) at a dilution of 
1:1000. Goat anti-rabbit IgG-HRP conjugated secondary antibody (Invitrogen, Thermo Fisher Scientific, Waltham, MA, 
USA) at a dilution of 1:20,000 was used. For visualization of signals, the ECL Western Blotting Analysis System 
(Amersham/Cytiva Life Sciences, Marlborough, MA, USA) was used. Western blots were read using the ChemiDoc MP 
Imaging System (BioRad Laboratories, Hercules, CA, USA). OCLN and βActin band intensities were measured using 
GelQuant.NET software provided by biochemlabsolutions.com (University of California, San Francisco, San Francisco, 
CA, USA).

Microbiome Analysis
The microbiome data was generated using University of California (UC) Davis Mouse Metabolic Phenotyping Center 
(MMPC, Davis, CA, USA) services. Fecal samples from the colon of odd numbered mice (chosen for randomization) in 
each group were collected at the end of the 16-week study (before euthanasia), stored at −80°C, and sent to the UC Davis 
MMPC for microbiome analysis according to their protocol (https://www.mmpc.org/shared/protocols.aspx).

LPS Binding Protein Analysis
Serum samples from the mice collected at the end of the 16-week experiment were sent to the UC Davis MMPC (Davis, 
CA, USA) for LPS binding protein enzyme-linked immunosorbent assay (ELISA) analysis. The LPS binding protein 
(LBP) kit (Biometec GmbH, Greifswald, Germany) was used to determine serum LPS binding protein levels according to 
the manufacturer’s instructions.

Statistical Analysis
Statistical analyses were performed using NCSS (V8.0.24, Kaysville, UT, USA). Statistical differences in RT-qPCR for 
cell culture studies were determined using a one-way analysis of variance (ANOVA) followed by a Tukey honestly 
significant difference (HSD) test for post hoc comparison with alpha set to 0.05. Statistical differences in animal study 
data were determined using either a one-way ANOVA followed by a Tukey HSD test for post hoc comparison with alpha 
set to 0.05, or Independent Samples t-tests with alpha set to 0.05 (LBP) as appropriate. Pearson’s Correlations were 
calculated, and linear regression and correlation analyses were conducted to evaluate relationships between hepatic TG 
and cytokine, Plin5 expression, and LBP levels with alpha set to 0.05. Statistical differences in metabolites from the 
metabolomics study were determined using Welch’s two-sample t-tests with alpha set to 0.05. Outliers were identified in 
NCSS to be >1.5X the inter-quartile range.
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Results
IOI-214 is a Potent Inhibitor of LPS-Induced Inflammatory Cytokine Production in 
Murine Macrophages and Hepatocytes in Culture
Obesity induces a chronic inflammatory state, in large part, via toll-like receptor 4 (TLR4)-dependent mechanisms.9 

Hepatocytes and macrophages in the liver express TLR4 which is necessary for both FFA/lipid- and LPS-induced 
inflammation in HF diet-induced NAFLD.8,97 Although recent evidence indicates that TLR4 is not a receptor for 
saturated FFAs, TLR4 is required for saturated FFA/lipid-induced inflammation through TLR4-dependent priming and 
altered cellular metabolism.10 Thus, we evaluated the effects of our novel small molecule, IOI-214, to prevent LPS- 
induced inflammation in murine macrophages (RAW264.7) and hepatocytes (AML-12) in culture. Treatment with IOI- 
214 potently attenuated the robust LPS-induced upregulation of proinflammatory cytokine gene expression (Tnf, Ifnb1, 
Ccl2, Il1b, and Il6) in the cultured murine macrophages (Figure 4A). The induction of Tnf in the murine hepatocytes 
(AML-12 cells) by LPS, as expected, was not as robust as in the RAW264.7 cells, however IOI-214 was also effective at 
blocking this induction of Tnf expression in the AML-12 cells in culture (Figure 4B).

IOI-214 Impairs HF Diet-Induced Hepatic Steatosis and Hepatocyte Damage, as Well 
as Mesenteric Fat Accumulation and Fasting Blood Glucose Levels, Without Affecting 
Other Metabolic and Lipid Parameters (Serum Cholesterol, Triglyceride, or Insulin 
Levels or Glucose Tolerance) in Obese Mice
Given the potent anti-inflammatory activity of IOI-214 in vitro, we questioned the effectiveness of IOI-214 to prevent 
hepatic steatosis/NAFLD/MAFLD induced by a HF diet in vivo. To this end, we fed C57BL/6J male mice either a chow 
diet (10% fat) or a HF diet (60% fat) and treated them once daily for 16-weeks with DMSO (vehicle) or IOI-214 (1 mg/ 
kg). We chose this diet since it is a frequently used model for studying NAFLD/MAFLD89–93 and one in which our 
laboratory has experience using.11

There was an increase in total weight after HF diet feeding in both the IOI-214 and comparably fed DMSO control 
group compared to the chow diet-fed group after 16-weeks (Figure 5A and B). Treatment with IOI-214 did not alter 
weight gain or impede the development of overall obesity (Figure 5A and B). Mice on the HF diet and treated with IOI- 
214 (HF IOI-214) gained the same amount of weight as the HF diet-fed DMSO (HF DMSO) group (Figure 5A and B).

