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Abstract: The pregnancy-specific condition pre-eclampsia not only affects the health of mother 

and baby during pregnancy but also has long-term consequences, increasing the chances of 

cardiovascular disease in later life. It is accepted that pre-eclampsia has a placental origin, but 

the pathogenic mechanisms leading to the systemic endothelial dysfunction characteristic of 

the disorder remain to be determined. In this review we discuss some key factors regarded as 

important in the development of pre-eclampsia, including immune maladaptation, inadequate 

placentation, oxidative stress, and thrombosis. Genetic factors influence all of these proposed 

pathophysiological mechanisms. The inherited nature of pre-eclampsia has been known for 

many years, and extensive genetic studies have been undertaken in this area. Genetic research 

offers an attractive strategy for studying the pathogenesis of pre-eclampsia as it avoids the 

ethical and practical difficulties of conducting basic science research during the preclinical 

phase of pre-eclampsia when the underlying pathological changes occur. Although pharmaco-

genomic studies have not yet been conducted in pre-eclampsia, a number of studies investigating 

treatment for essential hypertension are of relevance to therapies used in pre-eclampsia. The 

 pharmacogenomics of antiplatelet agents, alpha and beta blockers, calcium channel blockers, and 

magnesium sulfate are discussed in relation to the treatment and prevention of pre-eclampsia. 

Pharmacogenomics offers the prospect of individualized patient treatment, ensuring swift intro-

duction of optimal treatment whilst minimizing the use of inappropriate or ineffective drugs, 

thereby reducing the risk of harmful effects to both mother and baby.
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Introduction
One of the major aims of the human genome project and subsequent disease initiatives 

was the discovery of new pharmaceutical targets. With the current advances in our 

understanding of genetics and the ever-improving sequencing technologies avail-

able we are now at an exciting time not just for research, but also for the translation 

of research results into potential health benefits due to the evolution of pharmaco-

genomics and the development of personalized medicine. The focus of this review is 

to provide a comprehensive overview of the genetic and pharmacogenetic aspects of 

pre-eclampsia. An in-depth review of the pathophysiology of the disorder is outside 

the scope of this review.1

Genetic involvement in the pregnancy-specific condition pre-eclampsia has long 

been recognized but determining the mode of inheritance and the genes involved 

has not been straightforward. Research is continuing to unravel the genetic compo-

nent of pre-eclampsia, aiding understanding of the pathophysiological changes that 
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occur in this disorder. The importance of these findings in 

 understanding the pathogenesis of pre-eclampsia cannot 

be overstated. The trigger for pre-eclampsia arises in the 

 placental bed early in pregnancy, at a time and location 

that precludes basic science research for ethical and prac-

tical  reasons. Molecular genetics research can therefore 

 provide clues to the primary causes of pre-eclampsia that 

are unavailable by other methods. Potential opportunities for 

pharmacogenomic interventions are considered in the light 

of evidence from other related diseases.

The impact of pre-eclampsia
Pre-eclampsia is a leading cause of maternal and  perinatal 

morbidity and mortality, affecting between 0.4% and 

2.8% of all pregnancies in developed countries and many 

more in developing countries, leading to over 8 million 

cases  worldwide per year.2 Although the definition of pre-

eclampsia focuses on the occurrence of hypertension and 

proteinuria, this is a multisystem disorder that may affect the 

brain, lungs, kidney, and liver. Not only does pre-eclampsia 

impact on maternal health but the growth and development 

of the fetus are frequently compromised, and pre-eclampsia 

has long-term impacts on the health of both the mother and 

offspring.3–5 A two-stage model for pre-eclampsia has been 

proposed.6 The first stage is reduced placental perfusion, 

 secondary to abnormal implantation and development of 

placental vasculature. The second stage is the maternal 

response to this condition, characterized by widespread 

inflammation and maternal endothelial cell dysfunction.7 

A number of pregnant women have pre-existing risk factors 

that make them more susceptible to the development of pre-

eclampsia and the other hypertensive disorders of pregnancy 

(see Table 1).

Studies examining plasma and tissue samples following 

the onset of pre-eclampsia have confirmed the presence of 

oxidative stress, and the release of endothelial proteins and 

pro-inflammatory cytokines,8 but discriminating between 

causal factors and secondary responses presents significant 

challenges. In this regard, genetic studies of pre-eclampsia 

offer an advantage in that genotype remains constant and is 

not affected by the disease process.

Genetic basis of pre-eclampsia
Genetic studies of pre-eclampsia have been confounded by 

the problem that there is currently no universally accepted 

definition of the disorder, with several internationally recog-

nized definitions available.9 The general consensus diagnosis 

of pre-eclampsia is a blood pressure of $140/90 mmHg 

 measured on at least two occasions separated by 6 hours after 

the twentieth week of pregnancy in a previously  normotensive 

woman, accompanied by significant  proteinuria (300 mg/L or 

500 mg/24 hours) in the absence of a urinary tract  infection.9 

In pre-eclampsia the elevated blood  pressure returns to 

normal 6 to 12 weeks following delivery. Pre-eclampsia 

can progress rapidly, at times without warning, to the life-

threatening convulsive condition eclampsia. Development of 

pre-eclampsia begins with a loss of vascular refractoriness 

to vasoactive agents followed by vasoconstriction, resulting 

in a decrease in intravascular volume. Fluid is then passed 

across the “leaky” capillaries to the extravascular space. 

Pre-eclampsia is subsequently characterized by a generalized 

dysfunction of the maternal endothelium10 with impairment 

of endothelium-dependent relaxation in maternal resistance 

arteries.11

A genetic component for pre-eclampsia has been indi-

cated since the observation in the nineteeth century of a 

clustering of cases within families.12 Challenges to defining 

this genetic involvement include the fact that the phenotype 

is expressed only in parous females, and also the need to 

evaluate the genotypes of both the mother and her fetus.