The amount of both mesenteric and subcutaneous adipose tissue in the HF diet-fed mice was significantly higher than 
in the chow diet-fed control mice (Figure 5C and D). While the amount of subcutaneous adipose tissue in HF IOI-214 
mice was no different than that in the HF DMSO control mice (Figure 5D), HF IOI-214 mice had significantly less 
mesenteric adipose tissue than HF DMSO control mice (Figure 5C).

Oil Red O staining of liver sections revealed the presence of hepatic steatosis in the HF diet-fed mice compared to the 
chow diet-fed mice. The HF IOI-214 mice also had less hepatic steatosis than the HF DMSO control mice (Figure 6A). 
H&E staining of liver sections also revealed the presence of some hepatocellular ballooning (Figure 6B, lower left panel 
marked with arrowhead) and widespread evidence of the presence of early stages of hepatocellular ballooning in HF 
DMSO mice. However, there was no hepatocellular ballooning observed in the HF IOI-214 mice (Figure 6B, lower 
middle panel) or chow diet-fed mice (Figure 6B, lower right panel). To confirm the histological findings related to hepatic 
steatosis, and to further quantify the IOI-214 inhibition of HF diet-induced hepatic steatosis, we quantified TG content 
biochemically using the Salmon and Flatt method.94 In line with what was observed histologically (Figure 6A), the HF 
diet-induced increase in hepatic TG content (ie, hepatic steatosis) was significantly attenuated with IOI-214 treatment 
(Figure 6C). There was no significant difference in the amount of hepatic TG content between the HF IOI-214 and the 
chow diet-fed mice (Figure 6C). To lend additional support to this finding, we evaluated the hepatic expression of the 
lipid-associated marker, perilipin 5 (Plin5). We found that Plin5 expression in the HF DMSO mice was significantly 
higher than in the HF IOI-214 mice and the chow diet-fed mice (Figure 6D). There was no significant difference in the 
hepatic expression of Plin5 between the HF IOI-214 mice and the chow diet-fed mice (Figure 6D). Moreover, we found a 
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Figure 4 IOI-214 prevents LPS-induced inflammation in murine macrophages and hepatocytes in culture. 
Notes: (A) The murine macrophage cell line, RAW264.7 (A), and the murine hepatocyte cell line, AML-12 (B) were treated with 20 μM IOI-214 and DMSO (control) to 
determine if IOI-214 could block the upregulation of Tnf, Ifnb1, Ccl2, Il1b, and Il6 expression in the presence of 10 ng/mL LPS. All cells were pretreated with IOI-214 or 
DMSO for 1 hour prior to LPS treatment for 4 hours. Gene expression was determined via RT-qPCR. Error bars in all bar graphs represent ±SEM. Significance was 
determined using a one-way ANOVA followed by Tukey’s HSD post hoc analysis for multiple comparison. Bars indicate differences between indicated groups. #Indicates 
difference from all other groups, p < 0.05. *Indicates p < 0.05. ***Indicates p < 0.001. *****Indicates p < 0.00001.
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significant (P < 0.001) positive correlation (r = 0.56) between hepatic Plin5 expression and hepatic TG levels 
(Figure 6E).

Fasting serum cholesterol, TG, insulin, and glucose levels were measured biochemically. Serum cholesterol levels were 
significantly elevated in the HF DMSO and HF IOI-214 mice compared to the chow diet-fed mice. There was no difference in 
the amount of serum cholesterol between the HF DMSO and HF IOI-214 groups (Figure 7A). There was also no difference in 
serum TG levels between HF and chow diet-fed mice. This is an observation that is consistent with our findings in previous 
studies using this mouse model.11 IOI-214 had no effect on serum TG levels (Figure 7B). There were also no observed 
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Figure 5 IOI-214 blocks HF diet-induced mesenteric fat accumulation without affecting HF diet-induced weight gain or subcutaneous fat accumulation. 
Notes: Seven-week-old male C57BL/6J mice were fed a HF diet and treated once daily with 1mg/kg IOI-214 or DMSO (10% in sterile saline) via intraperitoneal injection for 
16 weeks. Weights of the mice were measured weekly and weight over the course of the experiment was plotted (A) and body weight gain was calculated (B). At the end of 
the 16-week experiment, mice were euthanized and mesenteric (C) and subcutaneous (D) fat was extracted from the mice and weighed. (B–D) Black squares (HF DMSO), 
gray triangles (HF IOI-214), and green diamonds (Chow Diet) represent data points from individual mice in each group. Error bars in all line and bar graphs represent ±SEM. 
Significance was determined using a one-way ANOVA followed by Tukey’s HSD post hoc analysis for multiple comparison. Bars in bar graphs indicate differences between 
indicated groups. Asterisks in the line graph indicate differences of HF DMSO and HF IOI-214 groups from the Chow Diet group at each time point. ***Indicates p < 0.001. 
*****Indicates p < 0.00001. ******Indicates p < 0.000001. Outliers are indicated by pink circles.
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Figure 6 IOI-214 ameliorates HF diet-induced hepatic steatosis. 
Notes: Seven-week-old male C57BL/6J mice were fed a HF diet and treated once daily with 1mg/kg IOI-214 or DMSO (10% in sterile saline) via intraperitoneal injection for 
16 weeks. (A) Oil Red O (ORO) staining and (B) Hematoxylin and eosin (H&E) staining was performed on liver tissue sections prepared from the mice after 16 weeks of HF 
diet feeding and treatment. All images in (A, top row) were taken at 40X magnification and images in (A, bottom row) were taken at 100X. All images in (B, top row) were 
taken at 20X and images in (B, bottom row) were taken at 200X. The black arrow in B represents an example of hepatocellular ballooning. Scale bars are as indicated in 
A&B. These are representative images from mice in each group. (C) Liver triglyceride content was quantified biochemically in liver tissue extracted from the mice after 16 
weeks of treatment. (D) RNA was isolated from the liver of the HF IOI-214 and HF DMSO mice from the 16-week study and Plin5 gene expression was determined via RT- 
qPCR. (E) Pearson’s correlation (r) analysis of hepatic TG content and relative fold change in Plin5 expression in HF DMSO, HF IOI-214 and Chow Diet mice. (C–E) Black 
squares (HF DMSO), gray triangles (HF IOI-214), and green diamonds (Chow Diet) represent data points from individual mice in each group. Error bars in all bar graphs 
represent ±SEM. Significance was determined using a one-way ANOVA followed by Tukey’s HSD post hoc analysis for multiple comparison. Bars indicate differences 
between indicated groups. *Indicates p < 0.05. ****Indicates p < 0.0001. Outliers are indicated by pink circles.
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Figure 7 IOI-214 mitigates HF diet-induced fasting hyperglycemia, without affecting fasting serum insulin, cholesterol or triglyceride levels, or glucose intolerance. 
Notes: Blood was collected from the mice at the end of the 16-week study and fasting serum cholesterol (A), TG (B), insulin (C), and blood glucose (D) levels were 
measured. A 3-hour intraperitoneal glucose tolerance test (E) was performed at week 15. Black squares (HF DMSO), gray triangles (HF IOI-214), and green diamonds 
(Chow Diet) represent data points from individual mice in each group. Error bars in all line and bar graphs represent ±SEM. Significance was determined using a one-way 
ANOVA followed by Tukey’s HSD post hoc analysis for multiple comparison or Independent Samples t-tests as appropriate. Bars indicate differences between indicated 
groups in bar graphs. Asterisks in the line graph indicate differences of HF DMSO and/or HF IOI-214 groups from the Chow Diet group at each time point. *Indicates p < 
0.05. **Indicates p < 0.01. ****Indicates p < 0.0001. Outliers are indicated by pink circles.
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differences in the amount of fasting serum insulin among the three experimental groups (Figure 7C). Fasting blood glucose 
levels in the HF DMSO mice were significantly elevated compared to the chow diet-fed and HF IOI-214 mice (Figure 7D). 
The fasting blood glucose levels in the HF IOI-214 mice were not statistically different from the chow diet-fed mice 
(Figure 7D). Moreover, intraperitoneal glucose tolerance tests revealed decreased glucose tolerance in the HF DMSO and 
HF IOI-214 groups compared to the chow diet-fed group, however there was no difference in glucose tolerance in the HF IOI- 
214 mice compared to the HF DMSO mice (Figure 7E). Serum aspartate aminotransferase (AST) and alanine aminotransfer-
ase (ALT) levels were not measured in this study as it has been previously demonstrated that AST and ALT levels are not 
elevated in this mouse model until 34–36 weeks on the HF diet.98