Pre-eclampsia is a complex  
genetic disorder
It is now accepted that pre-eclampsia is a complex genetic 

disorder, occurring as the result of variants at different 

loci, which individually have small effects but collectively 

contribute to an individual’s susceptibility to disease. It is 

Table 1 Risk factors for pre-eclampsia

Risk factors for pre-eclampsia
immunological Nulliparity

Primipaternity
Donor sperm/oocyte

Obstetric in vitro fertilization treatment
Multiple pregnancy
Previous adverse obstetric  
history – gestational hypertension, 
pre-eclampsia, fetal growth restriction, 
abruption placentae, perinatal death

Pre-existing conditions Chronic hypertension
Renal disease
Type 2 diabetes
Thrombophilia syndromes
Autoimmune disorder

Abnormal uterine Doppler Resistance index 0.58
Presence of diastolic notch

Maternal factors Extremes of maternal age
Black ethnicity
Obesity
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 probable that no  single gene or variant will be identified that is 

 responsible for all cases of pre-eclampsia, although different 

variants may prove to be associated with subsets of disease, 

such as early onset pre-eclampsia with fetal growth  restriction. 

In agreement with this is the recent study that identi-

f ies three separate subgroups of pre-eclampsia based 

on expression of plasma membrane proteins involved 

in angiogenesis (group 1),  mitogen-activated protein 

kinase signaling (group 2), and hormone biosynthesis 

and metabolism (group 3).13  Environmental factors, such 

as  psychological stress14 and vitamin D deficiency,15 also 

modify an individual’s risk of developing pre-eclampsia, 

determining whether variants with low penetrance result in 

phenotypic manifestation of the disease.

Deciphering the relative contribution 
of fetal and maternal genes
Investigation of both fetal and maternal genotypes is essential 

to better our understanding of the genetics of pre-eclampsia. 

An undisputable role of the placenta in the primary pathogen-

esis of pre-eclampsia is clear, indicating a fetal contribution 

to susceptibility to the disorder.16 Placental development in 

pre-eclampsia is superficial. Normal placental development 

is characterized by invasion of cytotrophoblast cells into 

the maternal decidua and inner third of the myometrium. 

Cytotrophoblast invasion serves to anchor the placenta to 

the wall of the uterus and also to gain access to the maternal 

vasculature. Endovascular trophoblast invasion enables the 

onset of placental circulation. The endovascular tropho-

blast cells also serve to trigger the process of physiologic 

conversion which is characterized by a loss of elastic fibers 

and smooth muscle cells due to proteolytic activity of the 

invasive endovascular trophoblast cells. Furthermore, spiral 

artery walls are replaced by intramural fibrin and fibrinoid, 

which is produced by the trophoblast cells, resulting in a 

considerable increase in the luminal diameter. These changes 

serve to transform the originally flexible vessels into rigid 

high-capacitance vessels which are incapable of  constricting. 

Both extravillous and endovascular cytotrophoblast inva-

sion is deficient in pre-eclampsia resulting in spiral arteries 

retaining their original architecture which precludes an 

adequate vascular response to the demands from the fetus 

for increased blood flow.17 Decreased expression of laminin 

receptor 1 by cytotrophoblasts and syncytiotrophoblasts has 

been found in pre-eclampsia which may have a role in the 

shallow trophoblastic invasion in pre-eclampsia.18 A role 

for paternally inherited fetal genes in the determination of 

clinical phenotype is evident from reports of higher rates of 

pre-eclampsia in pregnancies fathered by men who were born 

of a pre-eclamptic pregnancy.16,19

It has been suggested that an excessive or atypical 

maternal immune response to invading trophoblast may be 

the cause of the placental stage of pre-eclampsia, resulting 

in impaired decidualization and placentation. Thus, pre-

eclampsia can be considered a disease of failed interaction 

between two genetically different organisms. The genetic 

conflict hypothesis states that the fetal genetic component 

comprised of paternal genes functions to enhance the growth 

and development of the fetus by maximizing nutrient transfer 

to the fetus. In conflict with this, the maternal genes function 

to limit transfer to the fetus to ensure that no compromise is 

made to maternal health.20 Fetal genes are predicted to raise 

maternal blood pressure in order to enhance uteroplacental 

blood flow, whereas maternal genes act to oppose this. 

Endothelial dysfunction in pre-eclamptic mothers could, 

therefore, be interpreted as a fetal attempt to compensate for 

an inadequate uteroplacental nutrient supply by increasing 

maternal blood pressure. The Genetics of Pre-eclampsia 

consortium highlighted the need for examination of both 

maternal and fetal genotypes performing transmission of 

disequilibrium testing in both maternal and fetal triads.21 

Interpreting the relative contribution and interactive effects 

of both maternal and fetal genes on pre-eclampsia has not 

been straightforward, but statistical methods are now becom-

ing available.22 Unraveling the maternal and fetal genetic 

contributions to pre-eclampsia will require very large sample 

sizes, with the development of new statistical algorithms to 

aid with data analysis, including a multinomial modeling 

approach that allows the estimation of such genetic effects 

using either case/mother duos or case/parent trios.23

Candidate gene studies  
of pre-eclampsia
Over 70 candidate genes selected on the basis of prior 

biological knowledge of the pathological changes in pre-

eclampsia have been investigated. Candidate genes studied 

to date can be separated into groups based on their sug-

gested  pathophysiological mechanisms: vasoactive proteins, 

thrombophilia and hypofibrinolysis, oxidative stress and 

lipid metabolism, endothelial injury, and  immunogenetics 

(see Table 2).24 In spite of the large research effort, no 

candidate gene has been universally accepted as a causal 

gene for pre-eclampsia. Whilst this may be due in part to 

ethnic variations within study populations and inconsistency 

in the definition of  pre-eclampsia, the major reason is the 

fact that the majority of candidate gene studies have been 
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Table 2 Candidate genes and predominant polymorphisms implicated in the pathogenesis of pre-eclampsia

Proposed mechanism Gene name Gene symbol Polymorphism

vasoactive proteins Angiotensinogen AGT 235Met . Thr
Angiotensin converting enzyme ACE i/D intron 16

Thrombophilia and hypofibrinolysis Factor v Leiden F5 506Gln . Arg
Methylenetetrahydrofolate reductase MTHFR C667T
Prothrombin F2 G20210A
Plasminogen activator factor-1 SERPINE1 Promoter insertion/deletion
integrin glycoprotein iiia GPIIIA C98T

Oxidative stress and lipid metabolism Apolipoprotein E APOE C886T
Microsomal epoxide hydrolase EPHX 113Tyr . His
Glutathione-S-transferase GST A313G

Endothelial function Endothelial nitric oxide synthase 3 eNOS3 298Glu . Asp
vascular endothelial growth factor receptor 1 VEGFR1 TG repeat
vascular endothelial growth factor VEGF C936T

immunogenetics Tumour necrosis factor α TNF G-308A
interleukin 10 IL10 G1082A

grossly underpowered to detect variants with small effects. 

It is only in recent years that the small effect size of causal 

variants has become appreciated in the study of complex 

genetic disorders, with the majority of variants increasing 

disease risk by ,50%. Candidate gene studies are further 

limited by their reliance on our incomplete understanding of 

the pathogenic processes that occur in pre-eclampsia, which 

therefore restricts the genes that are evaluated.

Clotting cascade abnormalities
The occurrence of thrombophilias is well documented in 

women with pre-eclampsia.25 Establishment of the utero-

placental circulation is crucial in determining the success of 

pregnancy. Thrombophilias are believed to heighten the risk 

of placental insufficiency due to the formation of placental 

thrombi, in addition to having direct effects on trophoblast 

growth and differentiation.26 Whether the procoagulant 

state which characterizes pre-eclampsia is present before a 

pre-eclamptic pregnancy or whether it is rather a result of 

damage initiated during placentation remains unclear. The 

thrombophilic factors methylenetetrahydrofolate reductase, 

factor V Leiden variant, and prothrombin have been investi-

gated in numerous candidate gene studies. These have yielded 

conflicting results with the majority of studies showing no 

association with pre-eclampsia,24,27,28 which have been further 

confirmed by two large meta-analyses.29,30

Regulation of endothelial function 
and hemodynamics
Due to the role of the renin-angiotensin system in regu-

lating the renal and cardiovascular changes that occur 

during pregnancy this system has been implicated in the 

pathophysiology of pre-eclampsia. A number of candidate 

gene studies, concentrating mainly on angiotensin con-

verting enzyme (ACE), angiotensin II type 1 and type 2 

receptor, and angiotensinogen, have yielded inconclusive 

results. Meta-analyses have implicated the T allele of angio-

tensinogen M235T and the deletion allele of the ACE I/D 

polymorphism.31,32

Endothelial nitric oxide synthase 3 has decreased 

 activity in pre-eclampsia.33 This enzyme is important for the 

production of nitric oxide (NO), an important regulator of 

vasodilatation and vascular remodeling. Genetic association 

studies of endothelial nitric oxide synthase 3 variants in dif-

ferent ethnic populations have produced conflicting results, 

and a recent meta-analysis has shown no association with 

pre-eclampsia.31

Vascular endothelial growth factor (VEGF) has also 

been implicated in the pathophysiological changes of 

pre-eclampsia due to its role in regulating endothelial cell 

function and vascular permeability. Two small studies have 

suggested that the VEGF 405G . C and 936C . T alleles 

are associated with pre-eclampsia; results await confirmation 

in larger studies.34 The soluble fms-like tyrosine kinase 1 

(sFLT1) located on 13q12, binds VEGF with high affinity 

thus preventing VEGF from interacting with its receptor 

VEGFR1, resulting in decreased bioavailability of VEGF. 

The incidence of trisomy 13 is 2.3 in 10,000 births in 

pregnancies with pre-eclampsia in comparison with 0.5 in 

10,000 births in pregnancies without pre-eclampsia.35 It is 

suggested that the extra copy of chromosome 13 in trisomy 

13 results in increased levels of sFLT1, explaining the 

increased incidence of pre-eclampsia in women carrying 

trisomy 13 conceptuses.36
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Oxidative stress and lipid 
metabolism
Oxidative stress is central to the pathogenesis of pre-

 eclampsia.37 During the first trimester of pregnancy placental 

development is in relatively hypoxic conditions, thereby pro-

tecting fetal DNA from the harmful effects of damaging free 

radicals.38 Between gestational weeks 8 and 12  extravillous 

trophoblast plugs are released allowing maternal perfusion 

of the placenta.39 This leads to a sudden burst of oxidative 

stress. In normal pregnancy oxidative damage is prevented 

by the expression of antioxidant enzymes including gluta-

thione peroxidase, catalase, and various forms of superoxide 

dismutase.40,41 Expression of these antioxidant enzymes is 

reduced in the pre-eclamptic placenta leading to a cascade of 

events which result in impaired placental development. The 

reduced antioxidant protection in pre-eclampsia culminates 

in inadequate inactivation of harmful reactive oxygen species 

(ROS) which cause endothelial dysfunction through lipid 

peroxidation.42 Only a small number of genes involved in regu-

lating oxidative stress have been examined in pre-eclampsia, 

including epoxide hydrolase and glutathione-S-transferase, and 

none has been clearly shown to increase susceptibility.43–45

Abnormal lipid profiles are a characteristic feature of 

pre-eclampsia, including the increase in lipid peroxidation 

brought about by increased oxidative stress. Two major regu-

lators of lipid metabolism, lipoprotein lipase (LPL) and apoli-

poprotein, are abundantly expressed in the  placenta and have 

been investigated as candidate genes for  pre-eclampsia.46–48 

The Asn291Ser mis-sense mutation in LPL has been asso-

ciated with lowered plasma LPL activity and increased 

dyslipidemia in pre-eclampsia,47 but other researchers have 

failed to confirm these findings.49

Immune system involvement  
in pre-eclampsia
The fetus is hemiallogeneic with respect to its mother, and 