IOI-214 Reduces HF Diet-Induced Inflammation in Obese Male C57BL/6J Mice
Inflammation is a multifaceted biological response that incorporates numerous signaling pathways for the local or 
systemic activation of the immune system. As such, changes in multiple pathways, both at the tissue level and in 
circulation, may implicate a mechanism by which IOI-214 regulates inflammation either directly or indirectly. Since 
inflammation is associated with enhanced hepatic steatosis,12–16 and exogenous TNF in mice and rats is known to cause 
increased TG production and storage in the liver,12,15 we first evaluated TNFα protein levels in the liver of our mice. HF 
IOI-214 and chow diet-fed mice had significantly lower levels of hepatic TNFα than the HF IOI-214 DMSO mice 
(Figure 8A). There was no significant difference in TNFα levels between chow diet-fed mice and HF IOI-214 mice 
(Figure 8A). The hepatic protein levels of other pro-inflammatory cytokines known to participate in the pathogenesis of 
HF diet-induced NAFLD/MAFLD (MCP1, IL6, and IL1β)73 were also assessed in the liver of our mice. Hepatic MCP1, 
IL6 and IL1β protein levels were also significantly reduced in HF IOI-214 mice compared to HF DMSO mice 
(Figure 8B–D), although hepatic MCP1 and IL6 protein levels in HF IOI-214 mice were still significantly elevated 
compared to chow diet-fed mice (Figure 8B and D). There was no significant difference in hepatic IL1β levels between 
chow diet-fed mice and HF IOI-214 mice (Figure 8C). To lend further support to the relationship between hepatic 
inflammation and TG levels in the liver, there were highly significant positive correlations between hepatic TG levels and 
TNFα (P < 0.00001), MCP1 (P = 0.0001), IL6 (P < 0.001) and IL1β (P < 0.00001) protein levels. These positive 
correlations corresponded with clear separation of treatment groups (as indicated by corresponding circles) 
(Figure 9A–D).

In humans and mice PLIN5/Plin5 expression has recently been shown to be involved in the regulation of pro- 
inflammatory cytokines, endoplasmic reticulum stress, and mitochondrial damage, which has made it an important target 
of studies focused on NAFLD/MAFLD.17 Plin5 depletion has also recently been shown to be protective in the pathogenesis 
of liver injury, which supports that pathways associated with PLIN5 are important.17 Thus, we evaluated hepatic Plin5 
expression and found that IOI-214 significantly mitigated HF diet-induced hepatic Plin5 expression (Figure 6D).

Additional markers of systemic inflammation that have significance in NAFLD/MAFLD were assessed via metabo-
lomics. It has been shown that in NAFLD/MAFLD, where there is increased inflammation, hepatic itaconate levels are 
low, and circulating levels of tryptophan are high and kynurenine low.40,41 Metabolomics revealed that hepatic itaconate 
and circulating kynurenine levels were significantly elevated in the HF IOI-214 mice in comparison to the HF DMSO 
mice (Table 1). In addition, circulating tryptophan levels were significantly lower in HF IOI-214 mice compared to the 
HF DMSO mice (Table 1).

Given the significant contribution of the gut microbiome to inflammation that contributes to NAFLD/MAFLD,20–26 

changes in the gut microbiome composition by IOI-214 may help to explain IOI-214’s therapeutic effects on NAFLD/ 
MAFLD in this HF diet-induced mouse model. To evaluate the effects of IOI-214 on the gut microbiome in HF diet-fed 
mice, we collected colonic fecal samples from HF DMSO and HF IOI-214 mice after 16 weeks of HF diet feeding and 
sent them to UC Davis MMPC and their Host Microbe Systems Biology Core for microbiome analysis. Partial Least 
Squares-Discriminant Analysis (PLS-DA) using Genus level abundances mostly separated populations of HF IOI-214 
and HF DMSO groups (Figure 10A). Moreover, there was a greater abundance of Bacteroidetes in HF IOI-214 mice 
when compared to the HF DMSO mice, as well as a smaller abundance of Firmicutes in the HF IOI-214 mice when 
compared to the HF DMSO mice (Figure 10B). There was also a larger abundance of Verrucomicrobia, Proteobacteria, 
and Actinobacteria in the HF IOI-214 mice compared to the HF DMSO mice (Figure 10B).
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It is well known that in humans and mice, the pathologic shift in the gut microbiome that occurs in response to HF 
diet feeding (ie, gut microbiota dysbiosis) leads to an increase in intestinal permeability (ie, “leaky gut”), wherein 
bacterial LPS, and other inflammatory molecules, are released into the circulation.27 This consequently triggers 
inflammation in the liver, as the liver gets ~70% of its blood supply through the portal vein from the intestines.28,78 