the maternal immune response is a key factor in determining 

pregnancy outcome. The increased risk of pre-eclampsia in 

first pregnancies suggests immune system involvement in 

its pathogenesis. A lengthy period of exposure to paternal 

semen prior to pregnancy appears to be protective, which may 

explain in part the three-fold increase in risk of developing 

pre-eclampsia following use of donor sperm or oocytes.50,51

Killer immunoglobulin-like receptors  
and the human leucocyte antigen
Expression of major histocompatibility complex molecules 

by invading extravillous cytotrophoblast cells is limited to 

the invariant Class 1b molecules, human leucocyte antigen 

(HLA)-E, HLA-F, and HLA-G, and the moderately polymor-

phic Class Ia antigen HLA-C. Interactions between tropho-

blast HLA-C and maternal killer-cell immunoglobulin-like 

receptors (KIR) expressed by uterine natural killer cells are 

important for regulating trophoblast invasion and are crucial 

for successful placentation.52 The two basic KIR haplotypes, 

A and B, differ in that the B haplotype is more potent in 

activating uterine natural killer cells, and stimulating the 

secretion of cytokines essential for trophoblast invasion. 

Fetal HLA-C antigens are also represented by two groups, 

HLA-C1 and HLA-C2, which have differing affinities for 

KIR haplotypes. There is evidence that certain maternal KIR/

fetal HLA-C combinations increase the risk of inefficient 

placentation leading to pre-eclampsia.53

TNFα
Excessive release of tumor necrosis factor alpha (TNFα) is 

associated with endothelial activation, and plasma levels of 

TNFα are significantly higher in women with pre- eclampsia.54 

Furthermore, treatment of pregnant rats with TNFα induces 

hypertension.55 TNFα is also involved in the production of 

ROS and oxidant-mediated endothelial damage. The most 

frequently studied polymorphism in the TNFα gene is the 

308G . A transition in the promoter region, which is asso-

ciated with increased production of TNFα. This variant has 

been associated with an increased risk of pre-eclampsia and 

pre-eclampsia linked disorders, including type 2  diabetes, 

coronary artery disease, and dyslipidemia.56,57 However, a 

large-scale meta-analysis of this polymorphism failed to 

demonstrate significant association with pre-eclampsia.58

interleukin 10 (iL-10)
Trophoblast invasion and spiral artery remodeling are also 

regulated by IL-1059 which is expressed at lower levels in 

pre-eclamptic placentae compared to matched controls.60 

Large-scale studies examining genetic variants of IL-10 

have failed to demonstrate a significant association with 

pre-eclampsia.61,62

Animal models of pre-eclampsia
Due to the differences in placental development between 

humans and other mammals, specifically deep trophoblast 

invasion, animal models have been of only limited sig-

nificance in the help to elucidate factors involved in the 

pathophysiology of pre-eclampsia.63 However, recently the 

murine catechol-O-methyltransferase (COMT) knockout 

model has been useful in unraveling the significance of 
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decreased placental COMT expression in pre-eclampsia. 

Estradiol is metabolized by cytochrome P450 generating 

17-hydroxyestradiol which is a substrate for COMT, which 

converts 17-hydroxyestradiol into 2-methoxyestradiol 

(2-ME). 2-ME inhibits HIF-1α by possibly destabiliz-

ing microtubules in trophoblasts.64 During pregnancy the 

concentration of maternal circulatory 2-ME immediately 

increases and peaks at term.64,65 The plasma concentration of 

2-ME is decreased in pre-eclampsia.64 COMT-deficient mice 

(COMT-/-) display a pre-eclampsia-like phenotype, includ-

ing pregnancy-induced hypertension with  proteinuria.64 

Administration of exogenous 2-ME ameliorates the hyper-

tension, proteinuria, placental defects, acute atherosis, and 

glomerular and placental endothelial damage present in 

pregnant COMT-/- mice. It is thought that the pre-eclampsia 

like symptoms present in COMT-/- mice is due to placen-

tal accumulation of HIF-1α. In the presence of COMT, 

2-ME suppresses HIF-1α accumulation and production of 

sFLT1. In COMT-/- mice, however, HIF-1α accumulation 

is associated with an increased inflammatory response and 

endothelial damage.

The rs4680 polymorphism in the coding sequence of 

COMT produces a G to A nucleotide substitution leading to 

a valine to methionine amino acid substitution at amino acid 

position 158.66 The COMT Met158 variant has a lower stability 

and shows a lower enzymatic activity, with this variant pres-

ent in around 30% of the population. This polymorphism has 

been found to be associated with fetal growth restriction and 

abnormalities.66 Pre-eclampsia may therefore be associated 

with such polymorphisms within the COMT gene, however, 

robust genetic studies are still needed to confirm or dispute 

such an association.

Genome-wide screening
Genome-wide screening provides an unbiased approach to the 

search for susceptibility genes for pre-eclampsia, unlimited 

by current understanding of the underlying pathophysiologi-

cal changes. It therefore offers an opportunity to elucidate 

previously unsuspected pathogenic pathways, and identify 

novel interventional targets.

Genome-wide linkage screens (GWLS)
GWLS have been very successful in identifying highly 

penetrant variants in monogenic disorders, but this method 

is inadequately powered for detecting the causal variants 

with small effect size typical of complex genetic disorders. 

A number of GWLS have been performed in pre-eclampsia, 

assessing the segregation of microsatellite alleles in affected 

siblings. This method can only identify relatively large 

regions of the genome, typically tens of centimorgan in size, 

and containing hundreds of genes, many of which may be bio-

logically plausible. Significant linkage with pre-eclampsia on 

chromosomes 2p13,67 2p25,68 and 9p1368 has been reported. 

Suggestive linkage has also been described at different loci on 

chromosomes 2q, 9p, 10q, 11q, and 22q.69,70  Disappointingly, 

none of these loci have been independently replicated in 

another GWLS. Limited statistical power is a major factor 

in the failure to replicate these GWLS in studies of complex 

genetic disorders. Meta-analysis of the five GWLS performed 

in pre-eclampsia produced modest evidence for linkage at 

several loci, but cautioned that insufficient data were avail-

able for conclusive results.71

Positional candidate genes
Activin A receptor type IIA (ACVR2A) has been identified 

as a strong positional candidate on the 2q22-23 locus. As 

a key receptor for the cell-signaling protein activin A, an 

important regulator of human pregnancy, ACVR2A represents 

a biologically plausible candidate. Activin A has also been 

investigated as a potential biomarker for pre-eclampsia as 

circulating levels are increased in pre-eclamptic  pregnancies.72 

In a large study of over 1100 pre-eclamptic women and 

2200 normotensive controls, four single nucleotide poly-

morphisms (SNPs) in ACVR2A were significantly associated 

with pre-eclampsia,73 and the influence of these variants on 

the expression and function of ACVR2A is currently being 

investigated. However, in a study of 74 affected families from 

Australia/New Zealand the ACVR2A association was not 

replicated.74 This gene still remains an interesting target due 

to its strong biological involvement in the establishment and 

maintenance of pregnancy.

Within the pre-eclampsia linkage peak on chromosome 

2p25 lies the ROCK2 gene. This gene encodes rho-associated 

coiled-coil protein kinase 2 and, interestingly, has been 

implicated in essential hypertension.68 ROCK2 is widely 

expressed in smooth muscle cells and animal models have 

indicated a role in vasoconstriction.75,76 It has also been 

shown that syncytiotrophoblast cells of the placenta express 

ROCK2 and expression is up regulated in pre-eclampsia.77 

A study examining ten polymorphisms within ROCK2 failed 

to detect any association with pre-eclampsia.78 This study was 

powered only to detect a genetic effect of 1.6, and a larger 

study is warranted to investigate both ROCK2 and other 

genes at the 2p25 locus.
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Genome-wide association  
screening (GWAS)
GWAS is a second unbiased approach to the identification of 

susceptibility genes for pre-eclampsia. Rather than sequenc-

ing the entire genome GWAS makes use of the abundant 

SNPs scattered throughout the human genome. Due to the 

lack of independence between the alleles of SNPs in close 

proximity, a phenomenon known as linkage disequilibrium, 

a number of representative tagSNPs can be used to infer the 

genotype of adjacent SNPs. Genotyping of between 300,000 

and 1 million carefully selected tagSNPs enables the majority 

of variation in the human genome to be captured. A SNP that 

is associated with disease may be causal, or may be acting as a 

marker for another functional SNP in linkage  disequilibrium. 

Deep resequencing is often required to identify all the poly-

morphisms present at the susceptibility locus.

GWAS has identified over 2000 genetic variants associated 

with common diseases, including essential hypertension, coro-

nary artery disease, and type 2 diabetes79 conditions which carry 

an increased risk of pre-eclampsia. Although many of these loci 

have been independently confirmed, further functional studies 

are frequently required in order to elucidate the exact pathophys-

iological mechanisms involved in these disease  processes. 

GWAS to identify susceptibility genes for pre-eclampsia are 

currently underway; the results are eagerly awaited.

Treatment and prevention  
of pre-eclampsia
Prevention, early identification, and individualized treat-

ments may become feasible if reliable early biomarkers 

can be developed. A recent microarray study has found 

dysregulation of gene expression in early placenta in women 

6 months before development of pre-eclampsia,80 confirming 

placental involvement in this disorder, and also offering the 

prospect of early prediction of those women at highest risk. 

It is hoped that completion of GWAS studies and subsequent 

deep resequencing will help suggest additional biomarkers 

and improve our understanding of the pathophysiological 

changes that occur in this disorder.

A number of interventions are available to help treat and 

prevent pre-eclampsia, including antiplatelet agents, beta 

blockers, alpha blockers, diuretics, vasodilators (NO agents), 

and calcium channel blockers.81

The benefits of pharmacogenomics
The aim of pharmacogenomics is to individualize treat-

ments in a rational and directed manner, thereby removing 

the  element of trial and error from current clinical practice. 

This will in turn reduce morbidity and mortality at the same 

time as maximizing the benefit to patients and significantly 

reducing costs. In the UK, around 6.5% of hospitalizations are 

due to adverse drug reactions.82 The benefits of personaliza-

tion and rationalization of treatment by pharmacogenomic 

approaches are therefore clear. They would be of particular 

benefit for treatment of pre-eclampsia, a condition in which 

patients can deteriorate rapidly and therefore need treatments 

that are immediately effective.

Oncology is the current leading example for personalized 

medicine with pharmacogenomics being used to identify new 

targets influencing drug absorption, distribution, metabolism 

and excretion, drug safety, and drug efficacy. The ability to 

segregate patients into drug responders and nonresponders is 

the cornerstone of personalized medicine and is now becoming 

standard practice in the use of oncology  medication. Genetic 

prediction of adverse effects is one of the major successes of 

pharmacogenomics, for example, prediction of hypersensitiv-

ity to the antiretroviral drug abacavir used to treat patients 

infected with human immunodeficiency virus.83,84

A clear message coming from researchers interested 

in pharmacogenomics and personalized medicine is that 

translation of this research into clinical benefit demands 

access to large, well-characterized sample bio banks. 

This will require large-scale international collaborations, 

exemplified by the International Warfarin Pharmacogenet-

ics Consortium which has identified a model comprising 

environmental factors (age, height, weight, and amiodarone 

use) and genotype at rs9923231 (VKORC1), rs1799853 

and rs1057910 (CYP2C9*2 and *3), rs2108622 (CYP4F2), 

and rs6042 (F7), which accounts for over 50% of warfarin 

stable dose variance.85 Sharing of knowledge has been 

facilitated by the development of databases, such as the 

Pharmacogenomics Knowledge Base (PharmGkb),86 to act 

as worldwide resources.