Lipopolysaccharide binding protein (LBP) binds to bacterial LPS and is important for presenting LPS to its cluster of 
differentiation 14 (CD14)-TLR4 complex to elicit immune responses.79 LBP levels are used as a surrogate of LPS. Thus, 
an increased level of serum LBP is indicative of increased circulating levels of LPS (ie, endotoxemia), which leads to 
increased hepatic inflammation. To evaluate the effects of IOI-214 on circulating levels of LBP, as a measure of systemic 
inflammation, in the HF diet-fed mice treated with DMSO or IOI-214, we collected serum samples from HF DMSO and 
HF IOI-214 mice after 16 weeks of HF diet feeding and sent them to the UC Davis MMPC and their Host Microbe 
Systems Biology Core for analysis. Circulating LBP levels in the HF IOI-214 mice were found to be significantly lower 
than in the HF DMSO mice (Figure 11A). To lend additional support to the relationship between circulating LPS/LBP 
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Figure 8 IOI-214 blocks HF diet-induced hepatic inflammatory cytokine and chemokine protein levels in vivo. 
Notes: Protein levels of inflammatory cytokines [TNFα (A), IL6 (B) and IL1β(C)] and the chemokine MCP1 (D) were evaluated in the liver of the mice at the end of the 16- 
week experiment via cytokine and chemokine-specific ELISAs. Black squares (HF DMSO), gray triangles (HF IOI-214), and green diamonds (Chow Diet) represent data 
points from individual mice in each group. Error bars in all graphs represent ±SEM. Significance was determined using a one-way ANOVA followed by Tukey’s HSD post hoc 
analysis for multiple comparison. Bars indicate differences between indicated groups. *Indicates p < 0.05. **Indicates p < 0.01.
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levels and TG levels in the liver, there was a significant positive correlation (r = 0.58, P < 0.05) between hepatic TG 
levels and circulating LBP levels, which corresponded with clear separation of treatment groups (as indicated by the 
color-coded corresponding circles) (Figure 11B).

In addition to increased circulating levels of LPS as a marker of increased gut permeability, Occludin (OCLN) protein 
levels in the gut are known to decrease in obese mice with leaky gut syndrome30,31(reviewed in32,33). Thus, as a measure 
of gut permeability, we assessed OCLN levels in the colon of our mice that were fed the HF diet. As can be seen in 
Figure 10C, colonic OCLN protein levels in the majority of the HF diet-fed mice treated with IOI-214 were much higher 
than OCLN protein levels in the HF diet-fed DMSO mice (Figure 11C, last 5 lanes compared to the first 5 lanes, 

Table 1 Effects of IOI-214 on Key Metabolites Related to Inflammation

Liver Serum

Relevant 
Physiological 
Process

Metabolite Significant Fold 
Change in Metabolite 
Levels Between HF 

IOI-214 and HF 
DMSO Groups 

(Welch’s Two-Sample 
t-test)

Metabolite Significant Fold 
Change in Metabolite 
Levels Between HF 

IOI-214 and HF 
DMSO Groups 

(Welch’s Two-Sample 
t-test)

Inflammation Itaconate 2.38 Tryptophan 0.80 
Kynurenine 1.87 

Note: Black arrows indicate significant increases or decreases in levels of the respective metabolites as indicated.
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Figure 9 Correlations between hepatic TG content and inflammatory cytokine and chemokine protein levels in the liver of HF DMSO, HF IOI-214 and Chow Diet mice. 
Notes: Pearson’s correlation (r) analyses of hepatic TG content and hepatic protein levels of TNFα (A), MCP1 (B), IL6 (C) and IL1β (D). Hepatic TG content was 
significantly and highly correlated with the hepatic protein levels of each of the cytokines and chemokine as indicated. The HF IOI-214 mice, in all cases, clearly had 
decreased levels of hepatic TG content compared to the HF DMSO mice that was correlated with decreased levels of the cytokines and chemokine evaluated.
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respectively). In the mice containing OCLN protein (n = 4 out of 5 in each group), the OCLN levels were significantly 
higher in the HF IOI-214 mice compared to the HF DMSO mice (Figure 11C, bottom panel).

Discussion
The liver plays a central role in metabolic homeostasis and is a major site for synthesis, metabolism, storage and 
redistribution of carbohydrates, lipids and proteins. Due to the rapid and pervasive increase in obesity world-wide, 
NAFLD/MAFLD remains among the most prevalent liver diseases and is a leading cause of liver-related morbidity and 
mortality. Risk factors for NAFLD are well established and contribute to our understanding of the etiology and 
pathogenesis for this multisystem disease. Obesity and metabolic derangements promote alterations in hepatic glucose 
and lipid metabolism and these alterations are linked to the pathophysiologies of NAFLD/ MAFLD.