The ever-increasing level of data being generated about 

our genomes and health and disease is leading the way for so-

called proactive P4 (prediction, personalization, prevention, 

participation) medicine. P4 medicine is important for future 

health as it will enable the prediction of individual health risk 

and also allow the development of personalized treatment 

based on an individual’s genetic variation. Furthermore, 

P4 medicine will lead to the prevention of more disease by 

the design of new therapeutic drugs. However, for P4 medi-

cine to be fully beneficial patients, doctors and the medical 

community must all understand and participate.87
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Drug metabolism is the key  
to pharmacogenomics
The challenge within pharmacogenomics is to define the 

physiological pathways that are involved in drug metabolism; 

pathways which involve multiple interacting proteins. Each 

of these proteins may contain a polymorphism, transcrip-

tion of these proteins is in turn regulated by proteins, which 

again may contain polymorphisms in their genetic coding. 

Further complexity is added as these biochemical pathways 

can interact amongst themselves in complex ways which 

are as yet undefined. This can make determining the actual 

cause of a change to a response to a drug very difficult. Such 

complexity has led to two generic streams for pharmaco-

genomic research: studies based on the pathophysiological 

pathways involved in disease and studies based on genome-

wide association screening.

Nitric oxide synthase as a potential 
target for therapy for pre-eclampsia
Endothelial dysfunction is characteristic of pre-eclampsia, 

being associated with the hypertension and proteinuria that 

are symptomatic of this disorder. Among several mediators 

released by the endothelium, NO plays an important role in 

regulating endothelial function (see Figure 1). NO produced 

by the endothelium targets the vascular smooth muscle, 

and activates soluble guanylate cyclase by interacting with 

its heme group. This enzyme synthesizes cyclic guanosine 

monophosphate from guanosine triphosphate, leading to 

an accumulation of cyclic guanosine monophosphate. This 

activates intracellular signaling pathways that decrease 

the degree of vascular smooth muscle contraction leading 

to vessel relaxation.88 In addition to functioning as an 

endogenous vasodilator, NO also serves as a platelet inhibitor, 

antioxidant, and regulator of vascular endothelium by sus-

taining its anticoagulant and antithrombogenic properties,89 

all of which are perturbed in pre-eclampsia. Within the 

cardiovascular system it is the endothelial isoform of nitric 

oxide synthase (eNOS) which is responsible for NO synthe-

sis.90 Reduced expression of eNOS consequently results in 

reduced NO bioavailability which plays a significant role in 

the endothelial dysfunction associated with pre-eclampsia.91 

eNOS represents an interesting pharmacogenomic target, 

but the multiple interdependent control mechanisms and 

signaling pathways that act throughout the various stages of 

the enzyme’s life history make this a difficult challenge.

Pre-eclampsia is also associated with an increase in oxida-

tive stress. The ROS superoxide anion is able to react with 

NO resulting in the formation of the highly damaging per-

oxynitrite, and further reducing the bioavailability of NO.92 

ROS can also cause oxidation of the tetrahydrobiopterin 

cofactor of eNOS, resulting in uncoupling of this enzyme 

and further production of superoxide anion in favor of NO,93 

a vicious cycle that further increases oxidative stress.

The eNOS gene, located on 7q35-7q36, is approximately 

21 to 22 Kb and consists of 26 exons and 25 introns.94,95 

Since its characterization in the 1990s, a large number of 

polymorphic sites have been identified in the eNOS gene, 

including variable number tandem repeats, dinucleotide 

repeats (CA)n, and SNPs. Several polymorphisms have 

been associated with pre-eclampsia and other  cardiovascular 
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Figure 1 The importance of nitric oxide (NO) in the regulation of endothelial function.
Abbreviations: eNOS, endothelial nitric oxide synthase; BH4, tetrahydrobiopterin; GC, guanylate cyclase; GTP, guanosine triphosphate; cGMP, cyclic guanosine 
monophosphate; ONOO-, peroxynitrite; OH, hydroxide.
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and hypertensive disorders.96–98 A relationship between eNOS 

polymorphisms and differential responses to several classes 

of cardiovascular drugs has been shown,99 some of which are 

used for the treatment of  pre-eclampsia.

In animal models statins have been shown to be beneficial 

in ameliorating pre-eclampsia100 and currently the StAmP 

(Trial of provaStatin to Ameliorate early onset Pre-eclampsia) 

trial is underway to assess the use of statins in pregnancy as 

a therapeutic intervention to prolong pre-eclamptic pregnan-

cies, thereby reducing the incidence of prematurity associ-

ated with the disorder.101 Recent evidence suggests genetic 

polymorphisms of eNOS modulate the effects of statins. 

Statin treatment induced a greater increase in eNOS mRNA 

levels in cultured endothelial cells with the CC genotype at 

the -786T . C polymorphism compared to cells with the TT 

genotype.102 These findings have been confirmed in a clinical 

study showing that atorvastatin increases the bioavailability 

of NO and decreases oxidative stress in CC homozygotes.103 

The same polymorphism in the eNOS gene modulates the 

anti-inflammatory effect of atorvastatin, resulting in sig-

nificant reductions in the inflammatory cytokines CD40L, 

VCAM-1, P-Selectin, and MMP-9 in individuals with the 

CC genotype but not the TT genotype.104 These findings 

suggest that statins might be more useful for the treatment 

of pre-eclampsia in women with the CC genotype than in 

those with the TT genotype.

A further polymorphism in intron 4 (4a/b) of the eNOS 

gene is also associated with modulation of the response 

to statins. In a study evaluating coronary vasodilatation 

induced by adenosine after 6-months’ treatment with pravas-

tatin, individuals carrying an A allele showed significant 

improvement of vasodilatation compared to homozygous 

bb individuals, possibly due to increased endothelial pro-

duction of NO.105

Prevention of pre-eclampsia
Labetalol
Labetalol is a mixed alpha- and beta-blocker that is used 

for controlling high blood pressure during pregnancy. 