Inflammation is widely recognized to be a key component in the pathogenesis of NAFLD/MAFLD. Obesity is 
considered the chief risk factor for the development of NAFLD/MAFLD and is the key foundation of the inflammation 
that is responsible for its progression.99,100 Currently, there are no therapies to prevent the inflammation associated with 
NAFLD/MAFLD. Given that NAFLD/MAFLD is associated with metabolic disease, pharmacological agents that target 
lipid accumulation or insulin resistance, such as certain anti-diabetic therapies including metformin,101 rosiglitazone,102 
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Figure 11 IOI-214 decreases gut permeability in HF diet-fed mice. 
Notes: Serum samples from HF DMSO and HF IOI-214 collected at the end of the 16-week experiment and sent to the UC Davis Mouse Metabolic Phenotyping Center 
(MMPC) for analysis of LBP levels (A). (B) Pearson’s correlation (r) analysis of hepatic TG content and serum LBP levels in HF DMSO and HF IOI-214 mice. (C) Colon 
samples were collected from some of the mice at random at the end of the 16-week experiment, total protein was isolated, and Western blots were done to evaluate 
colonic OCLN protein levels. Densitometry was then conducted to evaluate the relative levels of OCLN protein relative to the amount of βActin. The average amount of 
OCLN per group was then calculated for the mice in each group wherein OCLN was present in the colon (n = 4 mice/group). Black squares (HF DMSO) and gray triangles 
(HF IOI-214) represent data points from individual mice in each group. Error bars represent ±SEM. Significance was determined using Independent Samples t-tests. Bars 
indicate differences between the groups. *Indicates p < 0.05. Outliers are indicated by pink circles.
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statins,103 and more recently GLP-1 agonists52 are being used as front-line therapies. Consequently, there is presently an 
intense and ongoing effort to identify and develop other novel therapeutics for this disease.

Obesity is considered to be a state of chronic, low-grade inflammation characterized by an abundance of pro- 
inflammatory cytokines in tissues (eg, liver and adipose tissue) and in the circulation, and this elevated inflammatory 
state contributes to insulin resistance and metabolic disorders.25,104–106 Adipocytes and associated macrophages produce 
and release cytokines systemically that interfere with peripheral insulin signaling. In addition, ectopic lipid deposition in 
insulin target tissues leads to “lipotoxicity”, an event that allows release of cytokines from the ectopically deposited 
adipocytes and associated macrophages to blunt insulin action (ie, insulin resistance). The combination of both local 
lipotoxicity and increases in circulating cytokines in obese individuals disrupts normal glucose homeostasis (ie, increased 
blood glucose levels).107–111 Moreover, the liver is central to maintaining whole-body glucose and lipid metabolism, and 
accumulating evidence suggests that hepatocyte-initiated inflammation also plays an important role in the development of 
insulin resistance. Normally, there is little to no production of cytokines in the liver, however in states of obesity where 
there is an increase in FFAs, LPS and other pathological stimuli, hepatic cells (ie, hepatocytes and immune cells) are 
stimulated to increase their production of inflammatory molecules (ie, pro-inflammatory cytokines and chemokines), 
which will trigger additional hepatic inflammation that leads to hepatocellular injury/death and fibrosis. Notably, TNFα, a 
pro-inflammatory adipokine/cytokine, that is produced by multiple types of inflammatory cells (monocytes/macrophages, 
neutrophils, and T cells) and tissues such as adipose and endothelial tissue, is produced directly by hepatocytes and 
Kupffer cells, or indirectly, by abdominal fat in the liver.112

TLR4 is a major inflammatory signaling pathway that mediates chronic inflammation in states of obesity.8,113–115 

Tlr4 is abundantly expressed not only in immune cells, but also in adipose tissue, liver, the gut, and skeletal muscle, 
and is an important modulator of cellular insulin action.116–123 TLR4 is known to be a critical mediator of obesity- 
induced insulin resistance and T2DM.124 Non-immune ligands for TLR4 include saturated FFAs (sFFAs) (ie, 
palmitate and stearate,115,125,126 as well as increased circulating bacterial LPS, a phenomenon termed “metabolic 
endotoxemia”,25,26,127–133 all of which are in excess in obese individuals. Saturated FFA- and LPS-induced activa-
tion of TLR4 (and TLR2) signaling in insulin target cells (hepatocytes, adipocytes, skeletal myocytes, etc.) blunts 
insulin action8,113,118,121,122,126,134–140 because activation of TLR4 signaling results in the generation of pro-inflam-
matory cytokines (TNFα, IL6, etc.) and chemokines [CXCL10, MCP1 (CCL2), etc.] that contribute to insulin 
resistance.116–122,126,141,142 Consistently, mice lacking TLR4 display a marked decrease in diet-induced inflammation 
and IR.8,122,126,143–147 In fact, LPS derived from the gut (ie, leaky gut) stimulates TLR4 in obesity,148–150 and 
although TLR4 is not a receptor for saturated FFAs derived from the HF diet, TLR4 is required for saturated FFA/ 
lipid-induced inflammation through TLR4-dependent priming and altered cellular metabolism.10 TLR4 signaling in 
hepatocytes,8 and hepatic macrophages, particularly Kupffer cells, is a critical source of inflammatory cytokines and 
chemokines (eg, TNF, IL6, MCP1, IL1B, etc.) that are key players in the pathogenesis of NAFLD/MAFLD.97

In the current study, we evaluated a promising novel small molecule, IOI-214, to inhibit LPS-induced inflammation in 
vitro and its efficacy to prevent HF diet-induced NAFLD/MAFLD in male C57BL/6J mice in vivo. We hypothesized that 
IOI-214, a novel compound that is similar to, yet structurally distinct from phenylmethimazole (C10), which we have 
shown previously to be a potent inhibitor of TLR3 and TLR4-mediated inflammation,11,55–59,61,62 would block LPS- 
induced inflammatory cytokine expression, and would therefore ameliorate HF diet-induced inflammation and hepatic 
steatosis in C57BL/6J male mice. In vitro, IOI-214 exhibited potent anti-inflammatory properties by inhibiting LPS- 
induced pro-inflammatory cytokine gene expression in murine macrophages (Tnf, Ifnb1, Mcp1, Il1b, Il6) and hepatocytes 
(Tnf) in culture. In vivo, we observed a significant decrease in hepatic steatosis and hepatocellular ballooning (ie, 
NAFLD/MAFLD) in HF IOI-214-treated mice compared to HF DMSO mice. Similar anti-inflammatory properties of 
IOI-214 were observed in vivo as HF diet-induced pro-inflammatory cytokine (TNFα, MCP1, IL6, IL1β) levels were 
significantly reduced in the liver of the mice fed a HF diet and treated with IOI-214. We also found that the levels of 
these inflammatory cytokines in the liver were significantly highly correlated with the amount of TG in the liver (ie, 
hepatic steatosis). In this context, it is worth noting again that IOI-214 mitigated HF diet-induced hepatic Plin5 
expression because, as mentioned earlier, in humans and mice PLIN5/Plin5 expression is involved in lipid droplet 
formation and degradation,151 pro-inflammatory cytokine regulation and direct mitochondrial damage,152 as well as 
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endoplasmic reticulum stress, which has made it a key target of NAFLD/MAFLD studies.17 Moreover, serum LBP levels 
were reduced in HF IOI-214 mice compared to HF DMSO mice, also providing evidence of IOI-214’s anti-inflammatory 
activity. The decrease in LBP levels was also significantly highly correlated with hepatic TG levels. The decrease in 
circulating LBP levels (and likely circulating inflammatory cytokines/chemokines) is presumably due to the positive 
effects of IOI-214 on the gut microbiota dysbiosis (as determined by the observed decrease in the Firmicutes/ 
Bacteroidetes ratio in the gut of IOI-214-treated mice compared to DMSO-treated controls) and decreased gut perme-
ability (as determined by the observed higher levels of OCLN in the gut of the IOI-214-treated mice compared to DMSO- 
treated controls) induced by the HF diet. The decreased Firmicutes/Bacteroidetes ratio is indicative of decreased gut 
inflammation, and the increased levels of OCLN in the gut are indicative of a decrease in leaky gut (which leads to 
systemic and hepatic inflammation). Both of these improvements by IOI-214 in the HF diet-fed mice suggest that part of 
the therapeutic mechanism(s) (ie, its ability to decrease hepatic steatosis) of IOI-214 is via its positive, anti-inflammatory, 
effects on the gut.

Another rather interesting finding that is relevant to inflammation is the accumulation of hepatic itaconate within the 
HF IOI-214 mice in comparison to the HF DMSO mice. Itaconate is an anti-inflammatory metabolite36–39 that has been 
shown to be significantly less abundant in obesity-associated steatotic liver,19 and genetic deletion of the gene that 
encodes the protein (ie, immune response gene 1, Irg1) exacerbates HF diet-induced NAFLD/MAFLD in C57BL/6J 
mice.18 As itaconate is primarily produced by macrophages and is an anti-inflammatory metabolite, this change may 
indicate a change in infiltrating/resident immune cells and promote inflammation resolution.37–39 Moreover, there was a 
significant drop in circulating tryptophan levels and substantial increase in circulating kynurenine (a catabolite of 
tryptophan) levels in HF IOI-214 mice compared to HF DMSO mice. Kynurenine is also a marker of immune system 
activation and it has been reported that the induction of NAFLD/MAFLD is often accompanied by a decrease in 
circulating kynurenine (and increase in tryptophan)40 and that this change may contribute to a pro-inflammatory status.41 

As such, this change may be a marker of reduced systemic inflammation and an improvement in liver function. Hence, 
the increase in hepatic itaconate levels and the increase in circulating levels of kynurenine and decrease in circulating 
levels of tryptophan by IOI-214 in the HF diet-fed mice supports the notion that IOI-214 decreases systemic inflamma-
tion. We propose that this decrease in inflammation is part of the mechanism by which IOI-214 protects from HF diet- 
induced NAFLD/MAFLD. Exactly how IOI-214 modulates the levels of hepatic itaconate and circulating levels of 
kynurenine and tryptophan will be the focus of future studies.