Although no studies have been performed examining phar-

macogenomic effects on labetalol, a number of studies have 

been performed assessing other beta-blockers in patients 

with hypertension which may be of relevance to the use 

of labetalol in pre-eclampsia. Using a technique similar to 

GWAS, polymorphisms in eNOS have been shown to be 

associated with variations in pharmacological responses to 

the beta-blocker atenolol. In hypertensive patients, allele G 

of the A2996G polymorphism in eNOS is associated with a 

greater decrease in blood pressure following treatment with 

atenolol compared with patients with the A allele.106 Allele A 

of the G498A polymorphism in the eNOS gene is also asso-

ciated with a better response to atenolol treatment.106 The 

presence of a 2996G allele and a 498A allele may therefore 

be beneficial for patients treated with beta-blockers. These 

promising results need to be confirmed in a higher number 

of patients from different populations but may be important 

when considering pharmacogenomic approaches to the treat-

ment of pre-eclampsia.

Hydralazine (HDZ)
HDZ is commonly used in pre-eclampsia as an intravenous 

treatment for quickly lowering severely high blood pressure 

during pregnancy.107 Hypotension is a frequent adverse 

effect of HDZ treatment.107 HDZ is biotransformed by the 

enzyme N-acetyltransferase (NAT) forming acetyl HDA, 

which spontaneously converts to the stable product 3- met

hyl-S-triazolo-[3,4-a]-phthalazine.108 Two isoforms of NAT 

are encoded by NAT1 and NAT2. Several polymorphisms 

in NAT1 and NAT2 have functional consequences including 

truncation of the proteins, which leads to reduced enzyme 

activity. This affects the rates of inactivation of many drugs, 

including HDZ.109

As previously mentioned, COMT deficiency is implicated 

in the pathogenesis of pre-eclampsia. Importantly, HDZ 

has also been shown to inhibit placental COMT activity.110 

Therefore, HDZ mediated suppression of COMT/2-ME needs 

to be carefully evaluated for its connection with possible 

drug-exacerbated pre-eclampsia.

However, it is questionable whether pretreatment NAT 

genotyping would be clinically justified, as the benefits of 

HDZ therapy in severe pre-eclampsia outweigh the risk of 

adverse drug reactions.

Aspirin
Aspirin reduces the risk of pre-eclampsia111 through its 

antithrombotic action. A recent Cochrane review showed 

that aspirin at doses of between 50 and 150 mg/day reduces 

the risk of pre-eclampsia by 17% (relative risk 0.83; 95% 

confidence interval 0.77–0.89).112 Current guidelines from 

the National Institute for Health and Clinical Excellence81 

recommend that women at high risk of pre-eclampsia should 

take aspirin 75 mg daily from 12 weeks of pregnancy until 

the birth of the baby. Low-dose aspirin functions as an 

antiplatelet agent through its ability to irreversibly acetylate 

and thus inhibit the enzyme cyclo-oxygenase-1 (COX-1). 

This suppresses the synthesis of thromboxane A
2
, a potent 
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vasoconstrictor and activator of platelet aggregation.112 

Therefore, low-dose aspirin may enhance uterine blood 

flow and tissue perfusion, and promote optimal uterine 

hemodynamics.

There is interindividual variation in the antiplatelet effects 

of aspirin giving rise to the concept of antiplatelet drug 

resistance.113 A number of laboratory assays are available to 

test for aspirin resistance which include light transmission 

aggregometry, platelet function analyser-100,  VerifyNow® 

Aspirin system (Accumetrics, San Diego, CA), thromboelas-

tography, or measurements of serum levels of thromboxane B
2
 

or the urinary metabolite 11-dehydro-thromboxane B
2
. The 

definition of antiplatelet drug resistance is controversial and 

therefore the reported prevalence varies widely, between 5% 

and 60%, depending on the laboratory methods used and 

the population studied.114–116 However, it is important to note 

that poor compliance by patients has been identified as a 

primary cause of resistance.117 In addition to COX-1-specific 

effects, aspirin also has COX-1 independent effects, which 

may be subject to more interindividual variability and may 

explain the adverse outcomes among patients with high 

platelet reactivity.114,118

A number of mechanisms may be related to aspirin 

 resistance.119 Clinical factors including poor patient compli-

ance, drug-absorption abnormalities, or drug–drug interac-

tions play a role.120 Cellular factors have also been proposed 

to influence aspirin efficacy, such as inadequate suppression 

of platelet COX-1 due to increased platelet turnover, over 

expression of COX-2 mRNA, erythrocyte-platelet interac-

tion, catecholamine levels, or the generation of 8-iso-PGF
2
.121 

Polymorphisms in both the COX-1 and COX-2 genes may 

have roles in aspirin resistance.122 The COX-1 C50T and 

COX-2 (G-765C) polymorphisms have both been associated 

with the efficiency of reduction of thromboxane B
2
 levels 

after aspirin treatment.118,123

A number of polymorphisms have been identif ied 

as being associated with aspirin drug resistance (see 

Table 3).121,124 However, these studies have often been 

underpowered and inconclusive. This is perhaps not surpris-

ing given the different methods used to assess resistance 

and the lack of assessment of compliance. A comprehensive 

systematic review and meta-analysis of pharmacogenomics 

of aspirin resistance has been performed identifying 50 

polymorphisms in eleven genes in the aspirin pathway.125 

A subgroup analysis in healthy individuals identified a 

statistically significant genetic association between aspirin 

resistance and a polymorphism in the glycoprotein (GP) IIb/

IIIa platelet receptor gene. The platelet GPIIb/IIIa receptor is 

essential for platelet activation and aggregation by binding 

fibrinogen and von Willebrand factor. This receptor com-

plex is the main pharmaceutical target for aspirin and other 

antiplatelet therapies. The GP IIb/IIIa complex is highly 

polymorphic. Healthy carriers of the PIA2 allele, which is 

responsible for a Pro33 Leu amino acid change, are 2.36 

times more likely to display resistance to aspirin126 and there-

fore require a greater dose of aspirin to experience the same 

antiaggregant effect as do subjects with a PIA1 homozygous 

genotype.127 However, no studies have been undertaken in 

pregnant women on aspirin to determine whether there is 

genetic variability in response to aspirin, and certainly this 

has never been related to clinical outcomes.

A second complex which may also regulate patient response 

to aspirin and other antiplatelet agents is the GP Ia/IIa complex, 

a high-affinity receptor for collagen which plays a key role in 

platelet adhesion. Polymorphisms that alter the structure and 

density of the GP Ia/IIa receptor complex on the platelet surface 

include C807T (Phe 224), a silent polymorphism affecting the 

Ia subunit. The 807T allele is associated with up to ten times 

higher expression of the receptor on the platelet surface and 

may modify the effect of antiplatelet drugs.128

Table 3 Summary of pharmacogenomic studies on antiplatelet agents

Protein Polymorphism Patient numbers  
studied

Functional effects Clinical effects

GP iib/iiia PiA(Pro33Leu) .5000 individuals with PiA2 allele require higher dose of aspirin  
to achieve comparable anti-aggregant effect as wild-type  
homozygotes

increased risk of 
thrombosis

GPia C807T 1170 Associated with collagen-receptor density on the platelet 
membrane surface and greater platelet reactivity

Conflicting data

COX-1 C50T 563 Associated with higher levels of thromboxane B2 No clinical data
COX-2 G-765C 24 Associated with a higher reduction of thromboxane  

B2 levels after aspirin treatment
No clinical data

ADP subtype receptor P2Y12 980 Associated with reduced platelet aggregation after  
aspirin intake

No clinical data

Abbreviations: ADP, adenosine diphosphate; COX, cyclooxygenase; GP, glycoprotein.
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Magnesium sulfate
Magnesium sulfate is used therapeutically to prevent eclamp-

tic convulsions in women with pre-eclampsia. The pharmaco-

logical actions of magnesium include cerebral vasodilatation 

thereby reducing cerebral ischemia,129 or blocking of neuronal 

damage associated with ischemia.130 However, magnesium 

sulfate also has side effects for the mother.131 An increase in 

postpartum hemorrhage has been reported following mag-

nesium sulfate treatment,132 although its incidence was not 

increased in the Magpie trial.133 Importantly, magnesium is 

able to cross the placenta and hypermagnesemia in the neo-

nate is associated with flaccidity, hyporeflexia, and respira-

tory depression.134 To the best of the authors’ knowledge, 

no pharmacogenomic studies have been performed with 

magnesium sulfate.

Calcium channel blockers
The calcium channel blockers nifedpine, verapamil, and 

nicardipine are also recommended to treat hypertension 

in pre-eclampsia.135 Calcium channel blockers function 

by blocking voltage-gated calcium channels in the heart 

and vasculature, thereby reducing intracellular calcium. 

In the heart, this results in decreased cardiac contractility 

and reduced cardiac output; in the blood vessels, this leads 

to decreased smooth muscle contraction and peripheral 

 resistance. Although no pharmacogenomic studies have 

been performed in pre-eclampsia, over recent years, a num-

ber of studies have examined calcium channel blockers in 

the treatment of hypertension. Three SNPs in CACNA1A 

(rs2239050, rs2238032, and rs2239128) have been associated 

with success of treatment in a study of blood pressure lower-

ing with calcium channel blockers,136 however,  Beitelshees 

et al137 failed to replicate this finding. A recent study has also 

shown that individuals with rs1051375 A/A benefit from 

treatment with a calcium channel blocker, whereas those 

with the G/G genotype would benefit from treatment with a 

beta blocker, and in those individuals that are heterozygous 

it does not matter which treatment is chosen.137 Suggestive 

associations between CYP3A5*3 and CYP3A5*6 variants 

and verapamil treatment for blood pressure and hypertension 

risk outcomes in black and Hispanic populations have also 

been observed.138 The Glu65 Lys and Val110Leu variants 

of KCNMB1 have also been studied with regard to systolic 

blood pressure regulation by verapamil. Although blood 

pressure response did not vary by genotype, Lys65 carriers 

achieved earlier blood pressure control and required fewer 

additional  treatments. Leu110 carriers were found to have 

a reduced risk of death, myocardial infarction, or stroke.139 

Higher mortality rates have also been reported for individuals 

with the Ser49-Arg389 variant of ADRB1 following treatment 

with verapamil.140 Additionally, individuals homozygous 

for the T allele of NPPA T2238C had more favorable clini-

cal outcomes when treated with a calcium channel blocker 

whereas C carriers responded better to a diuretic.141

Conclusion
The need for collaboration within the field of genetics of pre-

eclampsia, as with all other complex genetic disorders, is now 

accepted by researchers. Only large-scale collaborations can 

achieve sufficient sample sizes to perform adequately powered 

studies. Whilst a role for pharmacogenomics is accepted in 

the field of cancer treatment, further research is needed before 

pharmacogenomic approaches can be considered appropriate 

for pre-eclampsia. Due to concerns about possible teratogenic/

harmful effects on the fetus only minimal medication is 

given to a woman during pregnancy. A recent Confidential 

Enquiry into Maternal and Child Health report, attributes the 

occurrence of fatal intracranial hemorrhages to inadequate 

treatment of severe systolic hypertension (.160 mmHg) in 

women with pre-eclampsia, recommending urgent and effec-

tive treatment for such cases.142 Pharmacogenomics could help 

reduce the incidence of such fatal hemorrhages by helping to 

ensure that women received the optimal treatment regimen for 

them. Such accurate prediction of which women will respond 

well to a particular treatment will be further beneficial in 

the management of pre-eclampsia by preventing unneces-

sary exposure of the fetus to ineffective drugs. Progress in 

understanding the genetic component of pre-eclampsia will 

aid development of novel pharmaceutical treatments; person-

alized medicine informed by pharmacogenomics will target 

the treatments for this devastating disorder of pregnancy at 

those most likely to benefit.
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