As mentioned above, it is widely accepted that mesenteric adipose tissue is a significant source of inflammation in 
obesity that contributes to the lipotoxicity present in metabolic diseases.153 Thus, the fact that there was significantly less 
mesenteric adipose tissue in the HF IOI-214 mice than in the HF DMSO mice lends additional evidence to support the 
decrease in overall inflammation in the IOI-214-treated mice.

Given the clear anti-inflammatory effects of IOI-214 in the HF diet-fed mice, and the known role of inflammation in 
driving hepatic steatosis in NAFLD/MAFLD,8–28 it is not surprising that IOI-214 treatment significantly abated hepatic 
steatosis induced by the HF diet, a finding confirmed independently in this study by histological (ORO and H&E 
staining), biochemical (direct measurements of hepatic TG levels) and molecular analyses (RT-qPCR measures of Plin5 
expression). It is also noteworthy to mention that the anti-inflammatory effects of IOI-214 also offers an explanation for 
how IOI-214 can reduce visceral fat accumulation, and glucose levels, in addition to hepatic steatosis in these mice since 
obesity-induced inflammation (at least in part by blocking TLR4 signaling) in the liver, gut, adipose tissue, and 
systemically drives not only hepatic steatosis but also lipid accumulation and insulin resistance.

What is surprising, given the overall decreased state of inflammation in the HF IOI-214 mice, is that there was no 
observed statistical decrease in systemic insulin resistance (as measured by an oral GTT) with IOI-214 treatment. We can 
only speculate at this point that the large effects on attenuating hepatic steatosis, in the absence of such an effect on 
overall systemic insulin resistance in the IOI-214-treated mice, may be the result of the largest effects of IOI-214 on gut 
microbiota dysbiosis and gut barrier integrity. In states of obesity, there is a pathologic shift in the gut microbiota (ie, gut 
microbiota dysbiosis) that leads to leaky gut syndrome, wherein bacterial LPS, and other inflammatory molecules, are 
released directly into the portal circulation,27 and thereby trigger inflammation in the liver, as the liver gets ~70% of its 
blood supply through the portal vein from the intestines.28,29 Because of the large amount of LPS and other inflammatory 
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Figure 12 Hypothesized working model of IOI-214 activity to ameliorate HF diet-induced NAFLD/MAFLD in vivo. 
Notes: Green boxes represent IOI-214 targets in vivo. We present data in this manuscript that supports the hypothesis that IOI-214 ameliorates HF diet-induced NAFLD/ 
MAFLD in vivo by improving gut microbiota dysbiosis (Figure 9), decreasing systemic inflammation (Table 1) and mesenteric fat accumulation (Figure 4C), decreasing gut 
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molecules produced in the gut, directly and continuously being delivered to the liver in high quantities in HF diet-fed 
mice, it is logical that by IOI-214 inhibiting the inflammation derived in the gut AND the inflammation that is triggered 
in the liver directly under these pathological conditions, that the most dramatic effects observed would be in the liver first 
and foremost. It is possible that the current experiment may have been too short, or the IOI-214 dosage too small to 
observe additional possible effects of IOI-214 on overall systemic insulin resistance. Thus, future studies will address 
these issues. However, although we did not see significant effects of IOI-214 on HF diet-induced glucose intolerance in 
our GTTs, we did observe that HF diet feeding caused fasting hyperglycemia, which can be the first phase of impaired 
GTT/insulin resistance. The HF diet-induced fasting hyperglycemia was significantly decreased by IOI-214 treatment. 
The exact mechanism(s) by which IOI-214 reverses HF diet-induced fasting hyperglycemia is uncertain at present; it 
could be due to IOI-214 lowering TG content in the liver since TGs in the liver contribute to hepatic gluconeogenesis in 
the fasting state of insulin-resistant patients and decreased hepatic fat content could reverse glucose synthesis in the 
fasting state of IOI-214-treated mice.154

Conclusion
Chronic inflammation, as a consequence of obesity-induced steatosis, leads to NAFLD/MAFLD, which can progress to 
more severe stages of the disease (ie, NASH, cirrhosis, or hepatocellular carcinoma). Herein, we report for the first time 
that IOI-214 is a potent inhibitor of LPS/TLR4-mediated inflammation in murine macrophages and hepatocytes in culture 
and is highly effective at mitigating HF diet-induced NAFLD/MAFLD in male C57BL/6J mice by ameliorating HF diet- 
induced inflammation (both in the liver and systemically), abating mesenteric fat accumulation, improving gut microbiota 
dysbiosis, decreasing gut permeability (by preventing HF diet-induced decreases in OCLN levels in the gut), and 
preventing release of gut-derived LPS into the circulation (Figure 12, green boxes). Thus, IOI-214 has the potential to 
have a profound clinical impact and an exciting novel therapeutic option for the treatment of NAFLD/MAFLD; 
especially NASH and the more progressive forms of the disease.
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